Juan Luis Ramos MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The TetR Family of Transcriptional Repressors. Microbiology and Molecular Biology Reviews, 2005, 69, 326-356.	2.9	989
2	Mechanisms of Solvent Tolerance in Gram-Negative Bacteria. Annual Review of Microbiology, 2002, 56, 743-768.	2.9	705
3	Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology, 2003, 49, 905-918.	1.2	438
4	Biological Degradation of 2,4,6-Trinitrotoluene. Microbiology and Molecular Biology Reviews, 2001, 65, 335-352.	2.9	391
5	Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds. Journal of Bacteriology, 2000, 182, 2363-2369.	1.0	322
6	TRANSCRIPTIONAL CONTROL OF THEPSEUDOMONASTOL PLASMID CATABOLIC OPERONS IS ACHIEVED THROUGH AN INTERPLAY OF HOST FACTORS AND PLASMID-ENCODED REGULATORS. Annual Review of Microbiology, 1997, 51, 341-373.	2.9	315
7	Bacterial Sensor Kinases: Diversity in the Recognition of Environmental Signals. Annual Review of Microbiology, 2010, 64, 539-559.	2.9	310
8	Mechanisms for Solvent Tolerance in Bacteria. Journal of Biological Chemistry, 1997, 272, 3887-3890.	1.6	251
9	Three Efflux Pumps Are Required To Provide Efficient Tolerance to Toluene in Pseudomonas putida DOT-T1E. Journal of Bacteriology, 2001, 183, 3967-3973.	1.0	240
10	Convergent Peripheral Pathways Catalyze Initial Glucose Catabolism in Pseudomonas putida : Genomic and Flux Analysis. Journal of Bacteriology, 2007, 189, 5142-5152.	1.0	231
11	Transcriptional Tradeoff between Metabolic and Stress-response Programs in Pseudomonas putida KT2440 Cells Exposed to Toluene. Journal of Biological Chemistry, 2006, 281, 11981-11991.	1.6	207
12	Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiology Reviews, 2006, 30, 157-186.	3.9	206
13	Responses of Gram-negative bacteria to certain environmental stressors. Current Opinion in Microbiology, 2001, 4, 166-171.	2.3	192
14	Biofuels 2020: Biorefineries based on lignocellulosic materials. Microbial Biotechnology, 2016, 9, 585-594.	2.0	189
15	Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biology, 2007, 8, R179.	13.9	183
16	Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biology and Biochemistry, 2000, 32, 315-321.	4.2	181
17	Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 2012, 23, 415-421.	3.3	169
18	Proteomic Analysis Reveals the Participation of Energy- and Stress-Related Proteins in the Response of Pseudomonas putida DOT-T1E to Toluene. Journal of Bacteriology, 2005, 187, 5937-5945.	1.0	154

Juan Luis Ramos MartÃn

#	Article	IF	CITATIONS
19	Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environmental Microbiology, 2010, 12, 2873-2884.	1.8	151
20	Bioremediation of 2,4,6-Trinitrotoluene by Bacterial Nitroreductase Expressing Transgenic Aspen. Environmental Science & Technology, 2008, 42, 7405-7410.	4.6	148
21	Mechanisms of solvent resistance mediated by interplay of cellular factors in <i>Pseudomonas putida</i> . FEMS Microbiology Reviews, 2015, 39, 555-566.	3.9	143
22	Involvement of the <i>cis/trans</i> Isomerase Cti in Solvent Resistance of <i>Pseudomonas putida</i> DOT-T1E. Journal of Bacteriology, 1999, 181, 5693-5700.	1.0	141
23	Antibiotic-Dependent Induction of Pseudomonas putida DOT-T1E TtgABC Efflux Pump Is Mediated by the Drug Binding Repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47, 3067-3072.	1.4	134
24	Highâ€quality genomeâ€scale metabolic modelling of <i>Pseudomonas putida</i> highlights its broad metabolic capabilities. Environmental Microbiology, 2020, 22, 255-269.	1.8	127
25	Dual System To Reinforce Biological Containment of Recombinant Bacteria Designed for Rhizoremediation. Applied and Environmental Microbiology, 2001, 67, 2649-2656.	1.4	124
26	Identification of Products Resulting from the Biological Reduction of 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene byPseudomonassp Environmental Science & Technology, 1996, 30, 2365-2370.	4.6	123
27	Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene, 1999, 232, 69-76.	1.0	123
28	Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environmental Microbiology, 2006, 8, 165-177.	1.8	123
29	Diversity at its best: bacterial taxis. Environmental Microbiology, 2011, 13, 1115-1124.	1.8	123
30	Multiple and Interconnected Pathways for l -Lysine Catabolism in Pseudomonas putida KT2440. Journal of Bacteriology, 2005, 187, 7500-7510.	1.0	122
31	Analysis of Pseudomonas putida KT2440 Gene Expression in the Maize Rhizosphere: In Vitro Expression Technology Capture and Identification of Root-Activated Promoters. Journal of Bacteriology, 2005, 187, 4033-4041.	1.0	120
32	Bacterial diversity in the rhizosphere of maize and the surrounding carbonateâ€rich bulk soil. Microbial Biotechnology, 2013, 6, 36-44.	2.0	120
33	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	1.5	120
34	Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology, 2013, 24, 467-473.	3.3	118
35	Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials. Journal of Molecular Biology, 2007, 369, 829-840.	2.0	116
36	A Set of Genes Encoding a Second Toluene Efflux System in Pseudomonas putida DOT-T1E Is Linked to the tod Genes for Toluene Metabolism. Journal of Bacteriology, 2000, 182, 937-943.	1.0	113

#	Article	IF	CITATIONS
37	Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Molecular Microbiology, 2001, 39, 1100-1106.	1.2	109
38	16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environmental Microbiology, 2005, 7, 1329-1338.	1.8	106
39	Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME Journal, 2014, 8, 1259-1274.	4.4	105
40	Bioremediation of 2,4,6-Trinitrotoluene under Field Conditions. Environmental Science & Technology, 2007, 41, 1378-1383.	4.6	104
41	Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environmental Microbiology, 2005, 7, 773-779.	1.8	102
42	PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environmental Microbiology, 2005, 7, 1211-1219.	1.8	101
43	<i>Pseudomonas putida</i> KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environmental Microbiology Reports, 2010, 2, 381-388.	1.0	101
44	Bacterial responses and interactions with plants during rhizoremediation. Microbial Biotechnology, 2009, 2, 452-464.	2.0	100
45	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	1.8	99
46	Mutations in Each of the tol Genes ofPseudomonas putida Reveal that They Are Critical for Maintenance of Outer Membrane Stability. Journal of Bacteriology, 2000, 182, 4764-4772.	1.0	98
47	Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Current Opinion in Biotechnology, 2005, 16, 275-281.	3.3	94
48	A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environmental Microbiology, 2007, 9, 1135-1145.	1.8	93
49	Signal-regulator interactions, genetic analysis of the effector binding site of xyls, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of Molecular Biology, 1990, 211, 373-382.	2.0	92
50	Simultaneous Catabolite Repression between Glucose and Toluene Metabolism in <i>Pseudomonas putida</i> Is Channeled through Different Signaling Pathways. Journal of Bacteriology, 2007, 189, 6602-6610.	1.0	92
51	Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environmental Microbiology, 2002, 4, 842-855.	1.8	91
52	Metabolism of 2,4,6-Trinitrotoluene byPseudomonassp. JLR11. Environmental Science & Technology, 1998, 32, 3802-3808.	4.6	90
53	Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440. Antimicrobial Agents and Chemotherapy, 2012, 56, 1001-1009.	1.4	89
54	Analysis of the plant growthâ€promoting properties encoded by the genome of the rhizobacterium <i><scp>P</scp>seudomonas putida</i> â€ <scp>BIRD</scp> â€1. Environmental Microbiology, 2013, 15, 780-794.	1.8	89

#	Article	IF	CITATIONS
55	In Vivo and In Vitro Evidence that TtgV Is the Specific Regulator of the TtgGHI Multidrug and Solvent Efflux Pump of Pseudomonas putida. Journal of Bacteriology, 2003, 185, 4755-4763.	1.0	88
56	Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13774-13779.	3.3	88
57	Identification of a Chemoreceptor for Tricarboxylic Acid Cycle Intermediates. Journal of Biological Chemistry, 2010, 285, 23126-23136.	1.6	87
58	Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the nonâ€protein amino acid gammaâ€aminobutyrate (<scp>GABA</scp>). Molecular Microbiology, 2013, 88, 1230-1243.	1.2	87
59	Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital. PLoS ONE, 2014, 9, e81604.	1.1	86
60	Involvement of Cyclopropane Fatty Acids in the Response of Pseudomonas putida KT2440 to Freeze-Drying. Applied and Environmental Microbiology, 2006, 72, 472-477.	1.4	84
61	Integration of Signals through Crc and PtsN in Catabolite Repression of Pseudomonas putida TOL Plasmid pWW0. Applied and Environmental Microbiology, 2005, 71, 4191-4198.	1.4	81
62	Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in <i>Pseudomonas putida</i> : its role in the rhizosphere and an analysis of its target processes. Environmental Microbiology, 2011, 13, 1745-1766.	1.8	81
63	Effector-Repressor Interactions, Binding of a Single Effector Molecule to the Operator-bound TtgR Homodimer Mediates Derepression. Journal of Biological Chemistry, 2006, 281, 7102-7109.	1.6	79
64	Bacterial chemotaxis towards aromatic hydrocarbons in <i>Pseudomonas</i> . Environmental Microbiology, 2011, 13, 1733-1744.	1.8	78
65	Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Frontiers in Microbiology, 2015, 6, 871.	1.5	78
66	The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma32 or sigma38 depending on the growth phase. Molecular Microbiology, 1999, 31, 1105-1113.	1.2	77
67	Regulation of Glucose Metabolism in Pseudomonas. Journal of Biological Chemistry, 2009, 284, 21360-21368.	1.6	77
68	Interspecies signalling: <i><scp>P</scp>seudomonas putida</i> efflux pump <scp>TtgGHI</scp> is activated by indole to increase antibiotic resistance. Environmental Microbiology, 2014, 16, 1267-1281.	1.8	77
69	A Set of Activators and Repressors Control Peripheral Glucose Pathways in <i>Pseudomonas putida</i> To Yield a Common Central Intermediate. Journal of Bacteriology, 2008, 190, 2331-2339.	1.0	76
70	Compensatory role of thecis-trans-isomerase and cardiolipin synthase in the membrane fluidity ofPseudomonas putidaDOT-T1E. Environmental Microbiology, 2007, 9, 1658-1664.	1.8	74
71	Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 2011, 29, 641-647.	4.9	74
72	Respiration of 2,4,6-Trinitrotoluene by Pseudomonassp. Strain JLR11. Journal of Bacteriology, 2000, 182, 1352-1355.	1.0	73

#	Article	IF	CITATIONS
73	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	2.0	73
74	The xylS gene positive regulator of TOL plasmid pWWO: Identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Molecular Genetics and Genomics, 1987, 207, 349-354.	2.4	70
75	The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8191-8196.	3.3	70
76	Analysis of the mRNA structure of the Pseudomonas putida TOL meta fission pathway operon around the transcription initiation point, the xylTE and the xylFJ regions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 227-236.	2.4	69
77	The Multidrug Efflux Regulator TtgV Recognizes a Wide Range of Structurally Different Effectors in Solution and Complexed with Target DNA. Journal of Biological Chemistry, 2005, 280, 20887-20893.	1.6	68
78	Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18926-18931.	3.3	68
79	Cell Density-Dependent Gene Contributes to Efficient Seed Colonization by Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2004, 70, 5190-5198.	1.4	65
80	The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environmental Microbiology, 2007, 9, 1550-1561.	1.8	65
81	Analysis of the core genome and pangenome of <scp><i>P</i></scp> <i>seudomonas putida</i> . Environmental Microbiology, 2016, 18, 3268-3283.	1.8	65
82	Urinary levels of arsenic and heavy metals in children and adolescents living in the industrialised area of Ria of Huelva (SW Spain). Environment International, 2010, 36, 563-569.	4.8	64
83	Role of Pseudomonas putida tol-oprL Gene Products in Uptake of Solutes through the Cytoplasmic Membrane. Journal of Bacteriology, 2003, 185, 4707-4716.	1.0	63
84	Identification of conditionally essential genes for growth of <i>Pseudomonas putida</i> KT2440 on minimal medium through the screening of a genomeâ€wide mutant library. Environmental Microbiology, 2010, 12, 1468-1485.	1.8	63
85	Biotransformation in Double-Phase Systems: Physiological Responses of Pseudomonas putida DOT-T1E to a Double Phase Made of Aliphatic Alcohols and Biosynthesis of Substituted Catechols. Applied and Environmental Microbiology, 2004, 70, 3637-3643.	1.4	62
86	A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environmental Microbiology, 2006, 8, 639-647.	1.8	62
87	Temperature and pyoverdine-mediated iron acquisition control surface motility ofPseudomonas putida. Environmental Microbiology, 2007, 9, 1842-1850.	1.8	62
88	Physiological responses of <i>Pseudomonas putida</i> to formaldehyde during detoxification. Microbial Biotechnology, 2008, 1, 158-169.	2.0	61
89	Enhanced Tolerance to Naphthalene and Enhanced Rhizoremediation Performance for Pseudomonas putida KT2440 via the NAH7 Catabolic Plasmid. Applied and Environmental Microbiology, 2012, 78, 5104-5110.	1.4	61
90	Assimilation of Nitrogen from Nitrite and Trinitrotoluene in Pseudomonas putida JLR11. Journal of Bacteriology, 2005, 187, 396-399.	1.0	59

#	Article	IF	CITATIONS
91	Benefits and perspectives on the use of biofuels. Microbial Biotechnology, 2016, 9, 436-440.	2.0	59
92	Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environmental Microbiology, 2007, 9, 1535-1540.	1.8	57
93	Critical Nucleotides in the Upstream Region of the XylS-dependent TOL meta-Cleavage Pathway Operon Promoter as Deduced from Analysis of Mutants. Journal of Biological Chemistry, 1999, 274, 2286-2290.	1.6	55
94	Identification of the Initial Steps in d -Lysine Catabolism in Pseudomonas putida. Journal of Bacteriology, 2007, 189, 2787-2792.	1.0	55
95	Microbial responses to xenobiotic compounds. Identification of genes that allow <i>Pseudomonas putida</i> KT2440 to cope with 2,4,6â€trinitrotoluene. Microbial Biotechnology, 2009, 2, 287-294.	2.0	54
96	Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant and Soil, 2014, 385, 15-36.	1.8	54
97	The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology, 2021, 14, 769-797.	2.0	53
98	Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in <i>Pseudomonas putida</i> DOTâ€71E. Microbial Biotechnology, 2009, 2, 253-261.	2.0	52
99	Complete Genome of the Plant Growth-Promoting Rhizobacterium <i>Pseudomonas putida</i> BIRD-1. Journal of Bacteriology, 2011, 193, 1290-1290.	1.0	52
100	Taxonomic and Functional Metagenomic Profiling of the Microbial Community in the Anoxic Sediment of a Sub-saline Shallow Lake (Laguna de Carrizo, Central Spain). Microbial Ecology, 2011, 62, 824-837.	1.4	51
101	Control of Expression of Divergent Pseudomonas putida put Promoters for Proline Catabolism. Applied and Environmental Microbiology, 2000, 66, 5221-5225.	1.4	50
102	REP code: defining bacterial identity in extragenic space. Environmental Microbiology, 2005, 7, 225-228.	1.8	50
103	Rhizoremediation of lindane by rootâ€colonizing <i>Sphingomonas</i> . Microbial Biotechnology, 2008, 1, 87-93.	2.0	50
104	Genetic Engineering of a Highly Solvent-Tolerant Pseudomonas putida Strain for Biotransformation of Toluene to p- Hydroxybenzoate. Applied and Environmental Microbiology, 2003, 69, 5120-5127.	1.4	49
105	OYE Flavoprotein Reductases Initiate the Condensation of TNT-Derived Intermediates to Secondary Diarylamines and Nitrite. Environmental Science & Technology, 2008, 42, 734-739.	4.6	48
106	Identification of reciprocal adhesion genes in pathogenic and nonâ€pathogenic <i>Pseudomonas</i> . Environmental Microbiology, 2013, 15, 36-48.	1.8	48
107	Global Regulation of Food Supply by <i>P seudomonas p utida</i> DOT-T1E. Journal of Bacteriology, 2010, 192, 2169-2181.	1.0	47
108	Responses of Pseudomonas putida to toxic aromatic carbon sources. Journal of Biotechnology, 2012, 160, 25-32.	1.9	47

#	Article	IF	CITATIONS
109	Assessing Bacterial Diversity in the Rhizosphere of Thymus zygis Growing in the Sierra Nevada National Park (Spain) through Culture-Dependent and Independent Approaches. PLoS ONE, 2016, 11, e0146558.	1.1	47
110	Cross-Regulation between a Novel Two-Component Signal Transduction System for Catabolism of Toluene in Pseudomonas mendocina and the TodST System from Pseudomonas putida. Journal of Bacteriology, 2002, 184, 7062-7067.	1.0	46
111	TtgV Bound to a Complex Operator Site Represses Transcription of the Promoter for the Multidrug and Solvent Extrusion TtgGHI Pump. Journal of Bacteriology, 2004, 186, 2921-2927.	1.0	46
112	The IclR family of transcriptional activators and repressors can be defined by a single profile. Protein Science, 2006, 15, 1207-1213.	3.1	45
113	The RpoT Regulon of Pseudomonas putida DOT-T1E and Its Role in Stress Endurance against Solvents. Journal of Bacteriology, 2007, 189, 207-219.	1.0	44
114	Towards a Genome-Wide Mutant Library of Pseudomonas putida Strain KT2440. , 2007, , 227-251.		44
115	Regulation of carbohydrate degradation pathways in <i>Pseudomonas</i> involves a versatile set of transcriptional regulators. Microbial Biotechnology, 2018, 11, 442-454.	2.0	44
116	The pCRT1 plasmid of <i>Pseudomonas putida</i> DOTâ€T1E encodes functions relevant for survival under harsh conditions in the environment. Environmental Microbiology, 2011, 13, 2315-2327.	1.8	43
117	Chemical and Microbiological Characterization of Atmospheric Particulate Matter during an Intense African Dust Event in Southern Spain. Environmental Science & Technology, 2013, 47, 3630-3638.	4.6	43
118	The pangenome of the genus <scp><i>C</i></scp> <i>lostridium</i> . Environmental Microbiology, 2017, 19, 2588-2603.	1.8	43
119	Comparative genomic analysis of solvent extrusion pumps in Pseudomonas strains exhibiting different degrees of solvent tolerance. Extremophiles, 2003, 7, 371-376.	0.9	42
120	Type II Hydride Transferases from Different Microorganisms Yield Nitrite and Diarylamines from Polynitroaromatic Compounds. Applied and Environmental Microbiology, 2008, 74, 6820-6823.	1.4	42
121	Leucines 193 and 194 at the N-Terminal Domain of the XylS Protein, the Positive Transcriptional Regulator of the TOL meta -Cleavage Pathway, Are Involved in Dimerization. Journal of Bacteriology, 2003, 185, 3036-3041.	1.0	41
122	Role of the ptsN Gene Product in Catabolite Repression of the Pseudomonas putida TOL Toluene Degradation Pathway in Chemostat Culturesâ–¿. Applied and Environmental Microbiology, 2006, 72, 7418-7421.	1.4	41
123	Biomonitoring of urinary metals in a population living in the vicinity of industrial sources: A comparison with the general population of Andalusia, Spain. Science of the Total Environment, 2008, 407, 669-678.	3.9	41
124	Subfunctionality of Hydride Transferases of the Old Yellow Enzyme Family of Flavoproteins of <i>Pseudomonas putida</i> . Applied and Environmental Microbiology, 2008, 74, 6703-6708.	1.4	41
125	GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2014, 42, 7654-7665.	6.5	41

Pseudomonas putida as a platform for the synthesis of aromatic compounds. Microbiology (United) Tj ETQq0 0 0 rgBJ /Overlock 10 Tf 5

#	Article	IF	CITATIONS
127	Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Archives of Microbiology, 1985, 141, 105-111.	1.0	40
128	The davDT Operon of Pseudomonas putida, Involved in Lysine Catabolism, Is Induced in Response to the Pathway Intermediate δ-Aminovaleric Acid. Journal of Bacteriology, 2004, 186, 3439-3446.	1.0	40
129	Analysis of solvent tolerance in <i>Pseudomonas putida</i> DOTâ€T1E based on its genome sequence and a collection of mutants. FEBS Letters, 2012, 586, 2932-2938.	1.3	40
130	Mutations in Genes Involved in the Flagellar Export Apparatus of the Solvent-Tolerant Pseudomonas putida DOT-T1E Strain Impair Motility and Lead to Hypersensitivity to Toluene Shocks. Journal of Bacteriology, 2001, 183, 4127-4133.	1.0	39
131	Optimization of the Palindromic Order of the TtgR Operator Enhances Binding Cooperativity. Journal of Molecular Biology, 2007, 369, 1188-1199.	2.0	39
132	Responses of Pseudomonas to small toxic molecules by a mosaic of domains. Current Opinion in Microbiology, 2009, 12, 215-220.	2.3	39
133	Microorganisms and Explosives: Mechanisms of Nitrogen Release from TNT for Use as an N-Source for Growth. Environmental Science & Technology, 2009, 43, 2773-2776.	4.6	38
134	Compartmentalized Glucose Metabolism in <i>Pseudomonas putida</i> Is Controlled by the PtxS Repressor. Journal of Bacteriology, 2010, 192, 4357-4366.	1.0	38
135	Understanding butanol tolerance and assimilation in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>BIRD</scp> â€1: an integrated omics approach. Microbial Biotechnology, 2016, 9, 100-115.	2.0	38
136	Retrotransfer of DNA in the rhizosphere. Environmental Microbiology, 2000, 2, 319-323.	1.8	37
137	Tolerance to Sudden Organic Solvent Shocks by Soil Bacteria and Characterization ofPseudomonas putidaStrains Isolated from Toluene Polluted Sites. Environmental Science & Technology, 2000, 34, 3395-3400.	4.6	37
138	Roles of Effectors in XylS-Dependent Transcription Activation: Intramolecular Domain Derepression and DNA Binding. Journal of Bacteriology, 2008, 190, 3118-3128.	1.0	37
139	Characterization of the RND family of multidrug efflux pumps: <i>in silico</i> to <i>in vivo</i> confirmation of four functionally distinct subgroups. Microbial Biotechnology, 2010, 3, 691-700.	2.0	37
140	The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Research in Microbiology, 2011, 162, 773-781.	1.0	37
141	Metabolic potential of the organicâ€solvent tolerant P seudomonas putida †DOT ―T1E deduced from its annotated genome. Microbial Biotechnology, 2013, 6, 598-611.	2.0	37
142	Involvement of the TonB System in Tolerance to Solvents and Drugs in Pseudomonas putida DOT-T1E. Journal of Bacteriology, 2001, 183, 5285-5292.	1.0	36
143	Controlling bacterial physiology for optimal expression of gene reporter constructs. Current Opinion in Biotechnology, 2006, 17, 50-56.	3.3	36
144	Identification and characterization of the PhhR regulon in <i>Pseudomonas putida</i> . Environmental Microbiology, 2010, 12, 1427-1438.	1.8	36

#	Article	IF	CITATIONS
145	Global transcriptional response of solventâ€sensitive and solventâ€tolerant <i>Pseudomonas putida</i> strains exposed to toluene. Environmental Microbiology, 2017, 19, 645-658.	1.8	36
146	The Sensor Kinase TodS Operates by a Multiple Step Phosphorelay Mechanism Involving Two Autokinase Domains. Journal of Biological Chemistry, 2009, 284, 10353-10360.	1.6	34
147	RNA Polymerase Holoenzymes Can Share a Single Transcription Start Site for the Pm Promoter. Journal of Biological Chemistry, 2005, 280, 41315-41323.	1.6	33
148	Genes for Carbon Metabolism and the ToxA Virulence Factor in Pseudomonas aeruginosa Are Regulated through Molecular Interactions of PtxR and PtxS. PLoS ONE, 2012, 7, e39390.	1.1	33
149	High Specificity in CheR Methyltransferase Function. Journal of Biological Chemistry, 2013, 288, 18987-18999.	1.6	33
150	Physiological Characterization of Pseudomonas putida DOT-T1E Tolerance to p -Hydroxybenzoate. Applied and Environmental Microbiology, 2001, 67, 4338-4341.	1.4	32
151	Synergic role of the two <scp><i>ars</i></scp> operons in arsenic tolerance in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>KT</scp> 2440. Environmental Microbiology Reports, 2014, 6, 483-489.	1.0	32
152	The Prc and <scp>RseP</scp> proteases control bacterial cellâ€surface signalling activity. Environmental Microbiology, 2014, 16, 2433-2443.	1.8	32
153	Differential transcriptional response to antibiotics by <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>DOT</scp> â€ <scp>T1E</scp> . Environmental Microbiology, 2015, 17, 3251-3262.	1.8	32
154	Field trial on removal of petroleumâ€hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation. Environmental Microbiology Reports, 2015, 7, 85-94.	1.0	32
155	Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Applied and Environmental Microbiology, 2016, 82, 4133-4144.	1.4	32
156	Broad-host range expression vectors containing manipulatedmeta-cleavage pathway regulatory elements of the TOL plasmid. FEBS Letters, 1988, 226, 241-246.	1.3	31
157	The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. Archives of Microbiology, 2001, 176, 151-154.	1.0	31
158	Catabolism of Phenylalanine by Pseudomonas putida: The NtrC-family PhhR Regulator Binds to Two Sites Upstream from the phhA Gene and Stimulates Transcription with σ70. Journal of Molecular Biology, 2007, 366, 1374-1386.	2.0	31
159	Complexity in efflux pump control: crossâ€regulation by the paralogues TtgV and TtgT. Molecular Microbiology, 2007, 66, 1416-1428.	1.2	31
160	A Two-Component Regulatory System Integrates Redox State and Population Density Sensing in <i>Pseudomonas putida</i> . Journal of Bacteriology, 2008, 190, 7666-7674.	1.0	31
161	Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. Journal of Molecular Recognition, 2011, 24, 378-385.	1.1	31
162	Single Amino Acids Changes in the Signal Receptor Domain of XylR Resulted in Mutants That Stimulate Transcription in the Absence of Effectors. Journal of Biological Chemistry, 1995, 270, 5144-5150.	1.6	30

#	Article	IF	CITATIONS
163	Transcriptional Organization of the Pseudomonas putida tol-oprL Genes. Journal of Bacteriology, 2003, 185, 184-195.	1.0	30
164	The contribution of microbial biotechnology to economic growth and employment creation. Microbial Biotechnology, 2017, 10, 1137-1144.	2.0	30
165	BacTregulators: a database of transcriptional regulators in bacteria and archaea. Bioinformatics, 2004, 20, 2787-2791.	1.8	29
166	Hierarchical Binding of the TodT Response Regulator to Its Multiple Recognition Sites at the tod Pathway Operon Promoter. Journal of Molecular Biology, 2008, 376, 325-337.	2.0	29
167	Engineering Biological Approaches for Detection of Toxic Compounds: A New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Molecular Biotechnology, 2015, 57, 558-564.	1.3	29
168	The Transcriptional Repressor TtgV Recognizes a Complex Operator as a Tetramer and Induces Convex DNA Bending. Journal of Molecular Biology, 2007, 369, 927-939.	2.0	28
169	Physiological and transcriptomic characterization of a <i>fliA</i> mutant of <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2010, 2, 373-380.	1.0	28
170	Study of the TmoS/TmoT twoâ€component system: towards the functional characterization of the family of TodS/TodT like systems. Microbial Biotechnology, 2012, 5, 489-500.	2.0	28
171	Restoration of a <scp>M</scp> editerranean forest after a fire: bioremediation and rhizoremediation fieldâ€scale trial. Microbial Biotechnology, 2015, 8, 77-92.	2.0	28
172	New family of biosensors for monitoring BTX in aquatic and edaphic environments. Microbial Biotechnology, 2016, 9, 858-867.	2.0	28
173	Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS ONE, 2016, 11, e0147478.	1.1	28
174	Different Modes of Binding of Mono- and Biaromatic Effectors to the Transcriptional Regulator TTGV. Journal of Biological Chemistry, 2007, 282, 16308-16316.	1.6	27
175	Diversity of small <scp>RNAs</scp> expressed in <scp><i>P</i></scp> <i>seudomonas</i> species. Environmental Microbiology Reports, 2015, 7, 227-236.	1.0	27
176	Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Archives of Microbiology, 1983, 136, 81-83.	1.0	26
177	XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Letters, 2002, 519, 117-122.	1.3	26
178	Domain Cross-talk during Effector Binding to the Multidrug Binding TTGR Regulator. Journal of Biological Chemistry, 2010, 285, 21372-21381.	1.6	26
179	Photosynthetic production of ammonia. Experientia, 1982, 38, 53-58.	1.2	24
180	XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Molecular Genetics and Genomics, 1992, 235, 406-412.	2.4	24

#	Article	IF	CITATIONS
181	Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environmental Microbiology, 2004, 6, 416-423.	1.8	24
182	Functional analysis of new transporters involved in stress tolerance in <i>Pseudomonas putida</i> DOTâ€T1E. Environmental Microbiology Reports, 2010, 2, 389-395.	1.0	24
183	Catabolite Repression of the TodS/TodT Two-Component System and Effector-Dependent Transphosphorylation of TodT as the Basis for Toluene Dioxygenase Catabolic Pathway Control. Journal of Bacteriology, 2010, 192, 4246-4250.	1.0	23
184	Responses of bulk and rhizosphere soil microbial communities to thermoclimatic changes in a Mediterranean ecosystem. Soil Biology and Biochemistry, 2018, 118, 130-144.	4.2	23
185	Photoproduction of ammonia from nitrate by Anacystis nidulans cells. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 323-330.	0.5	22
186	Residues 137 and 153 at the N Terminus of the XylS Protein Influence the Effector Profile of This Transcriptional Regulator and the Ï, Factor Used by RNA Polymerase to Stimulate Transcription from Its Cognate Promoter. Journal of Biological Chemistry, 2002, 277, 7282-7286.	1.6	22
187	Cellular XylS Levels Are a Function of Transcription of xylS from Two Independent Promoters and the Differential Efficiency of Translation of the Two mRNAs. Journal of Bacteriology, 2004, 186, 1898-1901.	1.0	22
188	Transcriptional Phase Variation at the flhB Gene of Pseudomonas putida DOT-T1E Is Involved in Response to Environmental Changes and Suggests the Participation of the Flagellar Export System in Solvent Tolerance. Journal of Bacteriology, 2004, 186, 1905-1909.	1.0	22
189	Two Levels of Cooperativeness in the Binding of TodT to the tod Operon Promoter. Journal of Molecular Biology, 2008, 384, 1037-1047.	2.0	22
190	Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemotherapy and Pharmacology, 2010, 66, 69-78.	1.1	22
191	Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Microbiology (United) Tj ETQq1 1 0	.78 43 ⁄14 r	gBT2‡Overlock
192	Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. Environmental Microbiology, 1999, 1, 479-488.	1.8	21
193	Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Letters, 2000, 476, 312-317.	1.3	21
194	A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitroreductase PnrA and assimilatory nitrite reductase NasB is impaired for growth on 2,4,6-trinitrotoluene (TNT). Environmental Microbiology, 2006, 8, 1306-1310.	1.8	21
195	Characterization of the Pseudomonas putida Mobile Genetic Element ISPpu 10 : an Occupant of Repetitive Extragenic Palindromic Sequences. Journal of Bacteriology, 2006, 188, 37-44.	1.0	21
196	XylS–Pm Promoter Interactions through Two Helix–Turn–Helix Motifs: Identifying XylS Residues Important for DNA Binding and Activation. Journal of Molecular Biology, 2008, 375, 59-69.	2.0	21
197	Transcriptional control of the main aromatic hydrocarbon efflux pump in <i>Pseudomonas</i> . Environmental Microbiology Reports, 2012, 4, 158-167.	1.0	21
198	Addressing the energy crisis: using microbes to make biofuels. Microbial Biotechnology, 2022, 15, 1026-1030.	2.0	21

#	Article	IF	CITATIONS
199	Transcription Activation by a Variety of AraC/XylS Family Activators Does Not Depend on the Class II-Specific Activation Determinant in the N-Terminal Domain of the RNA Polymerase Alpha Subunit. Journal of Bacteriology, 2000, 182, 7075-7077.	1.0	20
200	Redundancy of Enzymes for Formaldehyde Detoxification in <i>Pseudomonas putida</i> . Journal of Bacteriology, 2009, 191, 3367-3374.	1.0	20
201	Fatty acidâ€mediated signalling between two <i>Pseudomonas</i> species. Environmental Microbiology Reports, 2012, 4, 417-423.	1.0	20
202	<i>In vivo</i> gene expression of <i><scp>P</scp>seudomonas putida</i> â€ <scp>KT</scp> 2440 in the rhizosphere of different plants. Microbial Biotechnology, 2013, 6, 307-313.	2.0	20
203	Interactions of the XylS regulators with the C-terminal domain of the RNA polymerase α subunit influence the expression level from the cognate Pm promoter. FEBS Letters, 2001, 491, 207-211.	1.3	19
204	TtgV Represses Two Different Promoters by Recognizing Different Sequences. Journal of Bacteriology, 2009, 191, 1901-1909.	1.0	19
205	Functional analysis of aromatic biosynthetic pathways in <i>Pseudomonas putida</i> KT2440. Microbial Biotechnology, 2009, 2, 91-100.	2.0	19
206	Plasmolysis induced by toluene in a cyoB mutant of Pseudomonas putida. Environmental Microbiology, 2004, 6, 1021-1031.	1.8	18
207	Complete Genome Sequence of a Pseudomonas putida Clinical Isolate, Strain H8234. Genome Announcements, 2013, 1, .	0.8	18
208	New molecular tools for enhancing methane production, explaining thermodynamically limited lifestyles and other important biotechnological issues. Microbial Biotechnology, 2009, 2, 533-536.	2.0	17
209	Intramolecular signal transmission in a tetrameric repressor of the IclR family. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15372-15377.	3.3	17
210	Involvement of the Global Crp Regulator in Cyclic AMP-Dependent Utilization of Aromatic Amino Acids by Pseudomonas putida. Journal of Bacteriology, 2012, 194, 406-412.	1.0	17
211	Two glutaric acid derivatives from olives. Phytochemistry, 1998, 49, 1311-1315.	1.4	16
212	PhhR Binds to Target Sequences at Different Distances with Respect to RNA Polymerase in Order to Activate Transcription. Journal of Molecular Biology, 2009, 394, 576-586.	2.0	16
213	Sequential XylS-CTD Binding to the Pm Promoter Induces DNA Bending Prior to Activation. Journal of Bacteriology, 2010, 192, 2682-2690.	1.0	16
214	Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environmental Microbiology, 2014, 16, 9-18.	1.8	16
215	A <i>Pseudomonas putida</i> double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform. FEMS Microbiology Letters, 2016, 363, fnw018.	0.7	16
216	Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production. Microbial Biotechnology, 2018, 11, 781-787.	2.0	16

#	Article	IF	CITATIONS
217	Twentyâ€firstâ€century chemical odyssey: fuels versus commodities and cell factories versus chemical plants. Microbial Biotechnology, 2019, 12, 200-209.	2.0	16
218	Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials. PLoS ONE, 2015, 10, e0138469.	1.1	16
219	PpoR, an orphan LuxRâ€family protein of <i>Pseudomonas putida</i> KT2440, modulates competitive fitness and surface motility independently of <i>N</i> â€acylhomoserine lactones. Environmental Microbiology Reports, 2011, 3, 79-85.	1.0	15
220	Draft wholeâ€genome sequence of the antibioticâ€producing soil isolate <scp><i>P</i></scp> <i>seudomonas</i> sp. strain 250 <scp>J</scp> . Environmental Microbiology Reports, 2015, 7, 288-292.	1.0	15
221	Pseudomonas putida mutants in the exbBexbDtonB gene cluster are hypersensitive to environmental and chemical stressors. Environmental Microbiology, 2004, 6, 605-610.	1.8	14
222	Removal of organic toxic chemicals in the rhizosphere and phyllosphere of plants. Microbial Biotechnology, 2009, 2, 144-146.	2.0	14
223	From the test tube to the environment $\hat{a} \in \hat{a}$ and back. Environmental Microbiology, 2013, 15, 6-11.	1.8	14
224	The versatility of Pseudomonas putida in the rhizosphere environment. Advances in Applied Microbiology, 2020, 110, 149-180.	1.3	14
225	Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Frontiers in Microbiology, 2020, 11, 202.	1.5	14
226	Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions. Applied Microbiology and Biotechnology, 2009, 83, 189-198.	1.7	13
227	Regression of established subcutaneous B16â€F10 murine melanoma tumors after <i>gef</i> gene therapy associated with the mitochondrial apoptotic pathway. Experimental Dermatology, 2010, 19, 363-371.	1.4	13
228	Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440. FEMS Microbiology Letters, 2011, 321, 107-114.	0.7	13
229	Genetic and functional characterization of a novel metaâ€pathway for degradation of naringenin in <i>Herbaspirillum seropedicae</i> SmR1. Environmental Microbiology, 2016, 18, 4653-4661.	1.8	13
230	Green biofuels and bioproducts: bases for sustainability analysis. Microbial Biotechnology, 2017, 10, 1111-1113.	2.0	13
231	The enigma of cytosolic two omponent systems: a hypothesis. Environmental Microbiology Reports, 2009, 1, 171-176.	1.0	12
232	Synergistic antitumoral effect of combination E gene therapy and Doxorubicin in MCF-7 breast cancer cells. Biomedicine and Pharmacotherapy, 2011, 65, 260-270.	2.5	12
233	Multiple signals modulate the activity of the complex sensor kinase <scp>T</scp> od <scp>S</scp> . Microbial Biotechnology, 2015, 8, 103-115.	2.0	12
234	First―and secondâ€generation biochemicals from sugars: biosynthesis of itaconic acid. Microbial Biotechnology, 2016, 9, 8-10.	2.0	12

#	Article	IF	CITATIONS
235	Residues 137 and 153 of XylS Influence Contacts with the C-Terminal Domain of the RNA Polymerase $\hat{I}\pm$ Subunit. Biochemical and Biophysical Research Communications, 2001, 287, 519-521.	1.0	11
236	A WbpL mutant of Pseudomonas putida DOT-T1E strain, which lacks the O-antigenic side chain of lipopolysaccharides, is tolerant to organic solvent shocks. Extremophiles, 2001, 5, 93-99.	0.9	11
237	Characterization of Molecular Interactions Using Isothermal Titration Calorimetry. Methods in Molecular Biology, 2014, 1149, 193-203.	0.4	11
238	Degradation of o-methoxybenzoate by a two-member consortium made up of a gram-positive Arthrobacter strain and a gram-negative Pantotea strain. Biodegradation, 2000, 11, 49-53.	1.5	10
239	The cytotoxic activity of the phage E protein suppress the growth of murine B16 melanomas in vitro and in vivo. Journal of Molecular Medicine, 2009, 87, 899-911.	1.7	9
240	Efflux pumpâ€deficient mutants as a platform to search for microbes that produce antibiotics. Microbial Biotechnology, 2015, 8, 716-725.	2.0	9
241	Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environmental Microbiology, 2020, 22, 3561-3571.	1.8	9
242	Lessons from the Genome of a Lithoautotroph: Making Biomass from Almost Nothing. Journal of Bacteriology, 2003, 185, 2690-2691.	1.0	8
243	Interspecies crossâ€ŧalk between coâ€cultured <i>Pseudomonas putida</i> and <i>Escherichia coli</i> . Environmental Microbiology Reports, 2017, 9, 441-448.	1.0	8
244	Identification and elucidation of <i>in vivo</i> function of two alanine racemases from <i>Pseudomonas putida</i> KT2440. Environmental Microbiology Reports, 2017, 9, 581-588.	1.0	8
245	United Nations sustainability development goals approached from the side of the biological production of fuels. Microbial Biotechnology, 2021, 14, 1871-1877.	2.0	8
246	Plant-dependent active biological containment system for recombinant rhizobacteria. Environmental Microbiology, 2004, 6, 88-92.	1.8	7
247	Construction of a prototype two-component system from the phosphorelay system TodS/TodT. Protein Engineering, Design and Selection, 2012, 25, 159-169.	1.0	7
248	Transcriptional control by two interacting regulatory proteins: identification of the PtxS binding site at PtxR. Nucleic Acids Research, 2013, 41, 10150-10156.	6.5	7
249	Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium. Genome Announcements, 2015, 3, .	0.8	7
250	Events in Root Colonization by Pseudomonas putida. , 2015, , 251-286.		7
251	The contribution of microbiology toward attainment of sustainable development goals: the need to conserve soil health while maximizing its productivity. Environmental Microbiology Reports, 2020, 13, 425-427.	1.0	7
252	A general profile for the MerR family of transcriptional regulators constructed using the semiâ€automated Provalidator tool. Environmental Microbiology Reports, 2009, 1, 518-523.	1.0	6

#	Article	IF	CITATIONS
253	Identification of New Residues Involved in Intramolecular Signal Transmission in a Prokaryotic Transcriptional Repressor. Journal of Bacteriology, 2014, 196, 588-594.	1.0	6
254	Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida. Frontiers in Microbiology, 2016, 7, 2100.	1.5	6
255	Microbial biotechnology to assure national security of supplies of essential resources: energy, food and water, medical reagents, waste disposal and a circular economy. Microbial Biotechnology, 2022, 15, 1021-1025.	2.0	6
256	Providing octane degradation capability to <i>Pseudomonas putida</i> <scp>KT2440</scp> through the horizontal acquisition of <i>oct</i> genes located on an integrative and conjugative element. Environmental Microbiology Reports, 2022, 14, 934-946.	1.0	6
257	Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerantKlebsiella oxytoca CECT 4460 andArthrobacter globiformis CECT 4500. , 1998, 58, 510-514.		5
258	<i>In vivo</i> role of FdhD and FdmE in formate metabolism in <i>Pseudomonas putida</i> : Redundancy and expression in the stationary phase. Environmental Microbiology Reports, 2009, 1, 208-213.	1.0	5
259	Bactericidal and bacteriostatic antibiotics and the <scp>F</scp> enton reaction. Microbial Biotechnology, 2014, 7, 194-195.	2.0	5
260	Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microbial Biotechnology, 2021, 14, 1931-1943.	2.0	5
261	<i>Pseudomonas aeruginosa</i> strain RW41 mineralizes 4â€chlorobenzenesulfonate, the major polar byâ€product from DDT manufacturing. Environmental Microbiology, 2008, 10, 1591-1600.	1.8	4
262	Microbial goods from single cells and metagenomes. Current Opinion in Microbiology, 2008, 11, 195-197.	2.3	4
263	Sugar (ribose), spice (peroxidase) and all things nice (laccase hairâ€dyes). Microbial Biotechnology, 2010, 3, 131-133.	2.0	4
264	Explorative probes and biomarkers, chronic <i>Salmonella</i> infections and future vaccines. Microbial Biotechnology, 2012, 5, 1-4.	2.0	4
265	Novel BRAFI599Ins Mutation Identified in a Follicular Variant of Papillary Thyroid Carcinoma: A Molecular Modeling Approach. Endocrine Practice, 2014, 20, e75-e79.	1.1	4
266	A research and technology valuation model for decision analysis in the environmental and renewable energy sectors. Renewable and Sustainable Energy Reviews, 2020, 122, 109726.	8.2	4
267	Caring soils for sustainable land uses. Microbial Biotechnology, 2020, 13, 1309-1310.	2.0	3
268	<i>Microbial Biotechnology</i> from medicine to bacterial population dynamics. Microbial Biotechnology, 2009, 2, 304-307.	2.0	2
269	Metabolic engineering, new antibiotics and biofilm viscoelasticity. Microbial Biotechnology, 2010, 3, 10-14.	2.0	2
270	<i>Microbial Biotechnology</i> : biofuels, genotoxicity reporters and robust agroâ€ecosystems. Microbial Biotechnology, 2010, 3, 239-241.	2.0	2

#	Article	IF	CITATIONS
271	Variations on transcriptional and post-transcriptional processes in bacteria. FEMS Microbiology Reviews, 2010, 34, 607-610.	3.9	2
272	Microbial Biotechnologyâ€⊋020. Microbial Biotechnology, 2016, 9, 529-529.	2.0	2
273	<i>Environmental Microbiology</i> meets <i>Microbial Biotechnology</i> . Microbial Biotechnology, 2008, 1, 443-445.	2.0	1
274	The heat, drugs and knockout systems of <i>Microbial Biotechnology</i> . Microbial Biotechnology, 2009, 2, 598-600.	2.0	1
275	Short and direct science: <i>Environmental Microbiology Reports</i> . Environmental Microbiology Reports, 2009, 1, 217-219.	1.0	1
276	Exploiting environmental niches and the potential of environmental microbes. Environmental Microbiology Reports, 2009, 1, 275-278.	1.0	1
277	New molecular techniques for pathogen analysis, <i>in silico</i> determination of RND efflux pump substrate specificity, shotgun proteomic monitoring of bioremediation and yeast bioâ€applications. Microbial Biotechnology, 2010, 3, 624-627.	2.0	1
278	Plant growthâ€stimulating rhizobacteria capable of producing L â€amino acids. Environmental Microbiology Reports, 2020, 12, 667-671.	1.0	1
279	Limits in energy generation and biotechnology of primary and secondary products. Microbial Biotechnology, 2008, 1, 343-344.	2.0	Ο
280	A broad range of themes in <i>Microbial Biotechnology</i> . Microbial Biotechnology, 2009, 2, 3-5.	2.0	0
281	Twenty one important things you should know. Microbial Biotechnology, 2009, 2, 397-400.	2.0	Ο
282	In vivorole of FdhD and FdmE in formate metabolism inPseudomonas putida: redundancy and expression in the stationary phase. Environmental Microbiology Reports, 2009, 1, 468-468.	1.0	0
283	Struggling to get a universal meningococcal vaccine and novel uses for bacterial toxins in cancer treatment. Microbial Biotechnology, 2010, 3, 359-361.	2.0	Ο
284	Directed evolution, natural products for cancer chemotherapy, and microâ€biosensing robots. Microbial Biotechnology, 2011, 4, 314-317.	2.0	0
285	Cold is cool, the human microbiota and taking multiple SIPs. Microbial Biotechnology, 2011, 4, 554-557.	2.0	Ο
286	Evolution of antibiotic resistance, catabolic pathways and niche colonization. Microbial Biotechnology, 2012, 5, 452-454.	2.0	0
287	Environmental biotechnology. Current Opinion in Biotechnology, 2013, 24, 421-422.	3.3	0
288	Microbial Biotechnology: evolution of your premier journal. Microbial Biotechnology, 2013, 6, 1-2.	2.0	0

#	Article	IF	CITATIONS
289	Farewell Wilfred. Microbial Biotechnology, 2015, 8, 899-899.	2.0	0
290	Joséâ€Miguel Barea 1942–2018: the man that always smiles. Environmental Microbiology, 2018, 20, 2319-2321.	1.8	0
291	Extremophile enzymes for food additives and fertilizers. Microbial Biotechnology, 2021, 15, 81.	2.0	0
292	Plasmid-Mediated Tolerance Toward Environmental Pollutants. , 0, , 505-531.		0
293	<i>Microbial Biotechnology</i> 2022 and onwards. Microbial Biotechnology, 2022, 15, 5-5.	2.0	0