Ep Heuvelink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573857/publications.pdf

Version: 2024-02-01

94433 114465 5,480 191 37 63 citations h-index g-index papers 191 191 191 3645 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food and Energy Security, 2023, 12, .	4.3	15
2	Effects of Green Light on Elongation Do Not Interact with Far-Red, Unless the Phytochrome Photostationary State (PSS) Changes in Tomato. Biology, 2022, 11, 151.	2.8	7
3	Does tomato breeding for improved performance under LED supplemental lighting make sense?. Euphytica, 2022, 218, 1.	1.2	O
4	Production of <i>Catharanthus roseus</i> in vertical farming systems: dynamic analyses of plant morphological responses of nine cultivars to N-UV supplementation. Acta Horticulturae, 2022, , 217-224.	0.2	0
5	Both major QTL and plastidâ€based inheritance of intumescence in diverse tomato (<scp><i>Solanum) Tj ETQq1 1574-584.</i></scp>	1 0.784314 1.9	4 rgBT /Over 2
6	Yield dissection models to improve yield: a case study in tomato. In Silico Plants, 2021, 3, .	1.9	6
7	An analysis of simulated yield data for pepper shows how genotype $\tilde{A}-$ environment interaction in yield can be understood in terms of yield components and their QTLs. Crop Science, 2021, 61, 1826-1842.	1.8	5
8	LED and HPS Supplementary Light Differentially Affect Gas Exchange in Tomato Leaves. Plants, 2021, 10, 810.	3.5	9
9	Towards delivering on the sustainable development goals in greenhouse production systems. Resources, Conservation and Recycling, 2021, 169, 105379.	10.8	35
10	Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops. In Silico Plants, 2021, 3, .	1.9	8
11	LED Intercanopy Lighting in Blackberry During Spring Improves Yield as a Result of Increased Number of Fruiting Laterals and Has a Positive Carryover Effect on Autumn Yield. Frontiers in Plant Science, 2021, 12, 620642.	3.6	2
12	Green light reduces elongation when partially replacing sole blue light independently from cryptochrome 1a. Physiologia Plantarum, 2021, 173, 1946-1955.	5.2	7
13	Genetic mapping of the tomato quality traits brix and blossom-end rot under supplemental LED and HPS lighting conditions. Euphytica, 2021, 217, 1.	1.2	4
14	Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food, 2021, 2, 944-956.	14.0	154
15	Farâ€red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato. New Phytologist, 2020, 228, 1914-1925.	7.3	51
16	High Stomatal Conductance in the Tomato Flacca Mutant Allows for Faster Photosynthetic Induction. Frontiers in Plant Science, 2020, 11, 1317.	3.6	20
17	Vertical Farming: Moving from Genetic to Environmental Modification. Trends in Plant Science, 2020, 25, 724-727.	8.8	109
18	Estimation of tomato yield gaps for greenhouse in Uruguay. Scientia Horticulturae, 2020, 265, 109250.	3.6	10

#	Article	IF	CITATIONS
19	Floral Induction in the Short-Day Plant Chrysanthemum Under Blue and Red Extended Long-Days. Frontiers in Plant Science, 2020, 11, 610041.	3.6	11
20	Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities. Frontiers in Plant Science, 2020, 11, 609977.	3.6	30
21	Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production. Frontiers in Plant Science, 2020, 11, 592171.	3.6	41
22	Dissecting the Genotypic Variation of Growth Responses to Far-Red Radiation in Tomato. Frontiers in Plant Science, 2020, 11, 614714.	3.6	2
23	Special issue in honour of Prof. Reto J. StrasserÂ-ÂPhenotyping with fast fluorescence sensors approximates yield component measurements in pepper (Capsicum annuum L.). Photosynthetica, 2020, 58, 622-637.	1.7	1
24	Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 2019, 168, 103889.	4.2	51
25	High light accelerates potato flowering independently of the FT-like flowering signal StSP3D. Environmental and Experimental Botany, 2019, 160, 35-44.	4.2	9
26	The tuberization signal StSP6A represses flower bud development in potato. Journal of Experimental Botany, 2019, 70, 937-948.	4.8	35
27	Coincidence of potato CONSTANS (StCOL1) expression and light cannot explain nightâ€break repression of tuberization. Physiologia Plantarum, 2019, 167, 250-263.	5.2	4
28	Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. Physiologia Plantarum, 2018, 162, 506-517.	5.2	27
29	Sustainable crop production in greenhouses based on understanding crop physiology. Acta Horticulturae, 2018, , 1-12.	0.2	5
30	Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. Frontiers in Plant Science, 2018, 9, 2002.	3.6	100
31	Crop growth and yield , 2018, , 89-136.		8
32	Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO ₂ partial pressure, temperature, air humidity and blue irradiance. Annals of Botany, 2017, 119, 191-205.	2.9	73
33	Productivity of a building-integrated roof top greenhouse in a Mediterranean climate. Agricultural Systems, 2017, 158, 14-22.	6.1	26
34	Moderate salinity improves stomatal functioning in rose plants grown at high relative air humidity. Environmental and Experimental Botany, 2017, 143, 1-9.	4.2	6
35	Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state. Journal of Experimental Botany, 2017, 68, 5629-5640.	4.8	38
36	Propagation by Cuttings â~†., 2017,,.		2

#	Article	IF	Citations
37	Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity. Frontiers in Plant Science, 2016, 7, 56.	3.6	17
38	Plant growth architecture and production dynamics : A set of e-learning resources. , 2016, , .		0
39	Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae, 2016, , 251-258.	0.2	64
40	Regulating flower and tuber formation in potato with light spectrum and day length. Acta Horticulturae, 2016, , 267-276.	0.2	4
41	Gene expression and physiological responses associated to stomatal functioning in Rosa×hybrida grown at high relative air humidity. Plant Science, 2016, 253, 154-163.	3.6	8
42	Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Scientific Reports, 2016, 6, 31252.	3.3	76
43	Antitranspirant compounds alleviate the mild-desiccation-induced reduction of vase life in cut roses. Postharvest Biology and Technology, 2016, 117, 110-117.	6.0	33
44	Root-to-shoot ABA signaling does not contribute to genotypic variation in stomatal functioning induced by high relative air humidity. Environmental and Experimental Botany, 2016, 123, 13-21.	4.2	31
45	Light mediated regulation of cell division, endoreduplication and cell expansion. Environmental and Experimental Botany, 2016, 121, 39-47.	4.2	27
46	New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 2015, 29, 249-250.	1.4	3
47	Physiological Processes Affected by Low Night Temperatures in Sweet Pepper Plants. Procedia Environmental Sciences, 2015, 29, 253-254.	1.4	2
48	EFFECTS OF AIR HUMIDITY AND AIR MOVEMENT ON GROWTH, VISUAL QUALITY AND POST-PRODUCTION STRESS TOLERANCE OF POT ROSE 'TORIL'. Acta Horticulturae, 2015, , 273-278.	0.2	0
49	Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity. Frontiers in Plant Science, 2015, 6, 383.	3.6	19
50	Quantifying the sourceââ,¬â€œsink balance and carbohydrate content in three tomato cultivars. Frontiers in Plant Science, 2015, 6, 416.	3.6	47
51	A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecological Modelling, 2015, 312, 363-373.	2.5	41
52	Spatial heterogeneity in stomatal features during leaf elongation: an analysis using Rosa hybrida. Functional Plant Biology, 2015, 42, 737.	2.1	31
53	What drives fruit growth?. Functional Plant Biology, 2015, 42, 817.	2.1	25
54	Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils. Scientia Horticulturae, 2015, 189, 139-149.	3.6	23

#	Article	IF	CITATIONS
55	QTL analysis for stomatal functioning in tetraploid RosaÂ×Âhybrida grown at high relative air humidity and its implications on postharvest longevity. Molecular Breeding, 2015, 35, 1.	2.1	28
56	A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature. Physiologia Plantarum, 2015, 153, 403-418.	5.2	12
57	Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (<i>Solanum lycopersicum</i>). Physiologia Plantarum, 2015, 154, 114-127.	5.2	10
58	Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 2015, 66, 2415-2426.	4.8	173
59	Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit loadA—QTL interactions. Journal of Experimental Botany, 2014, 65, 11-22.	4.8	16
60	Responses of two Anthurium cultivars to high daily integrals of diffuse light. Scientia Horticulturae, 2014, 179, 306-313.	3.6	28
61	Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of Botany, 2014, 114, 145-156.	2.9	131
62	A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nature Communications, 2014, 5, 4549.	12.8	83
63	Axillary Budbreak in a Cut Rose Crop as Influenced by Light Intensity and Red:far-red Ratio at Bud Level. Journal of the American Society for Horticultural Science, 2014, 139, 131-138.	1.0	6
64	A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 2013, 170, 890-898.	3.5	93
65	Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica, 2013, 190, 181-201.	1.2	25
66	Public multi-criteria assessment for societal concerns and gradual labelling. Food Policy, 2013, 40, 97-108.	6.0	8
67	Physiological and morphological changes during early and later stages of fruit growth in <i>Capsicum annuum</i> . Physiologia Plantarum, 2013, 147, 396-406.	5.2	24
68	A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication. Functional Plant Biology, 2013, 40, 1098.	2.1	31
69	Four Hypotheses to Explain Axillary Budbreak after Removal of Flower Shoots in a Cut-rose Crop. Journal of the American Society for Horticultural Science, 2013, 138, 243-252.	1.0	7
70	Histological and molecular investigation of the basis for variation in tomato fruit size in response to fruit load and genotype. Functional Plant Biology, 2012, 39, 754.	2.1	9
71	BREEDING CUT ROSES FOR BETTER KEEPING QUALITY: FIRST STEPS. Acta Horticulturae, 2012, , 875-882.	0.2	17
72	CONTINUOUS LIGHT AS A WAY TO INCREASE GREENHOUSE TOMATO PRODUCTION: EXPECTED CHALLENGES. Acta Horticulturae, 2012, , 51-57.	0.2	23

#	Article	IF	CITATIONS
73	Auxin-induced Fruit Set in Capsicum annuum L. Requires Downstream Gibberellin Biosynthesis. Journal of Plant Growth Regulation, 2012, 31, 570-578.	5.1	24
74	A virtual plant that responds to the environment like a real one: the case for chrysanthemum. New Phytologist, 2012, 195, 384-395.	7.3	32
7 5	Postharvest water relations in cut rose cultivars with contrasting sensitivity to high relative air humidity during growth. Postharvest Biology and Technology, 2012, 64, 64-73.	6.0	76
76	Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes. Physiologia Plantarum, 2012, 146, 439-447.	5.2	12
77	Model Selection for Nondestructive Quantification of Fruit Growth in Pepper. Journal of the American Society for Horticultural Science, 2012, 137, 71-79.	1.0	20
78	Response of Cell Division and Cell Expansion to Local Fruit Heating in Tomato Fruit. Journal of the American Society for Horticultural Science, 2012, 137, 294-301.	1.0	19
79	QTL ANALYSES ON GENOTYPE-SPECIFIC COMPONENT TRAITS IN A CROP SIMULATION MODEL FOR CAPSICUM ANNUUM L Acta Horticulturae, 2012, , 197-203.	0.2	O
80	EXPLAINING TOMATO FRUIT GROWTH BY A MULTI-SCALE MODEL ON REGULATION OF CELL DIVISION, CELL GROWTH AND CARBOHYDRATE DYNAMICS. Acta Horticulturae, 2012, , 167-172.	0.2	0
81	Quantifying abortion rates of reproductive organs and effects of contributing factors using time-to-event analysis. Functional Plant Biology, 2011, 38, 431.	2.1	12
82	Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiologia Plantarum, 2011, 142, 274-286.	5.2	65
83	Parthenocarpic potential in Capsicum annuumL. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC Plant Biology, 2011, 11, 143.	3.6	20
84	Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional–structural plant modelling. Annals of Botany, 2011, 107, 793-803.	2.9	22
85	STOCHASTIC DYNAMIC SIMULATION OF FRUIT ABORTION: A CASE STUDY OF SWEET PEPPER. Acta Horticulturae, 2011, , 765-772.	0.2	3
86	GENOTYPIC VARIATION OF CUT CHRYSANTHEMUM RESPONSE TO HIGH CO2 CONCENTRATION: GROWTH, TIME TO FLOWERING AND VISUAL QUALITY. Acta Horticulturae, 2011, , 839-848.	0.2	1
87	EFFECT OF RELATIVE AIR HUMIDITY ON THE STOMATAL FUNCTIONALITY IN FULLY DEVELOPED LEAVES. Acta Horticulturae, 2010, , 83-88.	0.2	4
88	Differences in N uptake and fruit quality between organically and conventionally grown greenhouse tomatoes. Agronomy for Sustainable Development, 2010, 30, 797-806.	5.3	37
89	CUT-ROSE PRODUCTION IN RESPONSE TO PLANTING DENSITY IN TWO CONTRASTING CULTIVARS. Acta Horticulturae, 2010, , 47-54.	0.2	1
90	Quantification of temperature, CO ₂ , and light effects on crop photosynthesis as a basis for model-based greenhouse climate control. Journal of Horticultural Science and Biotechnology, 2009, 84, 233-239.	1.9	21

#	Article	IF	Citations
91	Abortion of reproductive organs in sweet pepper (<i>Capsicum annuum</i> L.): a review. Journal of Horticultural Science and Biotechnology, 2009, 84, 467-475.	1.9	35
92	Genetic differences in fruit-set patterns are determined by differences in fruit sink strength and a source: sink threshold for fruit set. Annals of Botany, 2009, 104, 957-964.	2.9	32
93	Modeling the Growth of Inflorescence., 2009,,.		2
94	Parameter Estimation and Growth Variation Analysis in Six Capsicum Cultivars with the Functional-Structural Model GreenLab., 2009,,.		2
95	CULTIVAR DIFFERENCES IN THE STOMATAL CHARACTERISTICS OF CUT ROSES GROWN AT HIGH RELATIVE HUMIDITY. Acta Horticulturae, 2009, , 251-258.	0.2	9
96	SIMULATING GROWTH AND DEVELOPMENT OF TOMATO CROP. Acta Horticulturae, 2009, , 101-110.	0.2	23
97	Coupling Process-Based Models and Plant Architectural Models: A Key Issue for Simulating Crop Production. , 2009, , 130-147.		14
98	Fruit Set and Yield Patterns in Six Capsicum Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1296-1301.	1.0	19
99	Genotypic Variation in the Response to Suboptimal Temperature at Different Plant Densities in Cut Chrysanthemum. Journal of the American Society for Horticultural Science, 2009, 134, 31-40.	1.0	1
100	Physiological and Morphological Changes Over the Past 50 Years in Yield Components in Tomato. Journal of the American Society for Horticultural Science, 2009, 134, 460-465.	1.0	103
101	Plant Growth Models. , 2008, , 2824-2837.		27
102	NEW DEVELOPMENTS IN GREENHOUSE TECHNOLOGY CAN MITIGATE THE WATER SHORTAGE PROBLEM OF THE 21ST CENTURY. Acta Horticulturae, 2008, , 45-52.	0.2	30
103	CLIMATE AND YIELD IN A CLOSED GREENHOUSE. Acta Horticulturae, 2008, , 1083-1092.	0.2	48
104	INNOVATION IN PLANT-GREENHOUSE INTERACTIONS AND CROP MANAGEMENT. Acta Horticulturae, 2008, , 63-74.	0.2	12
105	DECISION SUPPORT FOR OPTIMISING ENERGY CONSUMPTION IN EUROPEAN GREENHOUSES. Acta Horticulturae, 2008, , 803-810.	0.2	7
106	TECHNICAL SOLUTIONS TO PREVENT HEAT STRESS INDUCED CROP GROWTH REDUCTION FOR THREE CLIMATIC REGIONS IN MEXICO. Acta Horticulturae, 2008, , 1251-1258.	0.2	2
107	MODELLING VISUAL QUALITY OF KALANCHOE BLOSSFELDIANA: INFLUENCE OF CULTIVAR AND POT SIZE. Acta Horticulturae, 2008, , 1069-1076.	0.2	1
108	SELECTION OF SWEET PEPPER (CAPSICUM ANNUUM L.) GENOTYPES FOR PARTHENOCARPIC FRUIT GROWTH. Acta Horticulturae, 2007, , 135-140.	0.2	9

#	Article	IF	Citations
109	ANATOMY AND MORPHOLOGY OF ROOTING IN LEAFY ROSE STEM CUTTINGS AND STARCH DYNAMICS FOLLOWING SEVERANCE. Acta Horticulturae, 2007, , 495-502.	0.2	16
110	Nitrogen uptake efficiency by white cedar under different irrigation and fertilisation strategies on a sandy soil: model calculations. Journal of Horticultural Science and Biotechnology, 2007, 82, 451-459.	1.9	0
111	Effect of electrical conductivity, fruit pruning, and truss position on quality in greenhouse tomato fruit. Journal of Horticultural Science and Biotechnology, 2007, 82, 488-494.	1.9	30
112	SURVIVAL ANALYSIS OF FLOWER AND FRUIT ABORTION IN SWEET PEPPER. Acta Horticulturae, 2007, , 617-624.	0.2	7
113	Breeding for a more energy efficient greenhouse tomato: past and future perspectives. Euphytica, 2007, 158, 129-138.	1.2	27
114	Functional-Structural Modelling of Chrysanthemum. , 2007, , 199-208.		3
115	Concepts of Modelling Carbon Allocation Among Plant Organs. , 2007, , 103-111.		30
116	WILD RELATIVES AS A SOURCE FOR SUB-OPTIMAL TEMPERATURE TOLERANCE IN TOMATO. Acta Horticulturae, 2007, , 127-133.	0.2	7
117	Variation Between Cut Chrysanthemum Cultivars in Response to Suboptimal Temperature. Journal of the American Society for Horticultural Science, 2007, 132, 52-59.	1.0	4
118	Stochastic Simulation of Fruit Set in Sweet Pepper. , 2006, , .		0
119	Concepts to Model Growth and Development of Plants. , 2006, , .		1
120	BUILDING VIRTUAL CHRYSANTHEMUM BASED ON SINK-SOURCE RELATIONSHIPS: PRELIMINARY RESULTS. Acta Horticulturae, 2006, , 129-136.	0.2	16
121	The influence of temperature on growth and development of chrysanthemum cultivars. Journal of Horticultural Science and Biotechnology, 2006, 81, 174-182.	1.9	35
122	HORTICULTURAL LIGHTING IN THE NETHERLANDS: NEW DEVELOPMENTS. Acta Horticulturae, 2006, , 25-34.	0.2	60
123	COMBINED EFFECTS OF LIGHT AND TEMPERATURE ON PRODUCT QUALITY OF KALANCHOE BLOSSFELDIANA. Acta Horticulturae, 2006, , 121-126.	0.2	8
124	MODELLING DRY MATTER PRODUCTION AND PARTITIONING IN SWEET PEPPER. Acta Horticulturae, 2006, , 121-128.	0.2	38
125	IMPROVING PRODUCT QUALITY AND TIMING OF KALANCHOE: MODEL DEVELOPMENT AND VALIDATION. Acta Horticulturae, 2006, , 655-662.	0.2	1
126	A FUNCTIONAL-STRUCTURAL MODEL OF CHRYSANTHEMUM FOR PREDICTION OF ORNAMENTAL QUALITY. Acta Horticulturae, 2006, , 59-66.	0.2	4

#	Article	IF	CITATIONS
127	Role of sink-source relationships in chrysanthemum flower size and total biomass production. Physiologia Plantarum, 2006, 128, 263-273.	5.2	6
128	Temperature affects <i>Chrysanthemum</i> flower characteristics differently during three phases of the cultivation period. Journal of Horticultural Science and Biotechnology, 2005, 80, 209-216.	1.9	20
129	TOMATO YIELD IN A CLOSED GREENHOUSE AND COMPARISON WITH SIMULATED YIELDS IN CLOSED AND CONVENTIONAL GREENHOUSES. Acta Horticulturae, 2005, , 549-552.	0.2	24
130	MODELLING NUTRIENT UPTAKE OF SWEET PEPPER. Acta Horticulturae, 2005, , 285-292.	0.2	16
131	EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, 2005, , 43-50.	0.2	55
132	Influence of sub-optimal temperature on tomato growth and yield: a review. Journal of Horticultural Science and Biotechnology, 2005, 80, 652-659.	1.9	148
133	THE BIOLOGICAL SHIFT FACTOR: BIOLOGICAL AGE AS A TOOL FOR MODELLING IN PRE- AND POSTHARVEST HORTICULTURE. Acta Horticulturae, 2005, , 39-46.	0.2	47
134	PLANT HEIGHT FORMATION IN DIFFERENT CULTIVARS OF KALANCHOE. Acta Horticulturae, 2005, , 83-90.	0.2	4
135	Introduction: the tomato crop and industry, 2005, , 1-19.		19
136	CULTIVAR DIFFERENCES IN TEMPERATURE DEMAND OF CUT CHRYSANTHEMUM. Acta Horticulturae, 2005, , 91-98.	0.2	1
137	TWO INSTEAD OF THREE LEAVES BETWEEN TOMATO TRUSSES: MEASURED AND SIMULATED EFFECTS ON PARTITIONING AND YIELD. Acta Horticulturae, 2004, , 303-308.	0.2	9
138	MODELLING GROWTH OF THE PRIMARY SHOOT OF ROSE. Acta Horticulturae, 2004, , 279-286.	0.2	4
139	MODELLING PRODUCT QUALITY IN HORTICULTURE: AN OVERVIEW. Acta Horticulturae, 2004, , 19-30.	0.2	11
140	Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany, 2004, 55, 2261-2268.	4.8	165
141	Daily Temperature Integration: a Simulation Study to quantify Energy Consumption. Biosystems Engineering, 2004, 87, 333-343.	4.3	33
142	HOW TO REDUCE YIELD FLUCTUATIONS IN SWEET PEPPER?. Acta Horticulturae, 2004, , 349-355.	0.2	29
143	CALIBRATION AND VALIDATION OF COMPLEX AND SIMPLIFIED TOMATO GROWTH MODELS FOR CONTROL PURPOSES IN THE SOUTHEAST OF SPAIN. Acta Horticulturae, 2004, , 147-154.	0.2	19
144	NUTRIENT SUPPLY IN SOILLESS CULTURE: ON-DEMAND STRATEGIES. Acta Horticulturae, 2004, , 533-540.	0.2	7

#	Article	IF	Citations
145	A CONCEPTUAL DYNAMIC MODEL FOR EXTERNAL QUALITY IN KALANCHOE. Acta Horticulturae, 2004, , 263-270.	0.2	6
146	MODELLING EXTERNAL QUALITY OF CUT CHRYSANTHEMUM: ACHIEVEMENTS AND LIMITATIONS. Acta Horticulturae, 2004, , 287-294.	0.2	7
147	Dry mass production and leaf area development of field-grown ornamental conifers: measurements and simulation. Agricultural Systems, 2003, 78, 337-353.	6.1	11
148	Simulation of Leaf Area Development Based on Dry Matter Partitioning and Specific Leaf Area for Cut Chrysanthemum. Annals of Botany, 2003, 91, 319-327.	2.9	21
149	Effect of assimilate availability on flower characteristics and plant height of cut chrysanthemum: an integrated study. Journal of Horticultural Science and Biotechnology, 2003, 78, 711-720.	1.9	25
150	SALINITY EFFECTS ON FRUIT YIELD IN VEGETABLE CROPS: A SIMULATION STUDY. Acta Horticulturae, 2003, , 133-140.	0.2	17
151	INTERACTIVE EFFECTS OF DURATION OF LONG-DAY PERIOD AND PLANT DENSITY ON EXTERNAL QUALITY OF CUT CHRYSANTHEMUM. Acta Horticulturae, 2003, , 335-342.	0.2	5
152	WATER AND NUTRIENT UPTAKE OF SWEET PEPPER AND TOMATO AS (UN) AFFECTED BY WATERING REGIME AND SALINITY. Acta Horticulturae, 2003, , 591-597.	0.2	9
153	GROWTH DYNAMICS AND OCCURRENCE OF CRAKCS IN KOHLRABI TUBERS (BRASSICA OLERACEA VAR.) TJ ETQ	q1 1 0.784	13
154	Effect of Day and Night Temperature on Internode and Stem Length in Chrysanthemum: Is Everything Explained by DIF?. Annals of Botany, 2002, 90, 111-118.	2.9	58
155	Modelling of Temperature-controlled Internode Elongation Applied to Chrysanthemum. Annals of Botany, 2002, 90, 353-359.	2.9	14
156	THE LATEST DEVELOPMENTS IN THE LIGHTING TECHNOLOGIES IN DUTCH HORTICULTURE. Acta Horticulturae, 2002, , 35-42.	0.2	15
157	LIGHT ON CUT CHRYSANTHEMUM: MEASUREMENT AND SIMULATION OF CROP GROWTH AND YIELD. Acta Horticulturae, 2002, , 197-202.	0.2	7
158	Effects of planting date and plant density on crop growth of cut chrysanthemum. Journal of Horticultural Science and Biotechnology, 2002, 77, 238-247.	1.9	15
159	EFFECT OF LIGHT INTENSITY, PLANT DENSITY, AND FLOWER BUD REMOVAL ON THE FLOWER SIZE AND NUMBER IN CUT CHRYSANTHEMUM. Acta Horticulturae, 2002, , 33-38.	0.2	3
160	Title is missing!. Plant and Soil, 2002, 243, 161-171.	3.7	14
161	A SIMULATION STUDY ON THE INTERACTIVE EFFECTS OF RADIATION AND PLANT DENSITY ON GROWTH OF CUT CHRYSANTHEMUM. Acta Horticulturae, 2002, , 151-157.	0.2	5
162	Parthenocarpic Fruit Growth Reduces Yield Fluctuation and Blossom-end Rot in Sweet Pepper. Annals of Botany, 2001, 88, 69-74.	2.9	58

#	Article	IF	Citations
163	Influence of greenhouse climate and plant density on external quality of chrysanthemum (<i>Dendranthema grandiflorum</i> (Ramat.) Kitamura): First steps towards a quality model. Journal of Horticultural Science and Biotechnology, 2001, 76, 249-258.	1.9	25
164	MODELLING VISUAL PRODUCT QUALITY IN CUT CHRYSANTHEMUM. Acta Horticulturae, 2001, , 77-84.	0.2	4
165	Evaluation of a Dynamic Simulation Model for Tomato Crop Growth and Development. Annals of Botany, 1999, 83, 413-422.	2.9	137
166	MODELLING FRUIT SET, FRUIT GROWTH AND DRY MATTER PARTITIONING. Acta Horticulturae, 1999, , 39-50.	0.2	15
167	Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 1998, 74, 83-111.	3.6	364
168	HORTISIM: A MODEL FOR GREENHOUSE CROPS AND GREENHOUSE CLIMATE. Acta Horticulturae, 1998, , 441-450.	0.2	36
169	MODEL APPLICATION IN HORTICULTURAL PRACTICE: SUMMARY OF DISCUSSION GROUPS. Acta Horticulturae, 1998, , 533-534.	0.2	4
170	Pithiness and Growth of Radish Tubers as Affected by Irradiance and Plant Density. Annals of Botany, 1997, 79, 397-402.	2.9	17
171	Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae, 1997, 69, 51-59.	3.6	77
172	Dry Matter Partitioning in Tomato: Validation of a Dynamic Simulation Model. Annals of Botany, 1996, 77, 71-80.	2.9	107
173	Re-interpretation of an Experiment on the Role of Assimilated Transport Resistance in Partitioning in Tomato. Annals of Botany, 1996, 78, 467-470.	2.9	17
174	Influence of assimilate supply on leaf formation in sweet pepper and tomato. The Journal of Horticultural Science, 1996, 71, 405-414.	0.3	25
175	PHOTOSYNTHESIS DRIVEN CROP GROWTH MODELS FOR GREENHOUSE CULTIVATION: ADVANCES AND BOTTLE-NECKS. Acta Horticulturae, 1996, , 9-22.	0.2	5
176	Effect of temperature on biomass allocation in tomato (Lycopersicon esculentum). Physiologia Plantarum, 1995, 94, 447-452.	5.2	23
177	Dry matter partitioning in a tomato plant: one common assimilate pool?. Journal of Experimental Botany, 1995, 46, 1025-1033.	4.8	56
178	Growth, development and yield of a tomato crop: periodic destructive measurements in a greenhouse. Scientia Horticulturae, 1995, 61, 77-99.	3.6	92
179	Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.). Scientia Horticulturae, 1995, 64, 193-201.	3.6	22
180	Dry Matter Production in a Tomato Crop: Measurements and Simulation. Annals of Botany, 1995, 75, 369-379.	2.9	55

#	Article	IF	CITATIONS
181	Influence of Sink-Source Interaction on Dry Matter Production in Tomato. Annals of Botany, 1995, 75, 381-389.	2.9	76
182	Flowering of tomato in vivo and in vitro in relation to the original position of the axillary bud on the main axis. Scientia Horticulturae, 1994, 59, 55-60.	3.6	2
183	Dry-matter partitioning in a tomato crop: Comparison of two simulation models. The Journal of Horticultural Science, 1994, 69, 885-903.	0.3	43
184	Dry-matter production in a tomato crop: comparison of two simulation models. The Journal of Horticultural Science, 1993, 68, 995-1011.	0.3	47
185	ECONOMIC EVALUATION OF CROP PHOTOSYNTHESIS. Acta Horticulturae, 1993, , 219-228.	0.2	6
186	Factors affecting the number of leaves preceding the first inflorescence in the tomato. The Journal of Horticultural Science, 1992, 67, 1-10.	0.3	33
187	A growth analysis study of three Achimenes cultivars grown under three light regimes. Scientia Horticulturae, 1991, 46, 275-282.	3.6	20
188	Influence of day and night temperature on the growth of young tomato plants. Scientia Horticulturae, 1989, 38, 11-22.	3.6	67
189	DRY MATTER DISTRIBUTION IN TOMATO AND CUCUMBER. Acta Horticulturae, 1989, , 149-180.	0.2	44
190	Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: Effects on relative growth rate, net assimilation rate and leaf area ratio. Scientia Horticulturae, 1987, 31, 161-174.	3.6	31
191	Use of Crop Growth Models to Evaluate Physiological Traits in Genotypes of Horticultural Crops. , 0, , 223-233.		2