
Ulrich Schüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary central nervous system sarcoma with <i>DICER1</i> mutation—treatment results of a novel molecular entity in pediatric Peruvian patients. Cancer, 2022, 128, 697-707.	4.1	14
2	Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on <scp>DNA</scp> methylation. Journal of Pathology, 2022, 256, 378-387.	4.5	19
3	ALK inhibition as a salvage therapy for a relapsed unclassifiable sarcomatous CNS tumor with EML4/ALK fusion in an infant. Pediatric Blood and Cancer, 2022, 69, e29594.	1.5	0
4	A new ampliconâ€based gene panel for next generation sequencing characterization of meningiomas. Brain Pathology, 2022, 32, e13046.	4.1	7
5	Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nature Communications, 2022, 13, 1544.	12.8	9
6	Updates in the classification of ependymal neoplasms: The 2021 WHO Classification and beyond. Brain Pathology, 2022, 32, e13068.	4.1	29
7	Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro-Oncology, 2022, 24, 1689-1699.	1.2	11
8	Increased replication stress and R-loop accumulation in EGFRvIII-expressing glioblastoma present new therapeutic opportunities. Neuro-Oncology Advances, 2022, 4, vdab180.	0.7	2
9	Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death and Differentiation, 2022, 29, 1596-1610.	11.2	7
10	SMARCB1-deficient and SMARCA4-deficient Malignant Brain Tumors With Complex Copy Number Alterations and TP53 Mutations May Represent the First Clinical Manifestation of Li-Fraumeni Syndrome. American Journal of Surgical Pathology, 2022, 46, 1277-1283.	3.7	3
11	DNA methylation subclass receptor tyrosine kinase II (RTK II) is predictive for seizure development in glioblastoma patients. Neuro-Oncology, 2022, 24, 1886-1897.	1.2	7
12	TBIO-07. Pediatric tumor classification through genome-wide methylation profiling of extracellular vesicle DNA. Neuro-Oncology, 2022, 24, i184-i184.	1.2	0
13	OLIG2 Is a Determinant for the Relapse of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2022, 28, 4278-4291.	7.0	3
14	Ependymoma relapse goes along with a relatively stable epigenome, but a severely altered tumor morphology. Brain Pathology, 2021, 31, 33-44.	4.1	8
15	Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. Acta Neuropathologica, 2021, 141, 291-301.	7.7	47
16	Mutations within FGFR1 are associated with superior outcome in a series of 83 diffuse midline gliomas with H3F3A K27M mutations. Acta Neuropathologica, 2021, 141, 323-325.	7.7	20
17	DIMEimmune: Robust estimation of infiltrating lymphocytes in CNS tumors from DNA methylation profiles. Oncolmmunology, 2021, 10, 1932365.	4.6	17
18	TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma. Acta Neuropathologica, 2021, 141, 959-970.	7.7	16

Ulrich Schüller

#	Article	IF	CITATIONS
19	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
20	Cauda equina paragangliomas express HOXB13. Neuropathology and Applied Neurobiology, 2021, 47, 889-890.	3.2	9
21	Neurofibromatosis type 2 predisposes to ependymomas of various localization, histology, and molecular subtype. Acta Neuropathologica, 2021, 141, 971-974.	7.7	12
22	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
23	Histopathological patterns in atypical teratoid/rhabdoid tumors are related to molecular subgroup. Brain Pathology, 2021, 31, e12967.	4.1	16
24	<scp>SMARCA4</scp> â€deficient rhabdoid tumours show intermediate molecular features between <scp>SMARCB1</scp> â€deficient rhabdoid tumours and small cell carcinomas of the ovary, hypercalcaemic type. Journal of Pathology, 2021, 255, 1-15.	4.5	14
25	Evidence for a lowâ€penetrant extended phenotype of rhabdoid tumor predisposition syndrome type 1 from a kindred with gain of <i>SMARCB1</i> exon 6. Pediatric Blood and Cancer, 2021, 68, e29185.	1.5	0
26	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	1.2	22
27	Malignant gliomas with H3F3A G34R mutation or MYCN amplification in pediatric patients with Li Fraumeni syndrome. Acta Neuropathologica, 2021, 142, 591-593.	7.7	5
28	IDH2 R172 Mutations Across Poorly Differentiated Sinonasal Tract Malignancies. American Journal of Surgical Pathology, 2021, 45, 1190-1204.	3.7	26
29	Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nature Communications, 2021, 12, 5531.	12.8	31
30	Double adenomas of the pituitary reveal distinct lineage markers, copy number alterations, and epigenetic profiles. Pituitary, 2021, 24, 904-913.	2.9	4
31	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	7.7	12
32	Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration. Cerebellum, 2021, 20, 410-419.	2.5	4
33	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	12.8	237
34	Local and systemic therapy of recurrent ependymoma in children and adolescents: short- and long-term results of the E-HIT-REZ 2005 study. Neuro-Oncology, 2021, 23, 1012-1023.	1.2	19
35	Systemic chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ studies. Journal of Neuro-Oncology, 2021, 155, 193-202.	2.9	6
36	The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genetics, 2021, 17, e1009868.	3.5	14

Ulrich Schã¼ller

#	Article	IF	CITATIONS
37	Co-activation of Sonic hedgehog and Wnt signaling in murine retinal precursor cells drives ocular lesions with features of intraocular medulloepithelioma. Oncogenesis, 2021, 10, 78.	4.9	0
38	Brahma-related gene 1 has time-specific roles during brain and eye development. Development (Cambridge), 2021, 148, .	2.5	5
39	Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Therapy, 2020, 27, 294-300.	4.6	29
40	Molecular characterization of histopathological ependymoma variants. Acta Neuropathologica, 2020, 139, 305-318.	7.7	43
41	Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathologica, 2020, 139, 913-936.	7.7	24
42	Treatment response of CNS highâ€grade neuroepithelial tumors with MN1 alteration. Pediatric Blood and Cancer, 2020, 67, e28627.	1.5	5
43	An 8â€Yearâ€Old Girl with Posterior Fossa Mass. Brain Pathology, 2020, 30, 713-714.	4.1	1
44	Genome-wide DNA methylation profiles distinguish silent from non-silent ACTH adenomas. Acta Neuropathologica, 2020, 140, 95-97.	7.7	7
45	Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathologica Communications, 2020, 8, 28.	5.2	24
46	EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene, 2020, 39, 3041-3055.	5.9	42
47	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	9.4	157
48	OUP accepted manuscript. Cerebral Cortex, 2020, 30, 1382-1392.	2.9	4
49	Immunologic Profiling of Mutational and Transcriptional Subgroups in Pediatric and Adult High-Grade Gliomas. Cancer Immunology Research, 2019, 7, 1401-1411.	3.4	35
50	Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Science Translational Medicine, 2019, 11, .	12.4	100
51	Gliosarcoma Is Driven by Alterations in PI3K/Akt, RAS/MAPK Pathways and Characterized by Collagen Gene Expression Signature. Cancers, 2019, 11, 284.	3.7	18
52	TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathologica, 2019, 137, 657-673.	7.7	20
53	The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathologica Communications, 2019, 7, 199.	5.2	13
54	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	27.8	94

Ulrich Schã¼ller

#	Article	IF	CITATIONS
55	DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathologica, 2018, 136, 255-271.	7.7	59
56	Germline variants in SMARCB1 and other members of the BAF chromatin-remodeling complex across human disease entities: a meta-analysis. European Journal of Human Genetics, 2018, 26, 1083-1093.	2.8	30
57	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
58	Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Developmental Cell, 2018, 44, 709-724.e6.	7.0	35
59	ldentification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncology, 2018, 20, 279-288.	1.2	71
60	Group 3 medulloblastoma in a patient with a GYS2 germline mutation and glycogen storage disease 0a. Child's Nervous System, 2018, 34, 581-584.	1.1	2
61	Subgroup-specific immune and stromal microenvironment in medulloblastoma. OncoImmunology, 2018, 7, e1462430.	4.6	77
62	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
63	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	7.7	104
64	Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. Cerebellum, 2017, 16, 122-131.	2.5	14
65	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
66	A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nature Medicine, 2017, 23, 1191-1202.	30.7	38
67	Medulloblastoma: experimental models and reality. Acta Neuropathologica, 2017, 134, 679-689.	7.7	25
68	Somatic mutations of <i>DICER1</i> and <i>KMT2D</i> are frequent in intraocular medulloepitheliomas. Genes Chromosomes and Cancer, 2016, 55, 418-427.	2.8	34
69	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
70	Somatostatin-receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to ⁶⁸ Ga-DOTATATE/-TOC uptake. Neuro-Oncology, 2016, 18, now060.	1.2	79
71	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
72	Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathologica, 2016, 131, 903-910.	7.7	203

Ulrich Schüller

#	Article	IF	CITATIONS
73	Distinct Histomorphology in Molecular Subgroups of Glioblastomas in Young Patients. Journal of Neuropathology and Experimental Neurology, 2016, 75, 408-414.	1.7	35
74	Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumourÂcells. Nature Cell Biology, 2016, 18, 418-430.	10.3	59
75	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	16.8	438
76	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
77	Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 2016, 131, 137-146.	7.7	162
78	Canonical Wnt Signaling Drives Tumor-Like Lesions from Sox2-Positive Precursors of the Murine Olfactory Epithelium. PLoS ONE, 2016, 11, e0166690.	2.5	7
79	Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing <i>MYCN</i> in <i>hGFAP</i> -positive cells. Oncotarget, 2016, 7, 74415-74426.	1.8	21
80	Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology, 2015, 35, 538-544.	1.2	38
81	Histological subtype of medulloblastoma frequently changes upon recurrence. Acta Neuropathologica, 2015, 129, 459-461.	7.7	10
82	Wnt/β-catenin signaling inhibits the Shh pathway and impairs tumor growth in Shh-dependent medulloblastoma. Acta Neuropathologica, 2014, 127, 605-607.	7.7	33
83	Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathologica, 2014, 127, 931-933.	7.7	53
84	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627
85	Loss of Smarc Proteins Impairs Cerebellar Development. Journal of Neuroscience, 2014, 34, 13486-13491.	3.6	36
86	SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathologica, 2014, 128, 453-456.	7.7	155
87	Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathologica, 2014, 128, 123-136.	7.7	54
88	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
89	Constitutive activation of Î ² -Catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Developmental Biology, 2013, 374, 319-332.	2.0	37
90	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146

Ulrich SchÃ¹/4ller

#	Article	IF	CITATIONS
91	LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathologica, 2012, 124, 875-881.	7.7	115
92	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
93	Proper cerebellar development requires expression of β1â€integrin in Bergmann glia, but not in granule neurons. Glia, 2012, 60, 820-832.	4.9	26
94	Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathologica, 2012, 123, 601-614.	7.7	71
95	Severe Alterations of Cerebellar Cortical Development after Constitutive Activation of Wnt Signaling in Granule Neuron Precursors. Molecular and Cellular Biology, 2011, 31, 3326-3338.	2.3	55
96	Dexamethasone Destabilizes Nmyc to Inhibit the Growth of Hedgehog-Associated Medulloblastoma. Cancer Research, 2010, 70, 5220-5225.	0.9	19
97	Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells. Cancer Cell, 2008, 14, 135-145.	16.8	606
98	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	16.8	572
99	Forkhead Transcription Factor FoxM1 Regulates Mitotic Entry and Prevents Spindle Defects in Cerebellar Granule Neuron Precursors. Molecular and Cellular Biology, 2007, 27, 8259-8270.	2.3	84
100	\hat{I}^2 -catenin function is required for cerebellar morphogenesis. Brain Research, 2007, 1140, 161-169.	2.2	46
101	Cerebellar †transcriptome' reveals cell-type and stage-specific expression during postnatal development and tumorigenesis. Molecular and Cellular Neurosciences, 2006, 33, 247-259.	2.2	42
102	Insulin-Like Growth Factor II Is Involved in the Proliferation Control of Medulloblastoma and Its Cerebellar Precursor Cells. American Journal of Pathology, 2005, 166, 1153-1162.	3.8	106