David Danovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valence Bond Diagrams and Chemical Reactivity. , 2024, , 683-711.		1
2	A Tutorial on XMVB. , 2024, , 276-310.		1
3	A Conversation on New Types of Chemical Bonds. Israel Journal of Chemistry, 2022, 62, .	2.3	8
4	On the nature of the chemical bond in valence bond theory. Journal of Chemical Physics, 2022, 157, .	3.0	8
5	Valence Bond Theory—Its Birth, Struggles with Molecular Orbital Theory, Its Present State and Future Prospects. Molecules, 2021, 26, 1624.	3.8	25
6	Nature of the Trigger Linkage in Explosive Materials Is a Charge-Shift Bond. Journal of Organic Chemistry, 2021, 86, 15588-15596.	3.2	13
7	Valence Bond and Molecular Orbital: Two Powerful Theories that Nicely Complement One Another. Journal of Chemical Education, 2021, 98, 3617-3620.	2.3	12
8	External electric field effects on chemical structure and reactivity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1438.	14.6	104
9	Chargeâ€Shift Bonding: A New and Unique Form of Bonding. Angewandte Chemie, 2020, 132, 996-1013.	2.0	24
10	Chargeâ€Shift Bonding: A New and Unique Form of Bonding. Angewandte Chemie - International Edition, 2020, 59, 984-1001.	13.8	84
11	TITAN: A Code for Modeling and Generating Electric Fields—Features and Applications to Enzymatic Reactivity. Journal of Computational Chemistry, 2020, 41, 74-82.	3.3	45
12	Covalent vs Charge-Shift Nature of the Metal–Metal Bond in Transition Metal Complexes: A Unified Understanding. Journal of the American Chemical Society, 2020, 142, 12277-12287.	13.7	37
13	Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. Journal of the American Chemical Society, 2020, 142, 12551-12562.	13.7	195
14	Captodative Substitution Enhances the Diradical Character of Compounds, Reduces Aromaticity, and Controls Single-Molecule Conductivity Patterns: A Valence Bond Study. Journal of Physical Chemistry A, 2019, 123, 7133-7141.	2.5	12
15	Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments. Angewandte Chemie, 2019, 131, 12460-12466.	2.0	3
16	Electrophilic Aromatic Substitution Reactions: Mechanistic Landscape, Electrostatic and Electric-Field Control of Reaction Rates, and Mechanistic Crossovers. Journal of the American Chemical Society, 2019, 141, 9719-9730.	13.7	62
17	Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments. Angewandte Chemie - International Edition, 2019, 58, 12332-12338.	13.8	25
18	Cross Conjugation in Polyenes and Related Hydrocarbons: What Can Be Learned from Valence Bond Theory about Single-Molecule Conductance?. Journal of the American Chemical Society, 2019, 141, 6030-6047.	13.7	26

#	Article	IF	CITATIONS
19	Comment on "Decoding real space bonding descriptors in valence bond language―by A. MartÃn Pendás and E. Francisco, <i>Phys. Chem. Chem. Phys.</i> , 2018, 20 , 12368. Physical Chemistry Chemical Physics, 2019, 21, 8170-8174.	2.8	2
20	Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. Journal of the American Chemical Society, 2019, 141, 7122-7136.	13.7	57
21	Insights into the Trends in the Acidity Strength of Organic and Inorganic Compounds: A Valence-Bond Perspective. Journal of Physical Chemistry A, 2019, 123, 1851-1860.	2.5	2
22	Attraction between electrophilic caps: A counterintuitive case of noncovalent interactions. Journal of Computational Chemistry, 2019, 40, 1015-1022.	3.3	17
23	Catalysis of Methyl Transfer Reactions by Oriented External Electric Fields: Are Gold–Thiolate Linkers Innocent?. Journal of the American Chemical Society, 2018, 140, 4354-4362.	13.7	66
24	Nature of the Three-Electron Bond. Journal of Physical Chemistry A, 2018, 122, 1873-1885.	2.5	31
25	Hydrogen―and Halogenâ€Bonds between Ions of like Charges: Are They Antiâ€Electrostatic in Nature?. Journal of Computational Chemistry, 2018, 39, 481-487.	3.3	50
26	Oriented-External Electric Fields Create Absolute Enantioselectivity in Diels–Alder Reactions: Importance of the Molecular Dipole Moment. Journal of the American Chemical Society, 2018, 140, 13350-13359.	13.7	113
27	Structure and reactivity/selectivity control by oriented-external electric fields. Chemical Society Reviews, 2018, 47, 5125-5145.	38.1	292
28	To hybridize or not to hybridize? This is the dilemma. Computational and Theoretical Chemistry, 2017, 1116, 242-249.	2.5	18
29	The nature of bonding in metal-metal singly bonded coinage metal dimers: Cu 2 , Ag 2 and Au 2. Computational and Theoretical Chemistry, 2017, 1116, 195-201.	2.5	17
30	Chemistry is about energy and its changes: A critique of bond-length/bond-strength correlations. Coordination Chemistry Reviews, 2017, 344, 355-362.	18.8	99
31	A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds. Journal of Chemical Theory and Computation, 2017, 13, 1626-1637.	5.3	50
32	Halogen Bonds in Novel Polyhalogen Monoanions. Chemistry - A European Journal, 2017, 23, 8719-8728.	3.3	14
33	Valence Bond Theory Reveals Hidden Delocalized Diradical Character of Polyenes. Journal of the American Chemical Society, 2017, 139, 9302-9316.	13.7	33
34	The Quadruple Bonding in C ₂ Reproduces the Properties of the Molecule. Chemistry - A European Journal, 2016, 22, 4116-4128.	3.3	59
35	A Response to a Comment by G. Frenking and M. Hermann on: "The Quadruple Bonding in C ₂ Reproduces the Properties of the Moleculeâ€. Chemistry - A European Journal, 2016, 22, 18977-18980. 	3.3	26
36	The origins of the directionality of noncovalent intermolecular interactions [#] . Journal of Computational Chemistry, 2016, 37, 34-45.	3.3	59

#	Article	IF	CITATIONS
37	On the Nature of Bonding in Parallel Spins in Monovalent Metal Clusters. Annual Review of Physical Chemistry, 2016, 67, 419-439.	10.8	10
38	The Lise Meitner-Minerva Center for Computational Quantum Chemistry: 18 Years of Israeli-German Collaboration. Israel Journal of Chemistry, 2015, 55, 1167-1176.	2.3	6
39	Response to the Comment by J. Grunenberg on "The Nature of the Fourth Bond in the Ground State of C ₂ : The Quadruple Bond Conundrum′′. Chemistry - A European Journal, 2015, 21, 17127-1712	28 ^{3.3}	10
40	Acidity of the methyne group of poly(4-vinylpyridine) leads to side-chain protonation in pyridine. New Journal of Chemistry, 2015, 39, 5920-5922.	2.8	6
41	Comment on "Rabbit-ears hybrids, VSEPR sterics, and other orbital anachronismsâ€. A reply to a criticism. Chemistry Education Research and Practice, 2015, 16, 689-693.	2.5	13
42	The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions. Journal of Chemical Theory and Computation, 2015, 11, 1621-1630.	5.3	41
43	New Landscape of Electron-Pair Bonding: Covalent, Ionic, and Charge-Shift Bonds. Structure and Bonding, 2015, , 169-211.	1.0	23
44	Tuning the Ground State Symmetry of Acetylenyl Radicals. ACS Central Science, 2015, 1, 270-278.	11.3	5
45	Bonding with Parallel Spins: High-Spin Clusters of Monovalent Metal Atoms. Accounts of Chemical Research, 2014, 47, 417-426.	15.6	20
46	Blue-Violet Photoluminescence of 4-Isopropyl-pyridine Hydroxide Crystals. Journal of Physical Chemistry A, 2014, 118, 3061-3067.	2.5	0
47	The Nature of the Fourth Bond in the Ground State of C ₂ : The Quadruple Bond Conundrum. Chemistry - A European Journal, 2014, 20, 6220-6232.	3.3	77
48	Charge-Shift Bonding Emerges as a Distinct Electron-Pair Bonding Family from Both Valence Bond and Molecular Orbital Theories. Journal of Chemical Theory and Computation, 2014, 10, 2410-2418.	5.3	37
49	A tutorial for understanding chemical reactivity through the valence bond approach. Chemical Society Reviews, 2014, 43, 4968-4988.	38.1	58
50	Protonated Alcohols Are Examples of Complete Charge-Shift Bonds. Journal of Organic Chemistry, 2014, 79, 9998-10001.	3.2	19
51	On The Nature of the Halogen Bond. Journal of Chemical Theory and Computation, 2014, 10, 3726-3737.	5.3	232
52	Theoretical Toolkits for Inorganic and Bioinorganic Complexes: Their Applications and Insights. , 2013, , 1-57.		1
53	Formation of Carbon–Carbon Triply Bonded Molecules from Two Free Carbyne Radicals via a Conical Intersection. Journal of Physical Chemistry Letters, 2013, 4, 58-64.	4.6	22
54	Understanding the Nature of the CH··ĤC Interactions in Alkanes. Journal of Chemical Theory and Computation, 2013, 9, 1977-1991.	5.3	112

#	Article	IF	CITATIONS
55	A Response to the Critical Comments on "One Molecule, Two Atoms, Three Views, Four Bonds?― Angewandte Chemie - International Edition, 2013, 52, 5926-5928.	13.8	55
56	Spin–Orbit Coupling and Outer-Core Correlation Effects in Ir- and Pt-Catalyzed C–H Activation. Journal of Chemical Theory and Computation, 2012, 8, 1641-1645.	5.3	21
57	Blended hydrogen atom abstraction and proton-coupled electron transfer mechanisms of closed-shell molecules. Chemical Science, 2012, 3, 1903.	7.4	46
58	Quadruple bonding in C2 and analogous eight-valence electron species. Nature Chemistry, 2012, 4, 195-200.	13.6	198
59	The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries—A Valence Bond Study. Journal of Chemical Theory and Computation, 2011, 7, 955-968.	5.3	59
60	Dihydrogen contacts in alkanes are subtle but not faint. Nature Chemistry, 2011, 3, 323-330.	13.6	231
61	Green's function methods for calculating ionization potentials, electron affinities, and excitation energies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 377-387.	14.6	68
62	Photoinduced Proton Transfer in a Pyridine Based Polymer Gel. Journal of Physical Chemistry B, 2010, 114, 10728-10733.	2.6	17
63	Continuous Symmetry Measures of Density Maps. Journal of Physical Chemistry C, 2010, 114, 20342-20349.	3.1	8
64	Bound Triplet Pairs in the Highest Spin States of Coinage Metal Clusters. Journal of Chemical Theory and Computation, 2010, 6, 1479-1489.	5.3	14
65	An Excursion from Normal to Inverted Cĩ£¿C Bonds Shows a Clear Demarcation between Covalent and Charge‣hift Cĩ£¿C Bonds. ChemPhysChem, 2009, 10, 2658-2669.	2.1	46
66	Charge-shift bonding and its manifestations in chemistry. Nature Chemistry, 2009, 1, 443-449.	13.6	303
67	4-Isopropylpyridine Hydroperoxide Crystals Resulting from the Aerobic Oxidation of a 4-Isopropylpyridine/4-Propylpyridine Mixture. Journal of Physical Chemistry B, 2009, 113, 4555-4559.	2.6	2
68	No-Pair Bonding in Coinage Metal Dimers. Journal of Physical Chemistry A, 2008, 112, 12995-13001.	2.5	17
69	Ferromagnetic Bonding:Â High Spin Copper Clusters (n+1Cun;n= 2â^'14) Devoid of Electron Pairs but Possessing Strong Bondingâ€. Journal of Physical Chemistry A, 2006, 110, 8510-8518.	2.5	24
70	Charge-Shift Bonding—A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach. Chemistry - A European Journal, 2005, 11, 6358-6371.	3.3	234
71	The "Rebound Controversy― An Overview and Theoretical Modeling of the Rebound Step in Câ~'H Hydroxylation by Cytochrome P450. European Journal of Inorganic Chemistry, 2004, 2004, 207-226.	2.0	156
72	The Ground and Excited States of Polyenyl Radicals C2nâ^'1H2n+1 (n=2–13): A Valence Bond Study. ChemPhysChem, 2004, 5, 515-528.	2.1	21

5

#	Article	IF	CITATIONS
73	The "Rebound Controversy― An Overview and Theoretical Modeling of the Rebound Step in C—H Hydroxylation by Cytochrome P450. ChemInform, 2004, 35, no.	0.0	0
74	An Accurate Barrier for the Hydrogen Exchange Reaction from Valence Bond Theory: Is this Theory Coming of Age?. Chemistry - A European Journal, 2003, 9, 4540-4547.	3.3	34
75	Ferromagnetic bonding in high-spin alkali-metal clusters. How does sodium compare to lithium?. Physical Chemistry Chemical Physics, 2003, 5, 158-164.	2.8	27
76	Ferromagnetic Bonding:  Properties of High-Spin Lithium Clusters n+1Lin (n = 2â^12) Devoid of Electron Pairs. Journal of Physical Chemistry A, 2002, 106, 4961-4969.	2.5	36
77	A Different Story of Ï€-DelocalizationThe Distortivity of Ï€-Electrons and Its Chemical Manifestationsâ€. Chemical Reviews, 2001, 101, 1501-1540.	47.7	267
78	A Single Transition State Serves Two Mechanisms:ÂAn ab Initio Classical Trajectory Study of the Electron Transfer and Substitution Mechanisms in Reactions of Ketyl Radical Anions with Alkyl Halides. Journal of the American Chemical Society, 2001, 123, 130-134.	13.7	76
79	Silynes (RCa‰jSika€2) and Disilynes (RSia‰jSika€2): Why Are Less Bonds Worth Energetically More? The resea supported by an Israel Science Foundation (ISF) and a Niedersachsen grant (to S.S.), by a U.S.–Israel Binational Science Foundation (BSF) grant (to Y.A.) and by the Minerva Foundation. S.S. and F.O. thank the European Union for a Marie Curie Fellowship (Contract number: MCFI-1999-00145), S.S. and D.D.	13.8	65
80	An electrochemical aromatic chlorination, comparison with electrophilic reaction. Journal of Electroanalytical Chemistry, 2001, 499, 39-47.	3.8	14
81	Inner-sphere electron transfer in metal-cation chemistry. International Journal of Mass Spectrometry, 2000, 200, 163-173.	1.5	15
82	Computational prediction of the ISC rate for triplet norbornene. Chemical Physics Letters, 2000, 322, 358-362.	2.6	19
83	Using Valence Bond Theory to Understand Electronic Excited States:Â Application to the Hidden Excited State (21Ag) of C2nH2n+2(n= 2â~14) Polyenes. Journal of Physical Chemistry A, 2000, 104, 8744-8758.	2.5	53
84	A Theoretical Study of the Radiationless Decay Mechanism of Cyclic Alkenes in the Lowest Triplet State. Journal of Physical Chemistry A, 2000, 104, 5366-5373.	2.5	11
85	"No-Pair Bonding―in High-Spin Lithium Clusters:Ân+1Lin(n= 2â^'6). Journal of Physical Chemistry A, 2000, 104, 11223-11231.	2.5	30
86	Ionization potentials of porphyrins and phthalocyanines. A comparative benchmark study of fast improvements of Koopman's Theorem. Journal of the Chemical Society Perkin Transactions II, 1999, , 1653-1662.	0.9	42
87	Synthesis and X-ray Molecular Structure of the First Stable Organic Radical Lacking Resonance Stabilization. Journal of the American Chemical Society, 1999, 121, 8118-8119.	13.7	29
88	No-Pair Bonding in the High-Spin3State of Li2. A Valence Bond Study of Its Origins. Journal of the American Chemical Society, 1999, 121, 3165-3174.	13.7	38
89	Theoretical study of the radiationless decay channels of triplet state norbornene. Chemical Physics Letters, 1998, 287, 601-607.	2.6	10
90	The Twin-Excited State as a Probe for the Transition State in Concerted Unimolecular Reactions: The Semibullvalene Rearrangement. Angewandte Chemie - International Edition, 1998, 37, 1394-1397.	13.8	32

#	Article	IF	CITATIONS
91	Spinâ^'Orbit Coupling Patterns Induced by Twist and Pyramidalization Modes in C2H4:Â A Quantitative Study and a Qualitative Analysis. Journal of Physical Chemistry A, 1998, 102, 5923-5936.	2.5	61
92	Does solvation cause symmetry breaking in the I3â^' ion in aqueous solution?. Journal of Chemical Physics, 1998, 109, 9928-9937.	3.0	52
93	Dissociative Electron Transfer, Substitution, and Borderline Mechanisms in Reactions of Ketyl Radical Anions. Differences and Difficulties in Their Reaction Paths. Journal of the American Chemical Society, 1997, 119, 9237-9245.	13.7	56
94	Spinâ ''Orbit Coupling in the Oxidative Activation of Hâ ''H by FeO+. Selection Rules and Reactivity Effects. Journal of the American Chemical Society, 1997, 119, 1773-1786.	13.7	243
95	A different story of benzene. Computational and Theoretical Chemistry, 1997, 398-399, 155-167.	1.5	52
96	NDDO semiempirical approximations coupled with Green's function technique—a reliable approach for calculating ionization potentials. Computational and Theoretical Chemistry, 1997, 401, 235-252.	1.5	9
97	Electron-transfer reactivity in the activation of organic fluorides by bare metal monocations. Chemical Physics Letters, 1997, 273, 164-170.	2.6	24
98	Electron-transfer reactivity in the activation of organic fluorides by bare metal monocations. Chemical Physics Letters, 1997, 278, 391-397.	2.6	45
99	Origins of the Exalted b2uFrequency in the First Excited State of Benzene. Journal of the American Chemical Society, 1996, 118, 666-671.	13.7	91
100	Ionization Energies of Linear and Cyclic Polysilanes. Application of the Green's Function Method Coupled with Semiempirical Molecular Orbital Calculations. Organometallics, 1996, 15, 350-360.	2.3	17
101	Towards the Definition of the Maximum Allowable Tightness of an Electron Transfer Transition State in the Reactions of Radical Anions and Alkyl Halides. Angewandte Chemie International Edition in English, 1996, 35, 1098-1100.	4.4	35
102	Comparison of Câ^'Cl and Siâ^'Cl Bonds. A Valence Bond Study. The Journal of Physical Chemistry, 1996, 100, 5715-5720.	2.9	51
103	Ab initio calculations for small iodo clusters. Good performance of relativistic effective core potentials. Chemical Physics Letters, 1995, 233, 249-256.	2.6	35
104	Two-State Reactivity in Organometallic Gas-Phase Ion Chemistry. Helvetica Chimica Acta, 1995, 78, 1393-1407.	1.6	319
105	Reactivity Paradigms: Transition State Structure, Mechanisms of Barrier Formation, and Stereospecificity of Nucleophilic Substitutions on .sigmaCation Radicals. Journal of the American Chemical Society, 1995, 117, 3205-3222.	13.7	30
106	Why Does Benzene Possess a D6h Symmetry? A Quasiclassical State Approach for Probing .piBonding and Delocalization Energies. Journal of the American Chemical Society, 1995, 117, 7760-7768.	13.7	141
107	What Is Physically Wrong with the Description of Odd-Electron Bonding by Hartree-Fock Theory? A Simple Nonempirical Remedy. Journal of the American Chemical Society, 1995, 117, 9003-9011.	13.7	58
108	Electron transfer mechanistic manifold and variable transition state character. A theoretical investigation of model electron transfer processes between nucleophiles and ethane cation radical. Journal of the Chemical Society Perkin Transactions II, 1995, , 1525.	0.9	9

#	Article	IF	CITATIONS
109	The ICN-INC system: experiment and quantum chemical calculations. Chemical Physics Letters, 1994, 231, 124.	2.6	2
110	The ICN-INC system: experiment and quantum chemical calculations. Chemical Physics Letters, 1994, 225, 391-397.	2.6	26
111	A reliable and inexpensive method for calculating ionization potentials and electron affinities of radicals and molecules. Journal of the Chemical Society Perkin Transactions II, 1993, , 321.	0.9	22
112	Ionization energies of triazines and tetrazines. Application of Green's function method coupled with semiempirical molecular orbital calculations. Journal of the Chemical Society Perkin Transactions II, 1991, , 1865.	0.9	15
113	The First PersistentÎ2-Silyl-Substituted Vinyl Cation. Angewandte Chemie International Edition in English, 1991, 30, 1479-1482.	4.4	66
114	17O, 31P and 183W NMR spectra of paramagnetic complexes with the heteropolytungstate anion [Ln(PW11O39)2]11a^² and their co. Polyhedron, 1990, 9, 1249-1256.	2.2	60
115	Ionization energies of azines from green's function method in semiempirical AM1 approximation. Computational and Theoretical Chemistry, 1989, 188, 159-166.	1.5	11
116	AM1 outer valence green's function ionization energies of the azoles. Computational and Theoretical Chemistry, 1989, 187, 297-306.	1.5	10
117	Green's function method for photoelectron spectroscopy calculations based on MNDO and AM1 semiempirical approximations. Journal of Structural Chemistry, 1989, 30, 474-477.	1.0	Ο