Alberte Bondeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572783/publications.pdf

Version: 2024-02-01

85 papers

23,049 citations

53 h-index 82 g-index

87 all docs

87 docs citations

87 times ranked

22839 citing authors

#	Article	IF	CITATIONS
1	Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9, 161-185.	9.5	2,681
2	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	12.6	2,056
3	Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 2001, 7, 357-373.	9.5	1,718
4	Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 2005, 310, 1333-1337.	12.6	1,355
5	Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12942-12947.	7.1	1,302
6	Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414, 169-172.	27.8	1,162
7	Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 2007, 13, 679-706.	9.5	1,133
8	Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology, 1999, 5, 1-15.	9.5	917
9	Responses of spring phenology to climate change. New Phytologist, 2004, 162, 295-309.	7.3	761
10	Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 2008, 44, .	4.2	665
11	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	9.5	605
12	Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 2012, 121, 144-158.	11.0	596
13	Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3388-3393.	7.1	577
14	Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 2009, 6, 2001-2013.	3.3	547
15	Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10324-10329.	7.1	501
16	Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and lightâ€use efficiency. Global Change Biology, 1999, 5, 56-64.	9.5	304
17	Combining agricultural crop models and satellite observations: From field to regional scales. International Journal of Remote Sensing, 1998, 19, 1021-1036.	2.9	301
18	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	12.9	284

#	Article	IF	CITATIONS
19	Transitions in European land-management regimes between 1800 and 2010. Land Use Policy, 2015, 49, 53-64.	5.6	261
20	Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 2013, 23, 130-143.	7.8	222
21	Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change., 2007,, 175-192.		222
22	Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology, 2010, 384, 218-231.	5.4	219
23	Climateâ€driven simulation of global crop sowing dates. Global Ecology and Biogeography, 2012, 21, 247-259.	5.8	207
24	Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 2011, 35, 4753-4769.	5.7	202
25	A comprehensive global 5Âmin resolution land-use data set for the year 2000 consistent with national census data. Journal of Land Use Science, 2007, 2, 191-224.	2.2	195
26	The European carbon balance. Part 2: croplands. Global Change Biology, 2010, 16, 1409-1428.	9.5	185
27	Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 331-343.	4.0	184
28	Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 2017, 238, 25-35.	5.3	178
29	Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles, 2007, 21, .	4.9	163
30	A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 1994, 48, 220-230.	11.0	161
31	Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics (United Kingdom), 2008, 39, 325-338.	3.9	160
32	Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrology and Earth System Sciences, 2016, 20, 953-973.	4.9	150
33	Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences, 2008, 5, 561-583.	3.3	136
34	Analyzing the global human appropriation of net primary production $\hat{a}\in$ " processes, trajectories, implications. An introduction. Ecological Economics, 2009, 69, 250-259.	5.7	135
35	Projected Changes in Terrestrial Carbon Storage in Europe under Climate and Land-use Change, 1990–2100. Ecosystems, 2007, 10, 380-401.	3.4	131
36	Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 2010, 221, 2188-2196.	2.5	119

#	Article	IF	Citations
37	Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 2013, 4, 385-407.	7.1	118
38	Multiple cropping systems of the world and the potential for increasing cropping intensity. Global Environmental Change, 2020, 64, 102131.	7.8	112
39	Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74, 241-260.	6.3	110
40	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	18.8	101
41	Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecological Indicators, 2018, 91, 589-606.	6.3	100
42	Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Global Change Biology, 1999, 5, 16-24.	9.5	99
43	Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 1999, 5, 35-45.	9.5	99
44	Global change effects on land management in the Mediterranean region. Global Environmental Change, 2018, 50, 238-254.	7.8	91
45	Contemporary "green―water flows: Simulations with a dynamic global vegetation and water balance model. Physics and Chemistry of the Earth, 2005, 30, 334-338.	2.9	88
46	Diagnostic assessment of European gross primary production. Global Change Biology, 2008, 14, 2349-2364.	9.5	86
47	From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences, 2010, 7, 121-149.	3.3	84
48	Hotspots of climate change impacts in subâ€Saharan Africa and implications for adaptation and development. Global Change Biology, 2014, 20, 2505-2517.	9.5	82
49	A suite of essential biodiversity variables for detecting critical biodiversity change. Biological Reviews, 2018, 93, 55-71.	10.4	70
50	Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy, 2009, 33, 1087-1095.	5.7	69
51	Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 2017, 8, 369-386.	7.1	69
52	An Integrated Assessment of changes in the thermohaline circulation. Climatic Change, 2009, 96, 489-537.	3.6	66
53	Climatic risks and impacts in South Asia: extremes of water scarcity and excess. Regional Environmental Change, 2017, 17, 1569-1583.	2.9	65
54	Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 2012, 21, 5-18.	5.8	57

#	Article	IF	Citations
55	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	9.5	56
56	Impacts of Climate Change and the End of Deforestation on Land Use in the Brazilian Legal Amazon. Earth Interactions, 2011, 15, 1-29.	1.5	52
57	The Energetic Metabolism of the European Union and the United States: Decadal Energy Input Time-Series with an Emphasis on Biomass. Journal of Industrial Ecology, 2008, 10, 151-171.	5.5	49
58	The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioningâ€"a meta-analysis. Regional Environmental Change, 2019, 19, 2187-2202.	2.9	49
59	Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations. Remote Sensing of Environment, 2009, 113, 2618-2632.	11.0	48
60	Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 2018, 11, 429-451.	3.6	39
61	The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use. Geoscientific Model Development, 2012, 5, 1297-1322.	3.6	38
62	Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?. Ecological Modelling, 2014, 288, 103-111.	2.5	38
63	A simple model for the temporal variations of NDVI at regional scale over agricultural countries. Validation with ground radiometric measurements. International Journal of Remote Sensing, 1994, 15, 1421-1446.	2.9	37
64	Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renewable and Sustainable Energy Reviews, 2011, 15, 2791-2809.	16.4	37
65	Europeanâ€wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity. Journal of Geophysical Research, 2010, 115, .	3.3	33
66	Temporal variations in satellite reflectances at field and regional scales compared with values simulated by linking crop growth and SAIL models. Remote Sensing of Environment, 1995, 54, 261-272.	11.0	31
67	Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO 2 signal. Global Change Biology, 1999, 5, 65-76.	9.5	31
68	Moderating the impact of agriculture on climate. Agricultural and Forest Meteorology, 2007, 142, 278-287.	4.8	31
69	Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	31
70	Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	27
71	Harvesting the sun: New estimations of the maximum population of planet Earth. Ecological Modelling, 2011, 222, 2019-2026.	2.5	26
72	Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geoscientific Model Development, 2015, 8, 3545-3561.	3.6	26

#	Article	IF	CITATIONS
73	Nitrogen dynamics in cropping systems under Mediterranean climate: a systemic analysis. Environmental Research Letters, 2021, 16, 073002.	5.2	25
74	What ecologists should know before using land use/cover change projections for biodiversity and ecosystem service assessments. Regional Environmental Change, 2020, 20, 1.	2.9	17
75	From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France. Quaternary International, 2019, 501, 303-316.	1.5	14
76	Europeanâ€wide simulations of croplands using an improved terrestrial biosphere model: 2. Interannual yields and anomalous CO ₂ fluxes in 2003. Journal of Geophysical Research, 2010, 115, .	3.3	12
77	Regional paleoclimates and local consequences: Integrating GIS analysis of diachronic settlement patterns and process-based agroecosystem modeling of potential agricultural productivity in Provence (France). PLoS ONE, 2018, 13, e0207622.	2.5	10
78	Land Use Changes Threaten Bird Taxonomic and Functional Diversity Across the Mediterranean Basin: A Spatial Analysis to Prioritize Monitoring for Conservation. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
79	On the importance of taking into account agricultural practices when defining conservation priorities for regional planning. Journal for Nature Conservation, 2016, 33, 76-84.	1.8	7
80	Satellite measurements as a constraint on estimates of vegetation carbon budget. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 251-263.	1.6	6
81	Model-Based Biospheric Greenhouse Gas Balance of Hungary. , 2011, , 295-330.		3
82	Understanding the development of viticulture in Roman Gaul during and after the Roman climate optimum: The contribution of spatial analysis and agro-ecosystem modeling. Journal of Archaeological Science: Reports, 2021, 38, 103099.	0.5	2
83	Rising food demand, climate change and the use of land and water. Environment & Policy, 2006, , 109-129.	0.4	2
84	Aircraft measurements of sea surface conditions and their relationship to marine boundary-layer dynamics. Boundary-Layer Meteorology, 1990, 52, 397-414.	2.3	1
85	Seasonal features of global net primary productivity models for the terrestrial biosphere. , 1997, , 469-483.		1