List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572651/publications.pdf Version: 2024-02-01

ALREDTO LIUNI

#	Article	IF	CITATIONS
1	Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells, 2022, 11, 528.	1.8	18
2	Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 833663.	1.8	5
3	PKD-dependent PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 is required for E-cadherin transport from Golgi to plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
4	BARS Influences Neuronal Development by Regulation of Post-Golgi Trafficking. Cells, 2022, 11, 1320.	1.8	2
5	KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines, 2022, 10, 1234.	1.4	5
6	Golgi maturationâ€dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO Journal, 2021, 40, e107238.	3.5	45
7	GRASP55 regulates intra olgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO Journal, 2021, 40, e107766.	3.5	26
8	Phosphatidic acid in membrane rearrangements. FEBS Letters, 2019, 593, 2428-2451.	1.3	108
9	Regulation of cargo export and sorting at the transâ€Golgi network. FEBS Letters, 2019, 593, 2306-2318.	1.3	59
10	The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATÎ). Frontiers in Cell and Developmental Biology, 2019, 7, 147.	1.8	21
11	Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Communications Biology, 2019, 2, 190.	2.0	20
12	Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell, 2019, 176, 1461-1476.e23.	13.5	65
13	KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. Nature Communications, 2019, 10, 735.	5.8	36
14	Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Frontiers in Cell and Developmental Biology, 2019, 7, 291.	1.8	50
15	Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO Journal, 2018, 37, .	3.5	56
16	The KDEL receptor signalling cascade targets focal adhesion kinase on focal adhesions and invadopodia. Oncotarget, 2018, 9, 10228-10246.	0.8	12
17	GOLPH3 and oncogenesis: What is the molecular link?. Tissue and Cell, 2017, 49, 170-174.	1.0	43
18	Rare ER protein misfolding-mistrafficking disorders: Therapeutic developments. Tissue and Cell, 2017, 49, 175-185.	1.0	7

#	Article	IF	CITATIONS
19	Sphingolipid metabolic flow controls phosphoinositide turnover at the <i>trans</i> â€Golgi network. EMBO Journal, 2017, 36, 1736-1754.	3.5	79
20	On the role of Mitofusin 2 in endoplasmic reticulum–mitochondria tethering. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2266-E2267.	3.3	50
21	Reversible Controlled Aggregation of Golgi Resident Enzymes to Assess Their Transport/Dynamics Along the Secretory Pathway. Methods in Molecular Biology, 2016, 1496, 163-172.	0.4	0
22	Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell Reports, 2016, 15, 2226-2238.	2.9	138
23	Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase l´. Nature Communications, 2016, 7, 12148.	5.8	63
24	Identification of p38 MAPK and JNK as new targets for correction of Wilson disease ausing ATP7B mutants. Hepatology, 2016, 63, 1842-1859.	3.6	42
25	Signaling at the Golgi: sensing and controlling the membrane fluxes. Current Opinion in Cell Biology, 2016, 39, 37-42.	2.6	38
26	Divergent in vitro/in vivo responses to drug treatments of highly aggressive NIH-Ras cancer cells: a PET imaging and metabolomics-mass-spectrometry study. Oncotarget, 2016, 7, 52017-52031.	0.8	11
27	Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling. BioMed Research International, 2015, 2015, 1-13.	0.9	13
28	Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles. International Journal of Molecular Sciences, 2015, 16, 5299-5333.	1.8	19
29	Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2174-81.	3.3	449
30	A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget, 2015, 6, 3375-3393.	0.8	30
31	Unravelling druggable signalling networks that control F508del-CFTR proteostasis. ELife, 2015, 4, .	2.8	22
32	Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells. PLoS ONE, 2014, 9, e110047.	1,1	16
33	Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation. Biology of the Cell, 2014, 106, 254-267.	0.7	13
34	Cytosolic phospholipase A2ε drives recycling in the clathrin-independent endocytic route. Journal of Cell Science, 2014, 127, 977-93.	1.2	26
35	Control Systems of Membrane Transport at the Interface between the Endoplasmic Reticulum and the Golgi. Developmental Cell, 2014, 30, 280-294.	3.1	100
36	Correlative video-light–electron microscopy: development, impact and perspectives. Histochemistry and Cell Biology, 2014, 142, 133-138.	0.8	8

#	Article	IF	CITATIONS
37	Control systems and coordination protocols of the secretory pathway. F1000prime Reports, 2014, 6, 88.	5.9	17
38	Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. ELife, 2014, 3, .	2.8	74
39	Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochemistry and Cell Biology, 2013, 140, 395-405.	0.8	36
40	Components of the CtBP1/BARS-dependent fission machinery. Histochemistry and Cell Biology, 2013, 140, 407-421.	0.8	38
41	Golgi-Dependent Signaling. Methods in Cell Biology, 2013, 118, 359-382.	0.5	2
42	Signaling Circuits on the <scp>G</scp> olgi Complex. Traffic, 2013, 14, 121-134.	1.3	44
43	Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9794-9799.	3.3	37
44	The dynamics of engineered resident proteins in the mammalian Golgi complex relies on cisternal maturation. Journal of Cell Biology, 2013, 201, 1027-1036.	2.3	68
45	Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator. Autophagy, 2012, 8, 1657-1672.	4.3	88
46	Extending Fol̀r̀rster resonance energy transfer measurements beyond 100 AÌŠ using common organic fluorophores: enhanced transfer in the presence of multiple acceptors. Journal of Biomedical Optics, 2012, 17, 011006.	1.4	20
47	Correlative Light–Electron Microscopy as a Tool to Study In Vivo Dynamics and Ultrastructure of Intracellular Structures. Methods in Molecular Biology, 2012, 931, 413-422.	0.4	18
48	A 14-3-3Î ³ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIÎ ² to regulate post-Golgi carrier formation. Nature Cell Biology, 2012, 14, 343-354.	4.6	79
49	The KDEL receptor couples to Gα _{q/11} to activate Src kinases and regulate transport through the Golgi. EMBO Journal, 2012, 31, 2869-2881.	3.5	105
50	Visualizing Live Dynamics and Ultrastructure of Intracellular Organelles with Preembedding Correlative Light-Electron Microscopy. Methods in Cell Biology, 2012, 111, 21-35.	0.5	21
51	Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells. Frontiers in Pharmacology, 2012, 3, 176.	1.6	34
52	COPI acts in both vesicular and tubular transport. Nature Cell Biology, 2011, 13, 996-1003.	4.6	108
53	Mendelian Disorders of Membrane Trafficking. New England Journal of Medicine, 2011, 365, 927-938.	13.9	100
54	Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation. PLoS ONE, 2011, 6, e25888.	1.1	45

#	Article	IF	CITATIONS
55	ARFGAP1 promotes AP-2-dependent endocytosis. Nature Cell Biology, 2011, 13, 559-567.	4.6	36
56	A brief history of the cisternal progression–maturation model. Cellular Logistics, 2011, 1, 6-11.	0.9	17
57	Models for Golgi Traffic: A Critical Assessment. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005215-a005215.	2.3	180
58	Transglutaminase participates in the blockade of neurotransmitter release by tetanus toxin: evidence for a novel biological function. Amino Acids, 2010, 39, 257-269.	1.2	13
59	Passage through the Golgi. Current Opinion in Cell Biology, 2010, 22, 471-478.	2.6	84
60	Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5863-5868.	3.3	92
61	Journeys through the Golgi—taking stock in a new era. Journal of Cell Biology, 2009, 187, 449-453.	2.3	156
62	Group IV Phospholipase A2α Controls the Formation of Inter-Cisternal Continuities Involved in Intra-Golgi Transport. PLoS Biology, 2009, 7, e1000194.	2.6	81
63	Faciogenital Dysplasia Protein (FGD1) Regulates Export of Cargo Proteins from the Golgi Complex via Cdc42 Activation. Molecular Biology of the Cell, 2009, 20, 2413-2427.	0.9	52
64	The Golgi complex. FEBS Letters, 2009, 583, 3731-3731.	1.3	1
65	Correlation of 4Pi and Electron Microscopy to Study Transport Through Single Golgi Stacks in Living Cells with Super Resolution. Traffic, 2009, 10, 379-391.	1.3	43
66	Coordination of the secretory compartments via inter-organelle signalling. Seminars in Cell and Developmental Biology, 2009, 20, 801-809.	2.3	34
67	CtBP1/BARS Gly172 → Glu mutant structure: Impairing NAD(H)-binding and dimerization. Biochemical and Biophysical Research Communications, 2009, 381, 70-74.	1.0	21
68	Morphogenesis of post-Golgi transport carriers. Histochemistry and Cell Biology, 2008, 129, 153-161.	0.8	57
69	The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO Journal, 2008, 27, 970-981.	3.5	177
70	A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nature Cell Biology, 2008, 10, 912-922.	4.6	175
71	A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nature Cell Biology, 2008, 10, 1146-1153.	4.6	147
72	Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 2008, 9, 273-284.	16.1	425

#	Article	IF	CITATIONS
73	Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. Journal of Cell Science, 2008, 121, 369-378.	1.2	181
74	Golgi-to-PM transport. , 2008, , 375-387.		0
75	Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. Journal of Cell Science, 2007, 120, 1288-1298.	1.2	77
76	Evolution of the Endoplasmic Reticulum and the Golgi Complex. Advances in Experimental Medicine and Biology, 2007, 607, 61-72.	0.8	8
77	The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO Journal, 2007, 26, 2465-2476.	3.5	111
78	Key components of the fission machinery are interchangeable. Nature Cell Biology, 2006, 8, 1376-1382.	4.6	70
79	The physiology of membrane transport and endomembrane-based signalling. EMBO Journal, 2006, 25, 2663-2673.	3.5	34
80	The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Science, 2006, 15, 1042-1050.	3.1	44
81	Actin dynamics at sites of extracellular matrix degradation. European Journal of Cell Biology, 2006, 85, 1217-1231.	1.6	80
82	The multiple activities of CtBP/BARS proteins: the Golgi view. Trends in Cell Biology, 2006, 16, 167-173.	3.6	111
83	CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biology, 2005, 7, 570-580.	4.6	162
84	A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO Journal, 2005, 24, 4133-4143.	3.5	93
85	Large pleiomorphic traffic intermediates in the secretory pathway. Current Opinion in Cell Biology, 2005, 17, 353-361.	2.6	43
86	Visualizing Intracellular Events In Vivo by Combined Video Fluorescence and 3â€Ð Electron Microscopy. Methods in Enzymology, 2005, 404, 43-57.	0.4	12
87	Purification and Functional Properties of the Membrane Fissioning Protein CtBP3/BARS. Methods in Enzymology, 2005, 404, 296-316.	0.4	20
88	Glycerophosphoinositols inhibit the ability of tumour cells to invade the extracellular matrix. European Journal of Cancer, 2005, 41, 470-476.	1.3	21
89	Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. Journal of Cell Science, 2004, 117, 6275-6287.	1.2	53
90	Golgi Enzymes Are Enriched in Perforated Zones of Golgi Cisternae but Are Depleted in COPI Vesicles. Molecular Biology of the Cell, 2004, 15, 4710-4724.	0.9	90

#	Article	IF	CITATIONS
91	Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biology, 2004, 6, 1071-1081.	4.6	283
92	Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. European Journal of Cell Biology, 2004, 83, 263-279.	1.6	43
93	Mitotic Golgi Partitioning Is Driven by the Membrane-Fissioning Protein CtBP3/BARS. Science, 2004, 305, 93-96.	6.0	120
94	CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO Journal, 2003, 22, 3122-3130.	3.5	144
95	Dynamin Participates in Focal Extracellular Matrix Degradation by Invasive Cells. Molecular Biology of the Cell, 2003, 14, 1074-1084.	0.9	182
96	Prefission Constriction of Golgi Tubular Carriers Driven by Local Lipid Metabolism: A Theoretical Model. Biophysical Journal, 2003, 85, 3813-3827.	0.2	88
97	ER-to-Golgi Carriers Arise through Direct En Bloc Protrusion and Multistage Maturation of Specialized ER Exit Domains. Developmental Cell, 2003, 5, 583-594.	3.1	225
98	Mechanism of Constitutive Export from the Golgi: Bulk Flow via the Formation, Protrusion, and En Bloc Cleavage of large trans-Golgi Network Tubular Domains. Molecular Biology of the Cell, 2003, 14, 4470-4485.	0.9	177
99	Molecular aspects of membrane fission in the secretory pathway. Cellular and Molecular Life Sciences, 2002, 59, 1819-1832.	2.4	49
100	Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS). Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1068-1070.	2.5	10
101	The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biology, 2001, 3, 1101-1113.	4.6	154
102	Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. Journal of Cell Biology, 2001, 155, 1225-1238.	2.3	185
103	Visualizing membrane traffic in vivo by combined video fluorescence and 3D electron microscopy. Trends in Cell Biology, 2000, 10, 349-353.	3.6	60
104	Correlative Light-Electron Microscopy Reveals the Tubular-Saccular Ultrastructure of Carriers Operating between Golgi Apparatus and Plasma Membrane. Journal of Cell Biology, 2000, 148, 45-58.	2.3	304
105	Molecular Cloning and Functional Characterization of Brefeldin A-ADP-ribosylated Substrate. Journal of Biological Chemistry, 1999, 274, 17705-17710.	1.6	92
106	ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biology, 1999, 1, 280-287.	4.6	503
107	CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 1999, 402, 429-433.	13.7	314
108	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. Molecular and Cellular Biochemistry, 1999, 193, 43-51.	1.4	5

#	Article	IF	CITATIONS
109	Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cytoskeleton, 1999, 43, 334-348.	4.4	50
110	Cyclosporin A, but not FK506, increases arachidonic acid release and inhibits proliferation of pituitary corticotrope tumor cells. Life Sciences, 1999, 64, 837-846.	2.0	7
111	Morphological and biochemical analysis of the secretory pathway in melanoma cells with distinct metastatic potential. FEBS Letters, 1999, 451, 315-320.	1.3	5
112	PDMP blocks the BFA-induced ADP-ribosylation of BARS-50 in isolated Golgi membranes. FEBS Letters, 1999, 459, 310-312.	1.3	8
113	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. , 1999, , 43-51.		0
114	Procollagen Traverses the Golgi Stack without Leaving the Lumen of Cisternae. Cell, 1998, 95, 993-1003.	13.5	377
115	Constitutive transport between thetrans-Golgi network and the plasma membrane according to the maturation model. A hypothesis. FEBS Letters, 1998, 440, 99-102.	1.3	20
116	ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8607-8612.	3.3	125
117	A synthetic model of intraâ€Golgi traffic. FASEB Journal, 1998, 12, 249-252.	0.2	45
118	Characterization of Chemical Inhibitors of Brefeldin A-activated Mono-ADP-ribosylation. Journal of Biological Chemistry, 1997, 272, 14200-14207.	1.6	37
119	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	2.3	50
120	Variations on the Intracellular Transport Theme: Maturing Cisternae and Trafficking Tubules. Journal of Cell Biology, 1997, 138, 481-484.	2.3	144
121	Functional dissociation between glucocorticoid-induced decrease in arachidonic acid release and inhibition of adrenocorticotropic hormone secretion in AtT-20 corticotrophs. Journal of Steroid Biochemistry and Molecular Biology, 1997, 60, 51-57.	1.2	7
122	Neutrophil extracted lipocortin inhibits corticotropin secretion in the AtT-20 D16:16 clonal mouse pituitary cell line. Regulatory Peptides, 1997, 72, 169-177.	1.9	5
123	Brefeldin A-Induced ADP-Ribosylation in the Structure and Function of the Golgi Complex. Advances in Experimental Medicine and Biology, 1997, 419, 331-335.	0.8	8
124	Characterization of the Endogenous Mono-ADP-Ribosylation Stimulated by Brefeldin A. Advances in Experimental Medicine and Biology, 1997, 419, 337-342.	0.8	6
125	Modulatory Role of GTP-Binding Proteins in the Endogenous ADP-Ribosylation of Cytosolic Proteins. Advances in Experimental Medicine and Biology, 1997, 419, 343-347.	0.8	4
126	Possible Role of BARS-50, A Substrate of Brefeldin A-Dependent Mono-ADP-Ribosylation, in Intracellular Transport. Advances in Experimental Medicine and Biology, 1997, 419, 321-330.	0.8	3

#	Article	IF	CITATIONS
127	Regulation of Constitutive Exocytic Transport by Membrane Receptors. Journal of Biological Chemistry, 1996, 271, 3523-3533.	1.6	64
128	Essential role of caldesmon in the actin filament reorganization induced by glucocorticoids Journal of Cell Biology, 1995, 131, 1223-1230.	2.3	45
129	Evidence That Transglutaminase and Synapsin I Are Involved in the Neuroparalytic Action of Tetanus Toxin. Annals of the New York Academy of Sciences, 1994, 710, 107-119.	1.8	6
130	Response from Facchiano, Innamorati and Luini. Trends in Microbiology, 1994, 2, 70-71.	3.5	0
131	Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature, 1993, 364, 818-821.	13.7	152
132	Receptor-mediated regulation of constitutive secretion. Trends in Cell Biology, 1993, 3, 290-292.	3.6	28
133	The transglutaminase hypothesis for the action of tetanus toxin. Trends in Biochemical Sciences, 1993, 18, 327-329.	3.7	35
134	Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3775-3779.	3.3	82
135	Adenosine receptors in rat basophilic leukaemia cells: transductional mechanisms and effects on 5â€hydroxytryptamine release. British Journal of Pharmacology, 1992, 105, 405-411.	2.7	10
136	Evidence That Receptor-Linked G Protein Inhibits Exocytosis by a Post-Second-Messenger Mechanism in AtT-20 Cells. Journal of Neurochemistry, 1990, 54, 30-38.	2.1	69
137	Dual regulation of ACTH secretion by guanine nucleotides in permeabilized AtT-20 cells. Cellular and Molecular Neurobiology, 1988, 8, 129-138.	1.7	27
138	Norepinephrine and Thyrotropin Stimulation of Iodide Efflux in FRTL-5 Thyroid Cells Involves Metabolites of Arachidonic Acid and Is Associated with the Iodination of Thyroglobulin*. Endocrinology, 1987, 120, 1127-1133.	1.4	65
139	Forskolin Enhances Basal and Potassium-Evoked Hormone Release from Normal and Malignant Pituitary Tissue: The Role of Calcium. Endocrinology, 1986, 118, 268-279.	1.4	44