Robert J Klose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6571486/publications.pdf Version: 2024-02-01

POBERTIKIOSE

#	Article	IF	CITATIONS
1	Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nature Communications, 2021, 12, 887.	12.8	49
2	Getting under the skin of Polycomb-dependent gene regulation. Genes and Development, 2021, 35, 301-303.	5.9	4
3	BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes and Development, 2021, 35, 749-770.	5.9	38
4	The molecular principles of gene regulation by Polycomb repressive complexes. Nature Reviews Molecular Cell Biology, 2021, 22, 815-833.	37.0	207
5	Variant PCGF1-PRC1 links PRC2 recruitment with differentiation-associated transcriptional inactivation at target genes. Nature Communications, 2021, 12, 5341.	12.8	25
6	PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nature Structural and Molecular Biology, 2021, 28, 811-824.	8.2	62
7	PRC1 Catalytic Activity Is Central to Polycomb System Function. Molecular Cell, 2020, 77, 857-874.e9.	9.7	184
8	Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Research, 2020, 30, 1393-1406.	5.5	41
9	Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repressors are important for compaction. Nature Communications, 2020, 11, 4118.	12.8	26
10	Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194567.	1.9	82
11	Analysis of Genome Architecture during SCNT Reveals a Role of Cohesin in Impeding Minor ZGA. Molecular Cell, 2020, 79, 234-250.e9.	9.7	39
12	ATACing DNA Methylation during Differentiation. Molecular Cell, 2020, 77, 1159-1161.	9.7	4
13	CDK-Mediator and FBXL19 prime developmental genes for activation by promoting atypical regulatory interactions. Nucleic Acids Research, 2020, 48, 2942-2955.	14.5	9
14	Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells. Cell Reports, 2020, 30, 820-835.e10.	6.4	129
15	KDM2 proteins constrain transcription from CpG island gene promoters independently of their histone demethylase activity. Nucleic Acids Research, 2019, 47, 9005-9023.	14.5	26
16	Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Molecular Cell, 2019, 74, 1020-1036.e8.	9.7	200
17	Biochemical Identification of Nonmethylated DNA by BioCAP-Seq. Methods in Molecular Biology, 2018, 1766, 15-29.	0.9	2
18	Polycomb repressive complex 1 shapes the nucleosome landscape but not accessibility at target genes. Genome Research, 2018, 28, 1494-1507.	5.5	72

ROBERT J KLOSE

#	Article	IF	CITATIONS
19	FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment. ELife, 2018, 7, .	6.0	22
20	MLL-AF4 Spreading Identifies Binding Sites that Are Distinct from Super-Enhancers and that Govern Sensitivity to DOT1L Inhibition in Leukemia. Cell Reports, 2017, 18, 482-495.	6.4	69
21	The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin. Cell Reports, 2017, 20, 2313-2327.	6.4	86
22	The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. ELife, 2017, 6, .	6.0	215
23	PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. ELife, 2017, 6, .	6.0	99
24	RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. ELife, 2016, 5, .	6.0	111
25	Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Research, 2016, 44, 6693-6706.	14.5	80
26	Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis. ELife, 2016, 5, .	6.0	4
27	Histone demethylases in chromatin biology and beyond. EMBO Reports, 2015, 16, 1620-1639.	4.5	172
28	Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nature Reviews Molecular Cell Biology, 2015, 16, 643-649.	37.0	314
29	Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1362-1372.	1.9	430
30	Variant PRC1 Complex-Dependent H2A Ubiquitylation Drives PRC2 Recruitment and Polycomb Domain Formation. Cell, 2014, 157, 1445-1459.	28.9	613
31	5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chemical Science, 2013, 4, 3110.	7.4	142
32	ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochemical Society Transactions, 2013, 41, 727-740.	3.4	209
33	Chromatin Sampling—An Emerging Perspective on Targeting Polycomb Repressor Proteins. PLoS Genetics, 2013, 9, e1003717.	3.5	109
34	Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. ELife, 2013, 2, e00348.	6.0	192
35	Bio-CAP: a versatile and highly sensitive technique to purify and characterise regions of non-methylated DNA. Nucleic Acids Research, 2012, 40, e32-e32.	14.5	27
36	Recognition of CpG Island Chromatin by KDM2A Requires Direct and Specific Interaction with Linker DNA. Molecular and Cellular Biology, 2012, 32, 479-489.	2.3	40

ROBERT J KLOSE

#	Article	IF	CITATIONS
37	KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. ELife, 2012, 1, e00205.	6.0	414
38	Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases. Journal of Medicinal Chemistry, 2012, 55, 6639-6643.	6.4	125
39	The oncometabolite 2â€hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports, 2011, 12, 463-469.	4.5	851
40	CpG island chromatin. Epigenetics, 2011, 6, 147-152.	2.7	128
41	Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biology, 2010, 12, 618-624.	10.3	274
42	Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors. PLoS ONE, 2010, 5, e15535.	2.5	194
43	PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an NÎμ-dimethyl lysine demethylase. Human Molecular Genetics, 2010, 19, 217-222.	2.9	153
44	CpG Islands Recruit a Histone H3 Lysine 36 Demethylase. Molecular Cell, 2010, 38, 179-190.	9.7	273
45	Histone lysine methylation: an epigenetic modification?. Epigenomics, 2010, 2, 151-161.	2.1	21
46	Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4882-4887.	7.1	200
47	Dynamic protein methylation in chromatin biology. Cellular and Molecular Life Sciences, 2009, 66, 407-22.	5.4	185
48	MeCP2 Binding to DNA Depends upon Hydration at Methyl-CpG. Molecular Cell, 2008, 29, 525-531.	9.7	252
49	Demethylation of Histone H3K36 and H3K9 by Rph1: a Vestige of an H3K9 Methylation System in Saccharomyces cerevisiae ?. Molecular and Cellular Biology, 2007, 27, 3951-3961.	2.3	79
50	The Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase. Cell, 2007, 128, 889-900.	28.9	399
51	PLU-1 Is an H3K4 Demethylase Involved in Transcriptional Repression and Breast Cancer Cell Proliferation. Molecular Cell, 2007, 25, 801-812.	9.7	431
52	Regulation of histone methylation by demethylimination and demethylation. Nature Reviews Molecular Cell Biology, 2007, 8, 307-318.	37.0	764
53	Histone H3 Arg2 methylation provides alternative directions for COMPASS. Nature Structural and Molecular Biology, 2007, 14, 1058-1060.	8.2	7
54	Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase. Nature Structural and Molecular Biology, 2007, 14, 243-245.	8.2	111

ROBERT J KLOSE

#	Article	IF	CITATIONS
55	The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nature Structural and Molecular Biology, 2007, 14, 341-343.	8.2	100
56	JmjC-domain-containing proteins and histone demethylation. Nature Reviews Genetics, 2006, 7, 715-727.	16.3	1,096
57	The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 2006, 442, 312-316.	27.8	563
58	Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 2006, 31, 89-97.	7.5	2,190
59	DNA Binding Selectivity of MeCP2 Due to a Requirement for A/T Sequences Adjacent to Methyl-CpG. Molecular Cell, 2005, 19, 667-678.	9.7	322
60	MeCP2 Behaves as an Elongated Monomer That Does Not Stably Associate with the Sin3a Chromatin Remodeling Complex. Journal of Biological Chemistry, 2004, 279, 46490-46496.	3.4	75