Ronnie H Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657070/publications.pdf

Version: 2024-02-01

88 papers 16,167 citations

28242 55 h-index 49868 87 g-index

89 all docs

89 docs citations

89 times ranked 10389 citing authors

#	Article	IF	CITATIONS
1	Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10980-10985.	3.3	1,749
2	Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526, 118-121.	13.7	1,270
3	Cell Membrane Coating Nanotechnology. Advanced Materials, 2018, 30, e1706759.	11.1	1,100
4	Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014, 14, 2181-2188.	4.5	1,091
5	A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnology, 2013, 8, 336-340.	15.6	608
6	Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature Nanotechnology, 2018, 13, 1182-1190.	15.6	600
7	Erythrocyte–Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Advanced Materials, 2017, 29, 1606209.	11.1	507
8	Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Advanced Materials, 2017, 29, 1703969.	11.1	392
9	Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles. Nano Letters, 2015, 15, 1403-1409.	4.5	382
10	Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013, 25, 3549-3553.	11.1	374
11	Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11488-11493.	3.3	364
12	Cell membrane-derived nanomaterials for biomedical applications. Biomaterials, 2017, 128, 69-83.	5.7	343
13	Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6, 2730-2737.	2.8	291
14	Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnology, 2013, 8, 933-938.	15.6	287
15	Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 2017, 28, 23-32.	1.8	267
16	Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Letters, 2020, 20, 5570-5574.	4.5	262
17	â€~Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale, 2013, 5, 2664.	2.8	253
18	Erythrocyteâ€Inspired Delivery Systems. Advanced Healthcare Materials, 2012, 1, 537-547.	3.9	237

#	Article	IF	CITATIONS
19	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	9.9	236
20	Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5, 8884.	2.8	231
21	Clearance of pathological antibodies using biomimetic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13481-13486.	3.3	231
22	Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12, 109-116.	7.3	222
23	Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Science Advances, 2020, 6, eaaz6108.	4.7	208
24	Engineered Cellâ€Membraneâ€Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. Advanced Materials, 2020, 32, e2001808.	11.1	206
25	Biomimetic Nanotechnology toward Personalized Vaccines. Advanced Materials, 2020, 32, e1901255.	11.1	200
26	Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. ACS Nano, 2019, 13, 3714-3722.	7.3	197
27	Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors. Theranostics, 2016, 6, 1004-1011.	4.6	185
28	Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale, 2014, 6, 65-75.	2.8	167
29	Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine, 2013, 8, 1271-1280.	1.7	166
30	Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 19, 1914-1921.	4.5	152
31	Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials, 2016, 111, 116-123.	5.7	151
32	Tâ€Cellâ€Mimicking Nanoparticles Can Neutralize HIV Infectivity. Advanced Materials, 2018, 30, e1802233.	11.1	149
33	Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nature Communications, 2021, 12, 1999.	5. 8	140
34	Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. Journal of Controlled Release, 2017, 263, 185-191.	4.8	136
35	Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano, 2015, 9, 6450-6458.	7.3	134
36	Biomimetic strategies for targeted nanoparticle delivery. Bioengineering and Translational Medicine, 2016, 1, 30-46.	3.9	122

#	Article	IF	CITATIONS
37	Nanoparticle–hydrogel superstructures for biomedical applications. Journal of Controlled Release, 2020, 324, 505-521.	4.8	117
38	Hydrogel Retaining Toxinâ€Absorbing Nanosponges for Local Treatment of Methicillinâ€Resistant <i>Staphylococcus aureus</i> Infection. Advanced Materials, 2015, 27, 3437-3443.	11.1	114
39	Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 11404-11408.	7.2	114
40	Coating Nanoparticles with Gastric Epithelial Cell Membrane for Targeted Antibiotic Delivery against <i>Helicobacter pylori</i> Infection. Advanced Therapeutics, 2018, 1, 1800016.	1.6	110
41	Engineered nanoparticles mimicking cell membranes for toxin neutralization. Advanced Drug Delivery Reviews, 2015, 90, 69-80.	6.6	109
42	Genetically engineered cell membrane–coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Science Advances, 2021, 7, .	4.7	107
43	Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small, 2015, 11, 5483-5496.	5.2	103
44	In Situ Capture of Bacterial Toxins for Antivirulence Vaccination. Advanced Materials, 2017, 29, 1701644.	11.1	94
45	Nanoparticleâ€Based Antivirulence Vaccine for the Management of Methicillinâ€Resistant <i>Staphylococcus aureus</i> Skin Infection. Advanced Functional Materials, 2016, 26, 1628-1635.	7.8	91
46	Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal–Organic Framework Nanoparticles. Nano Letters, 2020, 20, 4051-4058.	4.5	89
47	Broadâ€Spectrum Neutralization of Poreâ€Forming Toxins with Human Erythrocyte Membraneâ€Coated Nanosponges. Advanced Healthcare Materials, 2018, 7, e1701366.	3.9	87
48	Biomimetic Nanoparticle Vaccines for Cancer Therapy. Advanced Biology, 2019, 3, e1800219.	3.0	84
49	Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons, 2020, 5, 25-42.	4.1	80
50	Nanoparticle-Based Modulation of the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 305-326.	3.3	75
51	Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS Nano, 2019, 13, 7209-7215.	7.3	69
52	Synthesis of Nanogels via Cell Membraneâ€√emplated Polymerization. Small, 2015, 11, 4309-4313.	5.2	63
53	Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale, 2016, 8, 10364-10370.	2.8	63
54	Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative Bacteria. Nano Letters, 2019, 19, 4760-4769.	4.5	63

#	Article	IF	Citations
55	Virusâ€Mimicking Cell Membraneâ€Coated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
56	Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks. ACS Nano, 2017, 11, 11923-11930.	7.3	59
57	Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics, 2019, 9, 7826-7848.	4.6	59
58	Nanotechnology for virus treatment. Nano Today, 2021, 36, 101031.	6.2	58
59	Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria. Small, 2019, 15, e1804994.	5.2	53
60	Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjugate Chemistry, 2018, 29, 604-612.	1.8	46
61	Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2021, 143, 17615-17621.	6.6	46
62	Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Advanced Drug Delivery Reviews, 2021, 179, 114006.	6.6	39
63	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	11.1	38
64	Bacterial membrane vesicles for vaccine applications. Advanced Drug Delivery Reviews, 2022, 185, 114294.	6.6	38
65	Bacteria-Inspired Nanomedicine. ACS Applied Bio Materials, 2021, 4, 3830-3848.	2.3	37
66	Nanomaterial Biointerfacing via Mitochondrial Membrane Coating for Targeted Detoxification and Molecular Detection. Nano Letters, 2021, 21, 2603-2609.	4.5	37
67	Selective cell death of latently HIV-infected CD4+ T cells mediated by autosis inducing nanopeptides. Cell Death and Disease, 2019, 10, 419.	2.7	36
68	Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis. Nature Communications, 2021, 12, 4136.	5.8	32
69	Biomimetic Virulomics for Capture and Identification of Cell-Type Specific Effector Proteins. ACS Nano, 2017, 11, 11831-11838.	7.3	27
70	Preparation of Particulate Polymeric Therapeutics for Medical Applications. Small Methods, 2017, 1, 1700147.	4.6	27
71	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie - International Edition, 2020, 59, 10461-10465.	7.2	26
72	Zinc Microrocket Pills: Fabrication and Characterization toward Active Oral Delivery. Advanced Healthcare Materials, 2020, 9, e2000900.	3.9	25

#	Article	IF	CITATIONS
73	Biomimetic Targeting of Nanoparticles to Immune Cell Subsets via Cognate Antigen Interactions. Molecular Pharmaceutics, 2018, 15, 3723-3728.	2.3	23
74	<scp>Cartilageâ€targeting ultrasmall lipidâ€polymer</scp> hybrid nanoparticles for the prevention of cartilage degradation. Bioengineering and Translational Medicine, 2021, 6, e10187.	3.9	22
75	Engineering biological interactions on the nanoscale. Current Opinion in Biotechnology, 2019, 58, 1-8.	3.3	21
76	Nanodelivery of STING agonists against cancer and infectious diseases. Molecular Aspects of Medicine, 2022, 83, 101007.	2.7	15
77	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
78	Biomimetic Nanosponges for Treating Antibody-Mediated Autoimmune Diseases. Bioconjugate Chemistry, 2018, 29, 870-877.	1.8	12
79	Dispersion-Based Methods for the Engineering and Manufacture of Polymeric Nanoparticles for Drug Delivery Applications. Journal of Nanoengineering and Nanomanufacturing, 2011, 1, 106-112.	0.3	12
80	Virusâ€Mimicking Cell Membraneâ€Coated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie, 0, , .	1.6	12
81	CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kill HIV-1-infected cells. Theranostics, 2021, 11, 9009-9021.	4.6	10
82	Nanotoxoids: Biomimetic Nanoparticle Vaccines against Infections. Advanced Therapeutics, 2021, 4, 2100072.	1.6	10
83	Codelivery of Antigens and Adjuvant in Polymeric Nanoparticles Coated With Native Parasite Membranes Induces Protective Mucosal Immunity Against <i>Giardia lamblia</i> . Journal of Infectious Diseases, 2022, 226, 319-323.	1.9	8
84	Organotropic Targeting of Biomimetic Nanoparticles to Treat Lung Disease. Bioconjugate Chemistry, 2022, 33, 586-593.	1.8	7
85	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie, 2020, 132, 10547-10551.	1.6	6
86	Inhibition of Pathogen Adhesion by Bacterial Outer Membraneâ€Coated Nanoparticles. Angewandte Chemie, 2019, 131, 11526-11530.	1.6	4
87	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	2
88	Titelbild: Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles (Angew. Chem. 24/2022). Angewandte Chemie, 2022, 134, .	1.6	0