Martin J Blunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570661/publications.pdf

Version: 2024-02-01

3531 6131 30,701 389 90 159 citations h-index g-index papers 399 399 399 12053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crossflow effects on low salinity displacement in stratified heterogeneity. Journal of Petroleum Science and Engineering, 2022, 208, 109565.	4.2	1
2	Flow in Porous Media in the Energy Transition. Engineering, 2022, 14, 10-14.	6.7	2
3	New type of pore-snap-off and displacement correlations in imbibition. Journal of Colloid and Interface Science, 2022, 609, 384-392.	9.4	18
4	Nonlinear multiphase flow in hydrophobic porous media. Journal of Fluid Mechanics, 2022, 934, .	3.4	9
5	Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. Fuel, 2022, 316, 123202.	6.4	9
6	Minimal Surfaces in Porous Materials: X-Ray Image-Based Measurement of the Contact Angle and Curvature in Gas Diffusion Layers to Design Optimal Performance of Fuel Cells. ACS Applied Energy Materials, 2022, 5, 4613-4621.	5.1	13
7	Fluid – Fluid Interfacial Area and Its Impact on Relative Permeability - A Pore Network Modeling Study. , 2022, , .		2
8	Quantitative determination of the threshold pressure for a discontinuous phase to pass through a constriction using microscale simulation. International Journal of Multiphase Flow, 2022, 153, 104107.	3.4	7
9	Characterization of Water Transport in Porous Building Materials Based on an Analytical Spontaneous Imbibition Model. Transport in Porous Media, 2022, 143, 417-432.	2.6	4
10	Generalized network modelling of two-phase flow in a water-wet and mixed-wet reservoir sandstone: Uncertainty and validation with experimental data. Advances in Water Resources, 2022, 164, 104194.	3.8	6
11	Experimental study of electrical heating to enhance oil production from oil-wet carbonate reservoirs. Fuel, 2022, 324, 124559.	6.4	14
12	Pore-scale processes in tertiary low salinity waterflooding in a carbonate rock: Micro-dispersions, water film growth, and wettability change. Journal of Colloid and Interface Science, 2022, 628, 486-498.	9.4	6
13	Red Noise in Steady‧tate Multiphase Flow in Porous Media. Water Resources Research, 2022, 58, .	4.2	7
14	Determination of contact angles for three-phase flow in porous media using an energy balance. Journal of Colloid and Interface Science, 2021, 582, 283-290.	9.4	16
15	Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks. Fuel, 2021, 283, 118871.	6.4	22
16	Predictive Modeling of Relative Permeability Using a Generalized Equation of State. SPE Journal, 2021, 26, 191-205.	3.1	12
17	Pore-scale analysis of formation damage; A review of existing digital and analytical approaches. Advances in Colloid and Interface Science, 2021, 288, 102345.	14.7	15
18	Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone. Physical Review E, 2021, 103, 013110.	2.1	13

#	Article	IF	CITATIONS
19	Poromechanical controls on spontaneous imbibition in earth materials. Scientific Reports, 2021, 11, 3328.	3.3	9
20	Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks. International Journal of Greenhouse Gas Control, 2021, 105, 103232.	4.6	25
21	Acknowledgement of Reviewers for 2020. Transport in Porous Media, 2021, 137, 283-286.	2.6	O
22	Quantification of Nonlinear Multiphase Flow in Porous Media. Geophysical Research Letters, 2021, 48, e2020GL090477.	4.0	33
23	A continuous time random walk method to predict dissolution in porous media based on validation of experimental NMR data. Advances in Water Resources, 2021, 149, 103847.	3.8	5
24	The development of intermittent multiphase fluid flow pathways through a porous rock. Advances in Water Resources, 2021, 150, 103868.	3.8	16
25	Deep learning in pore scale imaging and modeling. Earth-Science Reviews, 2021, 215, 103555.	9.1	90
26	Pore-Scale Imaging and Analysis of Wettability Order, Trapping and Displacement in Three-Phase Flow in Porous Media with Various Wettabilities. Transport in Porous Media, 2021, 140, 59-84.	2.6	32
27	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Scientific Reports, 2021, 11, 8348.	3.3	103
28	Pore-scale imaging of displacement patterns in an altered-wettability carbonate. Chemical Engineering Science, 2021, 235, 116464.	3.8	26
29	Pore-by-Pore Modelling, Validation and Prediction of Waterflooding in Oil-Wet Rocks Using Dynamic Synchrotron Data. Transport in Porous Media, 2021, 138, 285-308.	2.6	14
30	Direct Numerical Simulation of Pore-Scale Trapping Events During Capillary-Dominated Two-Phase Flow in Porous Media. Transport in Porous Media, 2021, 138, 443-458.	2.6	28
31	Advances in multiscale numerical and experimental approaches for multiphysics problems in porous media. Advances in Geo-Energy Research, 2021, 5, 233-238.	6.0	24
32	<i>Operando</i> Liquid Pressure Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Determination in Polymer Electrolyte Fuel Cells &	8.0	15
33	Pore-scale imaging and analysis of low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions. Scientific Reports, 2021, 11, 15063.	3.3	25
34	Drainage Capillary Pressure Distribution and Fluid Displacement in a Heterogeneous Laminated Sandstone. Geophysical Research Letters, 2021, 48, e2021GL093604.	4.0	7
35	Wettability Characterization from Pore-Scale Images Using Topology and Energy Balance with Implications for Recovery and Storage. , 2021, , .		2
36	Pore-Scale Imaging of Tertiary Low Salinity Waterflooding in a Heterogeneous Carbonate Rock at Reservoir Conditions., 2021,,.		1

#	Article	IF	Citations
37	Assessment of CO2 geological storage capacity of saline aquifers under the North Sea. International Journal of Greenhouse Gas Control, 2021, 111, 103463.	4.6	12
38	The human exposome and health in the Anthropocene. International Journal of Epidemiology, 2021, 50, 378-389.	1.9	24
39	A hybrid of statistical and conditional generative adversarial neural network approaches for reconstruction of 3D porous media (ST-CGAN). Advances in Water Resources, 2021, 158, 104064.	3.8	16
40	Disconnected Gas Transport in Steadyâ€State Threeâ€Phase Flow. Water Resources Research, 2021, 57, e2021WR031147.	4.2	11
41	A salinity cut-off method to control numerical dispersion in low-salinity waterflooding simulation. Journal of Petroleum Science and Engineering, 2020, 184, 106586.	4.2	3
42	Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior. Mathematical Geosciences, 2020, 52, 53-79.	2.4	127
43	Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media. Journal of Petroleum Science and Engineering, 2020, 186, 106794.	4.2	61
44	Dynamics of enhanced gas trapping applied to CO2 storage in the presence of oil using synchrotron X-ray micro tomography. Applied Energy, 2020, 259, 114136.	10.1	46
45	Deformation bands and their impact on fluid flow: Insights from geometrical modelling and multi-scale flow simulations in sandstones. Journal of Structural Geology, 2020, 141, 104215.	2.3	11
46	Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions. Advances in Water Resources, 2020, 146, 103786.	3.8	37
47	Realâ€Time Imaging Reveals Distinct Poreâ€Scale Dynamics During Transient and Equilibrium Subsurface Multiphase Flow. Water Resources Research, 2020, 56, e2020WR028287.	4.2	22
48	Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks. Physical Review E, 2020, 102, 023302.	2.1	27
49	Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278, 115627.	10.1	135
50	Dynamics of fluid displacement in mixed-wet porous media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200040.	2.1	25
51	Predictive Modeling of Relative Permeability using a Generalized Equation-of-State. , 2020, , .		1
52	In Situ Characterization of Threeâ€Phase Flow in Mixedâ€Wet Porous Media Using Synchrotron Imaging. Water Resources Research, 2020, 56, e2020WR027873.	4.2	17
53	Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events. Physical Review E, 2020, 102, 023110.	2.1	23
54	Multispecies Reactive Transport in a Microporous Rock: Impact of Flow Heterogeneity and Reversibility of Reaction. Water Resources Research, 2020, 56, e2020WR027317.	4.2	5

#	Article	IF	Citations
55	Evaluation of methods using topology and integral geometry to assess wettability. Journal of Colloid and Interface Science, 2020, 576, 99-108.	9.4	17
56	Pore-scale X-ray imaging with measurement of relative permeability, capillary pressure and oil recovery in a mixed-wet micro-porous carbonate reservoir rock. Fuel, 2020, 268, 117018.	6.4	64
57	Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method. Journal of Colloid and Interface Science, 2020, 566, 444-453.	9.4	51
58	Using energy balance to determine pore-scale wettability. Journal of Colloid and Interface Science, 2020, 576, 486-495.	9.4	19
59	Droplet and Percolation Network Interactions in a Fuel Cell Gas Diffusion Layer. Journal of the Electrochemical Society, 2020, 167, 084506.	2.9	24
60	Local Capillary Pressure Estimation Based on Curvature of the Fluid Interface – Validation with Two-Phase Direct Numerical Simulations. E3S Web of Conferences, 2020, 146, 04003.	0.5	1
61	Verifying Pore Network Models of Imbibition in Rocks Using Timeâ€Resolved Synchrotron Imaging. Water Resources Research, 2020, 56, e2019WR026587.	4.2	27
62	Pore-scale mechanisms of CO2 storage in oilfields. Scientific Reports, 2020, 10, 8534.	3.3	31
63	Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200671.	2.1	10
64	Pore-scale dynamics and the multiphase Darcy law. Physical Review Fluids, 2020, 5, .	2.5	46
65	Validating the Generalized Pore Network Model Using Micro-CT Images of Two-Phase Flow. Transport in Porous Media, 2019, 130, 405-424.	2.6	36
66	Quantification of Uncertainty and Best Practice in Computing Interfacial Curvature from Complex Pore Space Images. Materials, 2019, 12, 2138.	2.9	24
67	Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock. Physical Review E, 2019, 100, 043103.	2.1	33
68	In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock. Advances in Water Resources, 2019, 134, 103432.	3.8	32
69	Mechanisms of Microscopic Displacement During Enhanced Oil Recovery in Mixed-Wet Rocks Revealed Using Direct Numerical Simulation. Transport in Porous Media, 2019, 130, 731-749.	2.6	12
70	Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media. Physical Review E, 2019, 100, 043115.	2.1	19
71	iSCAL for Complete Rock Characterization: Using Pore-Scale Imaging to Determine Relative Permeability and Capillary Pressure. , 2019, , .		2
72	The Decomposition of Volumetric Sweep Efficiency and Its Utility. , 2019, , .		0

#	Article	lF	CITATIONS
73	Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone. Physical Review E, 2019, 99, 063105.	2.1	98
74	A review of the phenomenon of counter-current spontaneous imbibition: Analysis and data interpretation. Journal of Petroleum Science and Engineering, 2019, 180, 456-470.	4.2	68
75	A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging. Journal of Colloid and Interface Science, 2019, 552, 59-65.	9.4	69
76	The Effect of Mixed Wettability on Poreâ€Scale Flow Regimes Based on a Flooding Experiment in Ketton Limestone. Geophysical Research Letters, 2019, 46, 3225-3234.	4.0	76
77	The architectural design of smart ventilation and drainage systems in termite nests. Science Advances, 2019, 5, eaat8520.	10.3	35
78	Modelling of multispecies reactive transport on pore-space images. Advances in Water Resources, 2019, 127, 192-208.	3.8	15
79	Pore occupancy, relative permeability and flow intermittency measurements using X-ray micro-tomography in a complex carbonate. Advances in Water Resources, 2019, 129, 56-69.	3.8	58
80	Poreâ€Scale Dissolution by CO ₂ Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity. Water Resources Research, 2019, 55, 3171-3193.	4.2	49
81	Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation. Transport in Porous Media, 2019, 127, 393-414.	2.6	64
82	Capillary-Dominated Fluid Displacement in Porous Media. Annual Review of Fluid Mechanics, 2019, 51, 429-449.	25.0	109
83	Calibration of astigmatic particle tracking velocimetry based on generalized Gaussian feature extraction. Advances in Water Resources, 2019, 124, 1-8.	3.8	12
84	4D in situ synchrotron X-ray tomographic microscopy and laser-based heating study of oil shale pyrolysis. Applied Energy, 2019, 235, 1468-1475.	10.1	66
85	An Introduction to Subsurface CO2 Storage. RSC Energy and Environment Series, 2019, , 238-295.	0.5	7
86	A New Waterflood Initialization Protocol With Wettability Alteration for Pore-Scale Multiphase Flow Experiments. Petrophysics, 2019, 60, 264-272.	0.3	9
87	Generalized network modeling of capillary-dominated two-phase flow. Physical Review E, 2018, 97, 023308.	2.1	57
88	4D multi-scale imaging of reactive flow in carbonates: Assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. Chemical Geology, 2018, 481, 27-37.	3.3	60
89	Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data. Advances in Water Resources, 2018, 116, 56-66.	3.8	84
90	Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. International Journal of Greenhouse Gas Control, 2018, 68, 99-111.	4. 6	52

#	Article	IF	Citations
91	A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. Journal of Computational Physics, 2018, 357, 159-182.	3.8	77
92	Multiphase Flow Characteristics of Heterogeneous Rocks From <scp>CO</scp> ₂ Storage Reservoirs in the United Kingdom. Water Resources Research, 2018, 54, 729-745.	4.2	48
93	Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks. Transport in Porous Media, 2018, 125, 81-103.	2.6	112
94	A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level. Journal of Colloid and Interface Science, 2018, 522, 299-310.	9.4	22
95	Estimation of relative permeability and capillary pressure from mass imbibition experiments. Advances in Water Resources, 2018, 115, 88-94.	3.8	37
96	Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm. Advances in Water Resources, 2018, 115, 112-124.	3.8	12
97	Modelling and upscaling of transport in carbonates during dissolution: Validation and calibration with NMR experiments. Journal of Contaminant Hydrology, 2018, 212, 85-95.	3.3	9
98	Large-scale Invasion Percolation with Trapping for Upscaling Capillary-Controlled Darcy-scale Flow. Transport in Porous Media, 2018, 121, 479-506.	2.6	8
99	Three-Phase Flow Visualization and Characterization for a Mixed-Wet Carbonate Rock. , 2018, , .		4
100	In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. Advances in Water Resources, 2018, 121, 446-455.	3.8	72
101	Spatial Correlation of Contact Angle and Curvature in Poreâ€Space Images. Water Resources Research, 2018, 54, 6133-6152.	4.2	36
102	Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography. Journal of Visualized Experiments, 2018, , .	0.3	8
103	Partial dissolution of carbonate rock grains during reactive CO2-saturated brine injection under reservoir conditions. Advances in Water Resources, 2018, 122, 27-36.	3.8	34
104	Imaging and Measurement of Poreâ€Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability. Water Resources Research, 2018, 54, 7046-7060.	4.2	87
105	Validation of model predictions of pore-scale fluid distributions during two-phase flow. Physical Review E, 2018, 97, 053104.	2.1	72
106	Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8901-8906.	7.1	153
107	Time-resolved synchrotron X-ray micro-tomography datasets of drainage and imbibition in carbonate rocks. Scientific Data, 2018, 5, 180265.	5.3	23
108	Model-free classification of X-ray scattering signals applied to image segmentation. Journal of Applied Crystallography, 2018, 51, 1378-1386.	4.5	11

#	Article	IF	Citations
109	Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. Geochimica Et Cosmochimica Acta, 2017, 204, 267-285.	3.9	66
110	Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media. Journal of Colloid and Interface Science, 2017, 496, 51-59.	9.4	123
111	The impact of capillary backpressure on spontaneous counter-current imbibition in porous media. Advances in Water Resources, 2017, 107, 405-420.	3.8	19
112	An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method. Advances in Water Resources, 2017, 100, 26-34.	3.8	53
113	Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197, 562-574.	6.4	123
114	Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography. Environmental Science & Environmental Science & 2017, 51, 4108-4116.	10.0	55
115	Reconstruction of three-dimensional porous media using generative adversarial neural networks. Physical Review E, 2017, 96, 043309.	2.1	294
116	In situ characterization of mixed-wettability in aÂreservoir rock at subsurface conditions. Scientific Reports, 2017, 7, 10753.	3.3	147
117	Dynamic fluid connectivity during steady-state multiphase flow in a sandstone. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8187-8192.	7.1	121
118	Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. Physical Review E, 2017, 96, 013312.	2.1	213
119	Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Scientific Reports, 2017, 7, 5192.	3.3	135
120	Automatic measurement of contact angle in pore-space images. Advances in Water Resources, 2017, 109, 158-169.	3.8	153
121	Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging Xâ€ray microtomography. Water Resources Research, 2017, 53, 7457-7468.	4.2	29
122	Xâ€ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method. Water Resources Research, 2017, 53, 10274-10292.	4.2	83
123	Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography. Journal of Visualized Experiments, 2017, , .	0.3	3
124	Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Applied Energy, 2017, 202, 628-647.	10.1	219
125	The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 2017, 7, 444.	3.3	65
126	In situ Wettability Measurement in a Carbonate Reservoir Rock at High Temperature and Pressure. , 2017, , .		3

#	Article	IF	CITATIONS
127	Preface: Special Issue in Honor of Harvey Scher's 80th Birthday. Transport in Porous Media, 2016, 115, 209-214.	2.6	O
128	Multiscale Description of Shale Pore Systems by Scanning SAXS and WAXS Microscopy. Energy & Energy & Fuels, 2016, 30, 10282-10297.	5.1	92
129	Imaging of oil layers, curvature and contact angle in a mixedâ€wet and a waterâ€wet carbonate rock. Water Resources Research, 2016, 52, 1716-1728.	4.2	124
130	Poreâ€scale simulation of carbonate dissolution in micro T images. Journal of Geophysical Research: Solid Earth, 2016, 121, 558-576.	3.4	81
131	Poreâ€space structure and average dissolution rates: A simulation study. Water Resources Research, 2016, 52, 7198-7212.	4.2	28
132	Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates. Transport in Porous Media, 2016, 115, 189-207.	2.6	36
133	Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging. Advances in Water Resources, 2016, 96, 306-322.	3.8	92
134	Analytical and numerical investigations of spontaneous imbibition in porous media. Water Resources Research, 2016, 52, 7284-7310.	4.2	33
135	Pore Scale Observations of Trapped CO ₂ in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields. Environmental Science & Environm	10.0	57
136	Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. SPE Journal, 2016, 21, 2308-2316.	3.1	59
137	The Impact of Pore Structure Heterogeneity, Transport, and Reaction Conditions on Fluid–Fluid Reaction Rate Studied on Images of Pore Space. Transport in Porous Media, 2016, 115, 215-237.	2.6	33
138	Dynamic imaging of oil shale pyrolysis using synchrotron Xâ€ray microtomography. Geophysical Research Letters, 2016, 43, 6799-6807.	4.0	63
139	Early-Time 1D Analysis of Shale-Oil and -Gas Flow. SPE Journal, 2016, 21, 1254-1262.	3.1	5
140	Low Salinity Waterflooding: From Single Well Chemical Tracer Test Interpretation to Sector Model Forecast Scenarios. , 2016, , .		1
141	The effect of wettability on capillary trapping in carbonates. Advances in Water Resources, 2016, 90, 36-50.	3.8	56
142	The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Advances in Water Resources, 2016, 95, 329-340.	3.8	137
143	Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography — Effect of initial pore structure and flow conditions. Chemical Geology, 2016, 428, 15-26.	3.3	114
144	Imbibition and Trapping. , 2016, , 115-187.		2

#	Article	IF	CITATIONS
145	Solutions to Equations for Multiphase Flow. , 2016, , 402-436.		3
146	Low-Salinity Waterflood Simulation: Mechanistic and Phenomenological Models., 2015,,.		12
147	Continuumâ€scale characterization of solute transport based on poreâ€scale velocity distributions. Geophysical Research Letters, 2015, 42, 7537-7545.	4.0	33
148	Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography. Journal of Visualized Experiments, $2015, \dots$	0.3	12
149	Towards Predicting Multi-Phase Flow in Porous Media Using Digital Rock Physics: Workflow to Test the Predictive Capability of Pore-Scale Modeling. , 2015, , .		11
150	The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions. Transport in Porous Media, 2015, 110, 1-24.	2.6	153
151	Reservoir Modeling for Flow Simulation by Use of Surfaces, Adaptive Unstructured Meshes, and an Overlapping-Control-Volume Finite-Element Method. SPE Reservoir Evaluation and Engineering, 2015, 18, 115-132.	1.8	64
152	Time-of-Flight Distributions and Breakthrough Curves in Heterogeneous Porous Media Using a Pore-Scale Streamline Tracing Algorithm. Transport in Porous Media, 2015, 109, 317-336.	2.6	31
153	A chemical kinetics algorithm for geochemical modelling. Applied Geochemistry, 2015, 55, 46-61.	3.0	26
154	Dynamic Three-Dimensional Pore-Scale Imaging of Reaction in a Carbonate at Reservoir Conditions. Environmental Science & Envir	10.0	153
155	An Efficient Optimisation Technique Using Adaptive Spectral High-Dimensional Model Representation: Application to CO ₂ Sequestration Strategies., 2015,,.		4
156	Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media. Journal of Contaminant Hydrology, 2015, 179, 171-181.	3.3	63
157	Design of foam-assisted carbon dioxide storage in a North Sea aquifer using streamline-based simulation. International Journal of Greenhouse Gas Control, 2015, 33, 113-121.	4.6	28
158	Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs. Journal of Computational Physics, 2015, 298, 41-61.	3.8	42
159	Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 2015, 83, 102-110.	3.8	97
160	Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 2015, 40, 221-237.	4.6	329
161	A Sensitivity Study of the Effect of Image Resolution on Predicted Petrophysical Properties. Transport in Porous Media, 2015, 110, 157-169.	2.6	40
162	Prediction of three-phase oil relative permeability through a sigmoid-based model. Journal of Petroleum Science and Engineering, 2015, 126, 190-200.	4.2	18

#	Article	IF	CITATIONS
163	Microscale solute transport and precipitation in complex rock during drying. Geophysical Research Letters, 2014, 41, 8369-8376.	4.0	39
164	Poreâ€byâ€pore capillary pressure measurements using <scp>X</scp> â€ray microtomography at reservoir conditions: Curvature, snapâ€off, and remobilization of residual <scp>CO</scp> ₂ . Water Resources Research, 2014, 50, 8760-8774.	4.2	119
165	Reservoir Condition Pore Scale Imaging of the Capillary Trapping of CO2. Energy Procedia, 2014, 63, 5427-5434.	1.8	3
166	Dynamic Pore-scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions. Energy Procedia, 2014, 63, 5503-5511.	1.8	12
167	Statistical scaling of pore-scale Lagrangian velocities in natural porous media. Physical Review E, 2014, 90, 023013.	2.1	16
168	Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. Advances in Water Resources, 2014, 68, 24-31.	3.8	317
169	Reactive transport modelling of geologic CO2 sequestration in saline aquifers: The influence of pure CO2 and of mixtures of CO2 with CH4 on the sealing capacity of cap rock at 37°C and 100bar. Chemical Geology, 2014, 367, 39-50.	3.3	43
170	Statistical Scaling of Geometric Characteristics in Millimeter Scale Natural Porous Media. Transport in Porous Media, 2014, 101, 465-475.	2.6	12
171	Numerical Modelling of Sub-pore Scale Events in Two-Phase Flow Through Porous Media. Transport in Porous Media, 2014, 101, 191-213.	2.6	87
172	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	30.8	1,765
172 173	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189. Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59.	30.8	1,765 36
	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science		·
173	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59.		36
173 174	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59. Analysis of Injectivity Decline in Some Offshore Water Injectors., 2014, Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous	4.2	36
173 174 175	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59. Analysis of Injectivity Decline in Some Offshore Water Injectors., 2014,,. Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. Computers and Fluids, 2014, 103, 116-131. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale	4.2 2.5	36 11 42
173 174 175 176	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59. Analysis of Injectivity Decline in Some Offshore Water Injectors., 2014, ,. Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. Computers and Fluids, 2014, 103, 116-131. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Advances in Water Resources, 2014, 74, 116-126. Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive	2.5	36 11 42 254
173 174 175 176	Polymer flooding design and optimization under economic uncertainty. Journal of Petroleum Science and Engineering, 2014, 124, 46-59. Analysis of Injectivity Decline in Some Offshore Water Injectors., 2014,,. Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. Computers and Fluids, 2014, 103, 116-131. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Advances in Water Resources, 2014, 74, 116-126. Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive sparse grid surrogates. Computational Geosciences, 2014, 18, 763-778. An Experimental Study of Three-Phase Trapping in Sand Packs. Transport in Porous Media, 2014, 103,	2.5 3.8 2.4	36 11 42 254 27

#	Article	IF	CITATIONS
181	Poreâ€scale intermittent velocity structure underpinning anomalous transport through 3â€D porous media. Geophysical Research Letters, 2014, 41, 6184-6190.	4.0	131
182	Impact of Reservoir Conditions on CO2-brine Relative Permeability in Sandstones. Energy Procedia, 2014, 63, 5577-5585.	1.8	18
183	Poreâ€scale imaging of geological carbon dioxide storage under in situ conditions. Geophysical Research Letters, 2013, 40, 3915-3918.	4.0	142
184	Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. International Journal of Rock Mechanics and Minings Sciences, 2013, 57, 100-112.	5. 8	147
185	Computations of Absolute Permeability on Micro-CT Images. Mathematical Geosciences, 2013, 45, 103-125.	2.4	338
186	Changes in Pore Structure and Connectivity Induced by CO2 Injection in Carbonates: A Combined Pore-Scale Approach. Energy Procedia, 2013, 37, 5367-5378.	1.8	58
187	A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO2–brine–rock systems at high temperatures, pressures and salinities. Advances in Water Resources, 2013, 62, 409-430.	3.8	32
188	Dipping open aquifersâ€"The effect of top-surface topography and heterogeneity on CO2 storage efficiency. International Journal of Greenhouse Gas Control, 2013, 17, 318-331.	4.6	37
189	Residual CO ₂ Trapping in Indiana Limestone. Environmental Science &	10.0	71
190	Pore-scale imaging and modelling. Advances in Water Resources, 2013, 51, 197-216.	3.8	1,407
191	Simultaneous oil recovery and residual gas storage: A pore-level analysis using in situ X-ray micro-tomography. Fuel, 2013, 103, 905-914.	6.4	122
192	Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Physical Review E, 2013, 87, 013011.	2.1	199
193	Laboratory investigation of capillary trapping under mixedâ€wet conditions. Water Resources Research, 2013, 49, 4311-4319.	4.2	37
194	Design of Simultaneous Enhanced Oil Recovery and Carbon Dioxide Storage With Potential Application to Offshore Trinidad. SPE Journal, 2013, 18, 345-354.	3.1	15
195	Insights into nonâ€Fickian solute transport in carbonates. Water Resources Research, 2013, 49, 2714-2728.	4.2	126
196	Control of Numerical Dispersion in Streamline-Based Simulations of Augmented Waterflooding. SPE Journal, 2013, 18, 1102-1111.	3.1	13
197	Reservoir-Condition Pore-Scale Imaging Of Supercritical Carbon Dioxide. , 2013, , .		3
198	Reservoir Modeling for Flow Simulation Using Surfaces, Adaptive Unstructured Meshes and Control-Volume-Finite-Element Methods. , 2013, , .		19

#	Article	IF	Citations
199	Influence of Micro-Computed Tomography Image Resolution on Petrophysical Properties., 2013,,.		3
200	Simulation of Flow and Dispersion on Pore-Space Images. SPE Journal, 2012, 17, 1131-1141.	3.1	96
201	Wastewater filtration and re-use: An alternative water source for London. Science of the Total Environment, 2012, 437, 173-184.	8.0	6
202	Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 2012, 231, 5653-5668.	3.8	393
203	Capillary trapping in sandstones and carbonates: Dependence on pore structure. Water Resources Research, 2012, 48, .	4.2	133
204	The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis. Water Resources Research, 2012, 48, .	4.2	71
205	A segregated flow scheme to control numerical dispersion for multi-component flow simulations. Computational Geosciences, 2012, 16, 335-350.	2.4	8
206	Artificial neural networks workflow and its application in the petroleum industry. Neural Computing and Applications, 2012, 21, 409-421.	5.6	65
207	Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. Journal of Colloid and Interface Science, 2012, 375, 187-192.	9.4	198
208	A fast method to equilibrate carbon dioxide with brine at high pressure and elevated temperature including solubility measurements. Journal of Supercritical Fluids, 2012, 62, 55-59.	3.2	73
209	Editorial for the January 2012 Issue of Transport in Porous Media. Transport in Porous Media, 2012, 91, 3-3.	2.6	0
210	Remobilization of Residual Non-Aqueous Phase Liquid in Porous Media by Freezeâ^'Thaw Cycles. Environmental Science & Environme	10.0	33
211	Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	257
212	Residual CO ₂ imaged with X-ray micro-tomography. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	280
213	Coreflood Measurements of CO2 Trapping. , 2011, , .		4
214	Design of Simultaneous Enhanced Oil Recovery and Carbon Dioxide Storage Applied to a Heavy Oil Field Offshore Trinidad. , $2011, \dots$		5
215	Polymer Flooding Design and Optimization Under Uncertainty. , 2011, , .		17
216	Enhanced solubility trapping of CO2 in fractured reservoirs. Energy Procedia, 2011, 4, 4961-4968.	1.8	14

#	Article	IF	Citations
217	Immiscible Displacements and Capillary Trapping in CO2 Storage. Energy Procedia, 2011, 4, 4969-4976.	1.8	67
218	Capillary-Trapping Capacity of Sandstones and Sandpacks. SPE Journal, 2011, 16, 778-783.	3.1	90
219	Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media. Physical Review Letters, 2011, 107, 204502.	7.8	199
220	Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations. Physical Review E, 2011, 84, 056301.	2.1	53
221	Measurement of Nonwetting-Phase Trapping in Sandpacks. SPE Journal, 2010, 15, 274-281.	3.1	86
222	Optimizing Oil Recovery and Carbon Dioxide Storage in Heavy Oil Reservoirs. , 2010, , .		5
223	Capillary Trapping in Water-Wet Sandstones: Coreflooding Experiments and Pore-Network Modeling. , 2010, , .		20
224	Control of Numerical Dispersion in Simulations of Augmented Waterflooding. , 2010, , .		6
225	Effects of CO2 Storage in Saline Aquifers on Groundwater Supplies. , 2010, , .		1
226	Streamline-Based Simulation of Non-Newtonian Polymer Flooding. SPE Journal, 2010, 15, 895-905.	3.1	42
227	Pore-scale network simulation of NMR response in two-phase flow. Journal of Petroleum Science and Engineering, 2010, 72, 1-9.	4.2	39
228	Simulation of multiphase flow in fractured reservoirs using a fracture-only model with transfer functions. Computational Geosciences, 2010, 14, 527-538.	2.4	46
229	Pore-Scale Modelling of Rate Effects in Waterflooding. Transport in Porous Media, 2010, 83, 151-169.	2.6	72
230	Measurements of non-wetting phase trapping applied to carbon dioxide storage. International Journal of Greenhouse Gas Control, 2010, 4, 283-288.	4.6	52
231	Pore-scale modeling: Effects of wettability on waterflood oil recovery. Journal of Petroleum Science and Engineering, 2010, 71, 169-178.	4.2	155
232	Open or closed? A discussion of the mistaken assumptions in the Economides pressure analysis of carbon sequestration. Journal of Petroleum Science and Engineering, 2010, 74, 107-110.	4.2	25
233	Capillary Trapping in Carbonate Rocks. , 2010, , .		6
234	X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. Physical Review E, 2010, 82, 056315.	2.1	119

#	Article	IF	CITATIONS
235	Generating a capillary saturation-height function to predict hydrocarbon saturation using artificial neural networks. Petroleum Geoscience, 2010, 16, 77-85.	1.5	2
236	Simulation of Flow and Dispersion on Pore-Space Images. , 2010, , .		8
237	NONWETTING PHASE RESIDUAL SATURATION IN SAND PACKS. Journal of Porous Media, 2010, 13, 591-599.	1.9	22
238	Topological Analysis of Foams and Tetrahedral Structures. Advanced Engineering Materials, 2009, 11, 169-176.	3 . 5	16
239	A three-phase four-component streamline-based simulator to study carbon dioxide storage. Computational Geosciences, 2009, 13, 493-509.	2.4	22
240	Pore-scale simulation of NMR response. Journal of Petroleum Science and Engineering, 2009, 67, 168-178.	4.2	80
241	Development of artificial neural network models for predicting water saturation and fluid distribution. Journal of Petroleum Science and Engineering, 2009, 68, 197-208.	4.2	68
242	Design of carbon dioxide storage in aquifers. International Journal of Greenhouse Gas Control, 2009, 3, 195-205.	4.6	178
243	Measurements of Non-Wetting Phase Trapping Applied to Carbon Dioxide Storage. Energy Procedia, 2009, 1, 3173-3180.	1.8	27
244	CO2 injection impairment due to halite precipitation. Energy Procedia, 2009, 1, 3507-3514.	1.8	122
245	Three-phase measurements of oil and gas trapping in sand packs. Advances in Water Resources, 2009, 32, 1535-1542.	3.8	16
246	Numerical study of the effects of particle shape and polydispersity on permeability. Physical Review E, 2009, 80, 021304.	2.1	103
247	Pore-network extraction from micro-computerized-tomography images. Physical Review E, 2009, 80, 036307.	2.1	808
248	A Rigorous Pore-to-Field-Scale Simulation Method for Single-Phase Flow Based on Continuous-Time Random Walks. SPE Journal, 2009, 14, 88-94.	3.1	33
249	Comparison of deterministic with stochastic fracture models in water-flooding numerical simulations. AAPG Bulletin, 2009, 93, 1633-1648.	1.5	47
250	Compressible Streamline-Based Simulation With Changes in Oil Composition. SPE Reservoir Evaluation and Engineering, 2009, 12, 963-973.	1.8	20
251	Numerical Simulation of Oil Recovery After Cross-Linked Polymer Flooding. Journal of Canadian Petroleum Technology, 2009, 48, 37-41.	2.3	39
252	Pore-scale network modeling of Ellis and Herschel–Bulkley fluids. Journal of Petroleum Science and Engineering, 2008, 60, 105-124.	4.2	77

#	Article	IF	Citations
253	Effects of wettability and pore-level displacement on hydrocarbon trapping. Advances in Water Resources, 2008, 31, 503-512.	3.8	50
254	Pore-to-field simulation of single-phase transport using continuous time random walks. Advances in Water Resources, 2008, 31, 1527-1539.	3.8	50
255	A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics. SPE Journal, 2008, 13, 277-288.	3.1	197
256	Multiphase flow predictions from carbonate pore space images using extracted network models. Water Resources Research, 2008, 44, .	4.2	46
257	General Transfer Functions for Multiphase Flow in Fractured Reservoirs. SPE Journal, 2008, 13, 289-297.	3.1	55
258	Advective transport in percolation clusters. Physical Review E, 2007, 75, 011124.	2.1	4
259	Multirate-Transfer Dual-Porosity Modeling of Gravity Drainage and Imbibition. SPE Journal, 2007, 12, 77-88.	3.1	62
260	Criteria for threeâ€fluid configurations including layers in a pore with nonuniform wettability. Water Resources Research, 2007, 43, .	4.2	29
261	Pore space reconstruction of vuggy carbonates using microtomography and multipleâ€point statistics. Water Resources Research, 2007, 43, .	4.2	149
262	Poreâ€scale modeling of transverse dispersion in porous media. Water Resources Research, 2007, 43, .	4.2	111
263	Pore-scale Simulation of Water Alternate Gas Injection. Transport in Porous Media, 2007, 66, 259-286.	2.6	38
264	Network extraction from sandstone and carbonate pore space images. Journal of Petroleum Science and Engineering, 2007, 56, 219-231.	4.2	220
265	Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resources Research, 2006, 42, .	4.2	90
266	An exact particle tracking algorithm for advective-dispersive transport in networks with complete mixing at nodes. Water Resources Research, 2006, 42, .	4.2	17
267	Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resources Research, 2006, 42, .	4.2	188
268	Impact of relative permeability hysteresis on geological CO2storage. Water Resources Research, 2006, 42, .	4.2	669
269	Simulation of counter-current imbibition in water-wet fractured reservoirs. Journal of Petroleum Science and Engineering, 2006, 50, 21-39.	4.2	99
270	Analytical and numerical analysis of oil recovery by gravity drainage. Journal of Petroleum Science and Engineering, 2006, 54, 55-69.	4.2	32

#	Article	IF	CITATIONS
271	Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. Transport in Porous Media, 2006, 64, 339-373.	2.6	26
272	Analysis of Imbibition in Mixed-Wet Rocks Using Pore-Scale Modeling. SPE Journal, 2005, 10, 466-474.	3.1	46
273	Prediction of Wettability Variation Within an Oil/Water Transition Zone and Its Impact on Production. SPE Journal, 2005, 10, 185-195.	3.1	36
274	Pore space reconstruction using multiple-point statistics. Journal of Petroleum Science and Engineering, 2005, 46, 121-137.	4.2	270
275	Analysis of counter-current imbibition with gravity in weakly water-wet systems. Journal of Petroleum Science and Engineering, 2005, 48, 94-104.	4.2	62
276	Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Physical Review E, 2005, 71, 026301.	2.1	195
277	Predictive Pore-Scale Modeling of Single and Multiphase Flow. Transport in Porous Media, 2005, 58, 23-41.	2.6	76
278	Analytic Analysis for Oil Recovery During Counter-Current Imbibition in Strongly Water-Wet Systems. Transport in Porous Media, 2005, 58, 173-189.	2.6	82
279	Predictive Pore-Scale Modeling of Single and Multiphase Flow. , 2005, , 23-41.		14
280	Dynamic network modeling of two-phase drainage in porous media. Physical Review E, 2005, 71, 016308.	2.1	96
281	Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Physical Review E, 2005, 71, 026302.	2.1	89
282	Analytic Analysis for Oil Recovery During Counter-Current Imbibition in Strongly Water-Wet Systems. , 2005, , 173-189.		4
283	Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis. Physical Review E, 2004, 70, 061603.	2.1	49
284	2D dynamic pore-scale network model of imbibition. Developments in Water Science, 2004, 55, 71-82.	0.1	3
285	Dual Mesh Method for Upscaling in Waterflood Simulation. Transport in Porous Media, 2004, 55, 71-89.	2.6	34
286	Streamline-based simulation of advective–dispersive solute transport. Advances in Water Resources, 2004, 27, 913-924.	3.8	32
287	Comparison of streamline-based and grid-based dual porosity simulation. Journal of Petroleum Science and Engineering, 2004, 43, 129-137.	4.2	39
288	Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resources Research, 2004, 40, .	4.2	597

#	Article	IF	Citations
289	Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs. Water Resources Research, 2004, 40, .	4.2	76
290	Pore-scale modeling of longitudinal dispersion. Water Resources Research, 2004, 40, .	4.2	166
291	Prediction of permeability for porous media reconstructed using multiple-point statistics. Physical Review E, 2004, 70, 066135.	2.1	282
292	Analysis of Imbibition in Mixed-Wet Rocks Using Pore-Scale Modeling. , 2004, , .		3
293	A Multiscale Methodology for Simulating Miscible Gas Injection Projects Applied to a North African Oil Field. , 2004, , .		0
294	A Streamline-Based Method for Assisted History Matching Applied to. SPE Journal, 2004, 9, 437-449.	3.1	9
295	Predicting the Impact of Non-Newtonian Rheology on Relative Permeability Using Pore-Scale Modeling. , 2004, , .		12
296	A Framework for History Matching Using Local Optimization in Streamline Defined Regions. , 2004, , .		1
297	Predictive network modeling of single-phase non-Newtonian flow in porous media. Journal of Colloid and Interface Science, 2003, 264, 256-265.	9.4	155
298	Prediction of wettability variation and its impact on flow using pore- to reservoir-scale simulations. Journal of Petroleum Science and Engineering, 2003, 39, 231-246.	4.2	76
299	Multicomponent mass transfer across water films during hydrocarbon gas injection. Chemical Engineering Science, 2003, 58, 2377-2388.	3.8	36
300	Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophysical Research Letters, 2003, 30, .	4.0	47
301	Predictive Pore-Scale Network Modeling. , 2003, , .		42
302	A Streamline-Based Method for Assisted History Matching Applied to an Arabian Gulf Field. , 2003, , .		5
303	Streamline-Based Method With Full-Physics Forward Simulation for History-Matching Performance Data of a North Sea Field. SPE Journal, 2003, 8, 171-180.	3.1	22
304	Streamline-Based Dual Porosity Simulation of Fractured Reservoirs. , 2003, , .		48
305	A New Streamline Method for Evaluating Uncertainty in Small-Scale, Two-Phase Flow Properties. SPE Journal, 2003, 8, 32-40.	3.1	2
306	Streamline Tracing on Curvilinear Structured and Unstructured Grids. SPE Journal, 2002, 7, 139-148.	3.1	66

#	Article	IF	Citations
307	Pore-Scale Modeling of Three-Phase Flow in Mixed-Wet Systems. , 2002, , .		37
308	Prediction of wettability variation and its impact on waterflooding using pore-to reservoir-scale simulation. , 2002, , .		17
309	Effect of Composition on Waterblocking for Multicomponent Gasfloods. , 2002, , .		10
310	Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources, 2002, 25, 1069-1089.	3.8	583
311	Elliptic Regions and Stable Solutions for Three-Phase flow in Porous Media. Transport in Porous Media, 2002, 48, 249-269.	2.6	30
312	Thermally Induced Wettability Alteration To Improve Oil Recovery in Fractured Reservoirs. SPE Reservoir Evaluation and Engineering, 2001, 4, 179-186.	1.8	90
313	Network modeling of multiphase flow in fractures. Advances in Water Resources, 2001, 24, 409-421.	3.8	89
314	Flow in porous media $\hat{a}\in$ " pore-network models and multiphase flow. Current Opinion in Colloid and Interface Science, 2001, 6, 197-207.	7.4	724
315	Constraints on Contact Angles for Multiple Phases in Thermodynamic Equilibrium. Journal of Colloid and Interface Science, 2001, 239, 281-282.	9.4	22
316	Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 2001, 37, 649-662.	4.2	147
317	Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. SPE Reservoir Evaluation and Engineering, 2001, 4, 308-317.	1.8	609
318	A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model. Journal of Contaminant Hydrology, 2001, 48, 89-119.	3.3	32
319	Pore-Scale Modeling of Multiphase Flow in Fractures and Matrix/Fracture Transfer. SPE Journal, 2001, 6, 126-136.	3.1	20
320	Pore-Scale Modeling of Three-Phase Flow and the Effects of Wettability. , 2000, , .		22
321	Three-Phase Relative Permeability of Water-Wet, Oil-Wet, and Mixed-Wet Sandpacks. SPE Journal, 2000, 5, 82-91.	3.1	97
322	Determination of Water-Oil Interfacial Area during 3-Phase Gravity Drainage in Porous Media. Journal of Colloid and Interface Science, 2000, 221, 308-312.	9.4	47
323	Field observations of a capillary fringe before and after a rainy season. Journal of Contaminant Hydrology, 2000, 44, 103-118.	3.3	44
324	Behavior of Nonaqueous Phase Liquids in Fractured Porous Media under Twoâ€Phase Flow Conditions. Transport in Porous Media, 2000, 38, 189-203.	2.6	29

#	Article	IF	Citations
325	Pore Scale Modeling of Rate Effects in Imbibition. Transport in Porous Media, 2000, 40, 295-322.	2.6	134
326	The Effect of Wettability on Three-Phase Relative Permeability. Transport in Porous Media, 2000, 39, 347-366.	2.6	76
327	A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. Transport in Porous Media, 2000, 39, 227-255.	2.6	54
328	Experimental measurement of air-water interfacial area during gravity drainage and secondary imbibition in porous media. Water Resources Research, 2000, 36, 885-890.	4.2	87
329	Effects of Wettability on Three-Phase Flow in Porous Mediaâ€. Journal of Physical Chemistry B, 2000, 104, 3833-3845.	2.6	184
330	An Empirical Model for Three-Phase Relative Permeability. SPE Journal, 2000, 5, 435-445.	3.1	148
331	Determination of finger shape using the dynamic capillary pressure. Water Resources Research, 2000, 36, 2781-2785.	4.2	24
332	Development of a pore network simulation model to study nonaqueous phase liquid dissolution. Water Resources Research, 2000, 36, 439-454.	4.2	110
333	Three-phase flow and wetability effects in triangular capillaries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 259-276.	4.7	35
334	Nested gridding and streamline-based simulation for fast reservoir performance prediction. Annals of Software Engineering, 1999, 3, 295-320.	0.5	55
335	An Empirical Model for Three-Phase Relative Permeability. , 1999, , .		16
336	Effect of fracture aperture variations on the dispersion of contaminants. Water Resources Research, 1999, 35, 55-63.	4.2	99
337	Streamline-based simulation of solute transport. Water Resources Research, 1999, 35, 3061-3078.	4.2	91
338	Measurement and Prediction of Effective Diffusivities through Spreading and Nonspreading Oils in Unsaturated Porous Media. Environmental Science & Environmental Science & 23, 2879-2884.	10.0	5
339	Pore-Scale Modeling of Multiphase Flow in Fractures and Matrix/Fracture Transfer. , 1999, , .		6
340	Determination of Air-Water Interfacial Area for Drainage and Imbibition in Unsaturated Porous Media. , 1999, , .		0
341	Physically-based network modeling of multiphase flow in intermediate-wet porous media. Journal of Petroleum Science and Engineering, 1998, 20, 117-125.	4.2	168
342	Wettability effects in three-phase gravity drainage. Journal of Petroleum Science and Engineering, 1998, 20, 203-211.	4.2	34

#	Article	IF	CITATIONS
343	Three-dimensional modeling of three phase imbibition and drainage. Advances in Water Resources, 1998, 21, 121-143.	3.8	189
344	Network Modeling of Three-Phase Flow in Porous Media. SPE Journal, 1998, 3, 86-97.	3.1	75
345	Measurement of Three Phase Relative Permeability during Gravity Drainage using CT., 1998,,.		38
346	Effects of Heterogeneity and Wetting on Relative Permeability Using Pore Level Modeling. SPE Journal, 1997, 2, 70-87.	3.1	115
347	Pore Level Modeling of the Effects of Wettability. SPE Journal, 1997, 2, 494-510.	3.1	104
348	A 3D Field-Scale Streamline-Based Reservoir Simulator. SPE Reservoir Engineering, 1997, 12, 246-254.	0.5	254
349	A Streamline-Based 3D Field-Scale Compositional Reservoir Simulator. , 1997, , .		86
350	Effect of spreading coefficient on the distribution of light non-aqueous phase liquid in the subsurface. Journal of Contaminant Hydrology, 1997, 25, 1-19.	3.3	96
351	On the Structure and Flow Processes in the Capillary Fringe of Phreatic Aquifers. Transport in Porous Media, 1997, 28, 159-180.	2.6	42
352	Micromodel Observation of the Role of Oil Layers in Three-Phase Flow. Transport in Porous Media, 1997, 26, 277-297.	2.6	160
353	Hydrocarbon Drainage along Corners of Noncircular Capillaries. Journal of Colloid and Interface Science, 1997, 187, 11-21.	9.4	114
354	Theoretical Analysis of Three Phase Flow Experiments in Porous Media., 1996,,.		25
355	Quantifying uncertainty in reservoir performance using streamtubes. Mathematical Geosciences, 1996, 28, 843-856.	0.9	17
356	A generalized streamline method to predict reservoir flow. Petroleum Geoscience, 1996, 2, 259-269.	1.5	58
357	Simulating Flow in Heterogeneous Systems Using Streamtubes and Streamlines. SPE Reservoir Engineering, 1996, 11, 5-12.	0.5	103
358	Calculating Three-Phase Relative Permeabilities Using Network Modeling. , 1996, , .		6
359	Three-phase flow and gravity drainage in porous media. Transport in Porous Media, 1995, 20, 77-103.	2.6	122
360	Pore Level Modelling of Three Phase Flow in Porous Media. , 1995, , cp-107-00023.		8

#	Article	IF	CITATIONS
361	Rapid evaluation of the impact of heterogeneity on miscible gas injection. Geological Society Special Publication, 1995, 84, 133-142.	1.3	2
362	Pore-level modeling of wetting. Physical Review E, 1995, 52, 6387-6403.	2.1	278
363	Theory of Viscous Fingering in Two Phase, Three Component Flow. SPE Advanced Technology Series, 1994, 2, 52-60.	0.2	23
364	Predictive Theory for Viscous Fingering in Compositional Displacement. SPE Reservoir Engineering, 1994, 9, 73-80.	0.5	47
365	How to predict viscous fingering in three component flow. Transport in Porous Media, 1993, 12, 207-236.	2.6	39
366	Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 1993, 34, 1197-1204.	9.2	319
367	Comparisons of Empirical Viscous-Fingering Models and Their Calibration for Heterogeneous Problems. SPE Reservoir Engineering, 1992, 7, 195-203.	0.5	27
368	Simulation and theory of two-phase flow in porous media. Physical Review A, 1992, 46, 7680-7699.	2.5	233
369	Prediction of relative permeability in simple porous media. Physical Review A, 1992, 46, 2004-2011.	2.5	435
370	Implicit flux limiting schemes for petroleum reservoir simulation. Journal of Computational Physics, 1992, 102, 194-210.	3.8	74
371	Relative permeabilities from two- and three-dimensional pore-scale network modelling. Transport in Porous Media, 1991, 6, 407.	2.6	233
372	Accurate Calibration of Empirical Viscous Fingering Models. Oil & Gas Science & Technology, 1991, 46, 311-324.	0.2	14
373	Dynamics of screening in multifractal growth. Physical Review A, 1990, 41, 582-589.	2.5	6
374	Macroscopic parameters from simulations of pore scale flow. Physical Review A, 1990, 42, 4780-4787.	2.5	123
375	Hydrodynamic force distribution on a fractal cluster. Physical Review A, 1989, 39, 5801-5806.	2.5	4
376	Screening in multifractal growth. Physical Review A, 1989, 39, 3591-3596.	2.5	17
377	Geometry of multifractal systems. Physical Review A, 1989, 39, 2780-2782.	2.5	7
378	Polymer adsorption and electron binding on rough and fractal surfaces. Macromolecules, 1989, 22, 1458-1466.	4.8	24

#	Article	IF	Citations
379	Scaling structure of viscous fingering. Physical Review A, 1988, 37, 3935-3941.	2.5	27
380	A family of exponents from a fractal model of viscous fingering and DLA. Journal of Physics A, 1987, 20, 5961-5969.	1.6	3
381	Interfacial Curvature and Contact Angle. , 0, , 1-16.		1
382	Porous Media and Fluid Displacement., 0,, 17-72.		0
383	Primary Drainage., 0,, 73-114.		O
384	Wettability and Displacement Paths. , 0, , 188-218.		0
385	Navier-Stokes Equations, Darcy's Law and Multiphase Flow. , 0, , 219-314.		O
386	Relative Permeability., 0,, 315-353.		0
387	Three-Phase Flow., 0,, 354-401.		O
388	Residual CO2Saturation Distributions in Rock Samples Measured by X-Ray CT., 0,, 381-388.		3
389	A Hubbert Analysis on Natural Gas Production of the Top Producers. How the Carbon Budget Is Affected Under Unconstrained Extraction. , 0, , .		O