
Lauren M Sparks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E260-E277.	3.5	13
2	Prolonged Glucagon Infusion Does Not Affect Energy Expenditure in Individuals with Overweight/Obesity: A Randomized Trial. Obesity, 2021, 29, 1003-1013.	3.0	14
3	A Metabolomic Signature of Glucagon Action in Healthy Individuals With Overweight/Obesity. Journal of the Endocrine Society, 2021, 5, bvab118.	0.2	11
4	Twenty-four hour assessments of substrate oxidation reveal differences in metabolic flexibility in type 2 diabetes that are improved with aerobic training. Diabetologia, 2021, 64, 2322-2333.	6.3	8
5	The Metabolic Significance of Intermuscular Adipose Tissue: Is IMAT a Friend or a Foe to Metabolic Health?. Diabetes, 2021, 70, 2457-2467.	0.6	15
6	An improvement in skeletal muscle mitochondrial capacity with shortâ€ŧerm aerobic training is associated with changes in Tribbles 1 expression. Physiological Reports, 2020, 8, e14416.	1.7	7
7	Adipose Tissue Quality in Aging: How Structural and Functional Aspects of Adipose Tissue Impact Skeletal Muscle Quality. Nutrients, 2019, 11, 2553.	4.1	55
8	Targeting White Adipose Tissue with Exercise or Bariatric Surgery as Therapeutic Strategies in Obesity. Biology, 2019, 8, 16.	2.8	16
9	Precision exercise medicine: understanding exercise response variability. British Journal of Sports Medicine, 2019, 53, 1141-1153.	6.7	162
10	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metabolism, 2019, 29, 707-718.e8.	16.2	286
11	Genetic Markers of Brown Adipose Tissue Identity and <i>In Vitro</i> Brown Adipose Tissue Activity in Humans. Obesity, 2018, 26, 135-140.	3.0	27
12	Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E165-E173.	3.5	46
13	HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 2018, 3, .	5.0	65
14	Exercise Response Variations in Skeletal Muscle PCr Recovery Rate and Insulin Sensitivity Relate to Muscle Epigenomic Profiles in Individuals With Type 2 Diabetes. Diabetes Care, 2018, 41, 2245-2254.	8.6	41
15	Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training. Frontiers in Physiology, 2018, 9, 704.	2.8	11
16	EFFECTS OF 12 MONTHS OF CALORIC RESTRICTION ON MUSCLE MITOCHONDRIAL FUNCTION IN HEALTHY INDIVIDUALS. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-3211.	3.6	26
17	Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function. Metabolism: Clinical and Experimental, 2017, 69, 24-32.	3.4	23
18	Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutrition and Metabolism, 2017, 14, 24.	3.0	74

LAUREN M SPARKS

#	Article	IF	CITATIONS
19	Metabolic Flexibility in Health and Disease. Cell Metabolism, 2017, 25, 1027-1036.	16.2	586
20	Exercise training response heterogeneity: physiological and molecular insights. Diabetologia, 2017, 60, 2329-2336.	6.3	109
21	Differences in Mitochondrial Coupling Reveal a Novel Signature of Mitohormesis in Muscle of Healthy Individuals. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4994-5003.	3.6	6
22	Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obesity, 2016, 24, 2467-2470.	3.0	29
23	A transcriptional signature of "exercise resistance―in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2015, 64, 999-1004.	3.4	31
24	Nine Months of Combined Training Improves Ex Vivo Skeletal Muscle Metabolism in Individuals With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1694-1702.	3.6	104
25	Increased Oxygen Consumption in Human Adipose Tissue From the "Brown Adipose Tissue―Region. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1230-E1234.	3.6	34
26	High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance. Diabetes, 2012, 61, 2472-2478.	0.6	71
27	Low Macrophage Accumulation in Skeletal Muscle of Obese Type 2 Diabetics and Elderly Subjects. Obesity, 2012, 20, 1530-1533.	3.0	41
28	Impact of dietary fat quantity and quality on skeletal muscle fatty acid metabolism in subjects with the metabolic syndrome. Metabolism: Clinical and Experimental, 2012, 61, 1554-1565.	3.4	19
29	Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 2012, 150, 366-376.	28.9	2,740
30	The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochemistry and Cell Biology, 2012, 137, 205-216.	1.7	136
31	Transcriptional Metabolic Inflexibility in Skeletal Muscle Among Individuals With Increasing Insulin Resistance. Obesity, 2011, 19, 2158-2166.	3.0	18
32	Remodeling Lipid Metabolism and Improving Insulin Responsiveness in Human Primary Myotubes. PLoS ONE, 2011, 6, e21068.	2.5	45
33	Palmitate-induced skeletal muscle insulin resistance does not require NF-κB activation. Cellular and Molecular Life Sciences, 2011, 68, 1215-1225.	5.4	27
34	Effects of Aerobic and Resistance Training on Hemoglobin A _{1c} Levels in Patients With Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2010, 304, 2253.	7.4	727
35	Relation of adipose tissue to metabolic flexibility. Diabetes Research and Clinical Practice, 2009, 83, 32-43.	2.8	41
36	Effect of adipose tissue on the sexual dimorphism in metabolic flexibility. Metabolism: Clinical and Experimental, 2009, 58, 1564-1571.	3.4	23

LAUREN M SPARKS

#	Article	IF	CITATIONS
37	High-fat/low-carbohydrate diets regulate glucose metabolism via a long-term transcriptional loop. Metabolism: Clinical and Experimental, 2006, 55, 1457-1463.	3.4	17
38	A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle. Diabetes, 2005, 54, 1926-1933.	0.6	534
39	Aerobic training increases mitochondrial respiratory capacity in human skeletal muscle stem cells from sedentary individuals. American Journal of Physiology - Cell Physiology, 0, , .	4.6	1