Kenta Moriwaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570376/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The scaffold-dependent function of RIPK1 in dendritic cells promotes injury-induced colitis. Mucosal Immunology, 2022, 15, 84-95.	6.0	7
2	Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochemical Journal, 2022, 479, 677-685.	3.7	17
3	Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. International Journal of Molecular Sciences, 2022, 23, 6973.	4.1	0
4	Sweet modification and regulation of death receptor signalling pathway. Journal of Biochemistry, 2021, 169, 643-652.	1.7	13
5	MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIPL. Communications Biology, 2021, 4, 80.	4.4	13
6	Loss of Rab6a in the small intestine causes lipid accumulation and epithelial cell death from lactation. FASEB Journal, 2020, 34, 9450-9465.	0.5	1
7	The death-inducing activity of RIPK1 is regulated by the pH environment. Science Signaling, 2020, 13, .	3.6	10
8	Identification of a phosphorylation site on Ulk1 required for genotoxic stress-induced alternative autophagy. Nature Communications, 2020, 11, 1754.	12.8	46
9	Targeting Necroptosis in Antitumor Therapy. , 2019, , 275-285.		1
10	Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. IScience, 2019, 15, 536-551.	4.1	21
11	Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation. Oncotarget, 2018, 9, 12732-12744.	1.8	14
12	Distinct Kinase-Independent Role of RIPK3 in CD11c + Mononuclear Phagocytes in Cytokine-Induced Tissue Repair. Cell Reports, 2017, 18, 2441-2451.	6.4	45
13	BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS ONE, 2017, 12, e0175888.	2.5	11
14	Border Security: The Role of RIPK3 in Epithelium Homeostasis. Frontiers in Cell and Developmental Biology, 2016, 4, 70.	3.7	8
15	A glycoproteomic approach to identify novel glycomarkers for cancer stem cells. Proteomics, 2016, 16, 3073-3080.	2.2	6
16	Necroptosis-independent signaling by the RIP kinases in inflammation. Cellular and Molecular Life Sciences, 2016, 73, 2325-2334.	5.4	73
17	Regulation of RIPK3- and RHIM-dependent Necroptosis by the Proteasome. Journal of Biological Chemistry, 2016, 291, 5948-5959.	3.4	52
18	The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. Journal of Immunology, 2016, 196, 407-415.	0.8	106

Kenta Moriwaki

#	Article	IF	CITATIONS
19	A RIPK3–Caspase 8 Complex Mediates Atypical Pro–IL-1β Processing. Journal of Immunology, 2015, 194, 1938-1944.	0.8	144
20	Programmed Necrosis in the Cross Talk of Cell Death and Inflammation. Annual Review of Immunology, 2015, 33, 79-106.	21.8	298
21	RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Molecular Cell, 2014, 56, 481-495.	9.7	470
22	Programmed Necrosis in Immunity and Inflammatory Diseases. , 2014, , 177-194.		0
23	Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine and Growth Factor Reviews, 2014, 25, 167-174.	7.2	69
24	The Necroptosis Adaptor RIPK3 Promotes Injury-Induced Cytokine Expression and Tissue Repair. Immunity, 2014, 41, 567-578.	14.3	199
25	Basic Procedures for Lectin Flow Cytometry. Methods in Molecular Biology, 2014, 1200, 147-152.	0.9	4
26	RIP3: a molecular switch for necrosis and inflammation. Genes and Development, 2013, 27, 1640-1649.	5.9	306
27	Whole-body imaging of tumor cells by azaelectrocyclization: Visualization of metastasis dependence on glycan structure. Bioorganic and Medicinal Chemistry, 2013, 21, 1074-1077.	3.0	14
28	Preparation of branched cyclomaltoheptaose with 3-O-α-l-fucopyranosyl-α-d-mannopyranose and changes in fucosylation of HCT116 cells treated with the fucose-modified cyclomaltoheptaose. Carbohydrate Research, 2013, 374, 49-58.	2.3	9
29	Detection of Necrosis by Release of Lactate Dehydrogenase Activity. Methods in Molecular Biology, 2013, 979, 65-70.	0.9	604
30	Mutation of GDP-Mannose-4,6-Dehydratase in Colorectal Cancer Metastasis. PLoS ONE, 2013, 8, e70298.	2.5	28
31	Abstract 2684: Clinical significance of GDP-mannose-4,6-dehydratase mutation and loss of fucosylation in colorectal cancer , 2013, , .		0
32	A Novel Core Fucose-specific Lectin from the Mushroom Pholiota squarrosa. Journal of Biological Chemistry, 2012, 287, 33973-33982.	3.4	101
33	N-Acetylglucosaminyltransferase V regulates TGF-β response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology, 2012, 22, 778-787.	2.5	26
34	Analysis of Polarized Secretion of Fucosylated Alpha-Fetoprotein in HepG2 Cells. Journal of Proteome Research, 2012, 11, 2798-2806.	3.7	23
35	The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis. Cell, 2012, 150, 339-350.	28.9	968
36	Fucosylation Is a Promising Target for Cancer Diagnosis and Therapy. Biomolecules, 2012, 2, 34-45.	4.0	132

Kenta Moriwaki

#	Article	IF	CITATIONS
37	Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer, 2012, 118, 3036-3043.	4.1	67
38	Abstract 4531: Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer Research, 2012, 72, 4531-4531.	0.9	2
39	Overexpression of α1,6-fucosyltransferase in hepatoma enhances expression of Golgi phosphoprotein 2 in a fucosylation-independent manner. International Journal of Oncology, 2011, 39, 203-8.	3.3	9
40	Combination use of anti D133 antibody and SSA lectin can effectively enrich cells with high tumorigenicity. Cancer Science, 2011, 102, 1164-1170.	3.9	17
41	Enhanced Epithelial-Mesenchymal Transition-like Phenotype in N-Acetylglucosaminyltransferase V Transgenic Mouse Skin Promotes Wound Healing. Journal of Biological Chemistry, 2011, 286, 28303-28311.	3.4	59
42	GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation. Journal of Biological Chemistry, 2011, 286, 43123-43133.	3.4	40
43	Abstract 4356: Combination use of anti-CD133 antibody and SSA lectin can effectively enrich cells with high tumorigenicity. , 2011, , .		0
44	The effect of epigenetic regulation of fucosylation on TRAIL-induced apoptosis. Glycoconjugate Journal, 2010, 27, 649-659.	2.7	31
45	Roles of Fucosylation in Tumor Immunology. Trends in Glycoscience and Glycotechnology, 2010, 22, 239-246.	0.1	2
46	Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clinical Chemistry and Laboratory Medicine, 2010, 48, 505-512.	2.3	58
47	Glycomic Analyses of Glycoproteins in Bile and Serum during Rat Hepatocarcinogenesis. Journal of Proteome Research, 2010, 9, 4888-4896.	3.7	29
48	Identification of Fucosylated Haptoglobin as a Novel Tumor Marker for Pancreatic Cancer and Its Possible Application for a Clinical Diagnostic Test. Methods in Enzymology, 2010, 478, 153-164.	1.0	25
49	Identification of a Novel Type of CA19-9 Carrier in Human Bile and Sera of Cancer Patients: An Implication of the Involvement in Nonsecretory Exocytosis. Journal of Proteome Research, 2010, 9, 6345-6353.	3.7	15
50	Fucosylation and gastrointestinal cancer. World Journal of Hepatology, 2010, 2, 151.	2.0	79
51	Abstract 800: Novel GMDS mutation and clinical estimation of fucosylation in several kinds of human cancer. , 2010, , .		0
52	High levels of E4-PHA-reactive oligosaccharides: potential as marker for cells with characteristics of hepatic progenitor cells. Glycoconjugate Journal, 2009, 26, 1213-1223.	2.7	9
53	Deficiency of GMDS Leads to Escape from NK Cell-Mediated Tumor Surveillance Through Modulation of TRAIL Signaling. Gastroenterology, 2009, 137, 188-198.e2.	1.3	92
54	Identification of an inducible factor secreted by pancreatic cancer cell lines that stimulates the production of fucosylated haptoglobin in hepatoma cells. Biochemical and Biophysical Research Communications, 2008, 377, 792-796.	2.1	50

#	Article	IF	CITATIONS
55	A High Expression of GDP-Fucose Transporter in Hepatocellular Carcinoma is a Key Factor for Increases in Fucosylation. Glycobiology, 2007, 17, 1311-1320.	2.5	73
56	Biological Function of Fucosylation in Cancer Biology. Journal of Biochemistry, 2007, 143, 725-729.	1.7	329
57	Fucosylated haptoglobin is a novel marker for pancreatic cancer: A detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. International Journal of Cancer, 2006, 118, 2803-2808.	5.1	271
58	A secreted type of β1,6 Nâ€acetylglucosaminyltransferase V (GnTâ€V), a novel angiogenesis inducer, is regulated by γâ€secretase. FASEB Journal, 2006, 20, 2451-2459.	0.5	27