Arthur Sugden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal LentiCRISPR-Based System for Sequential CRISPR/Cas9 Screens. ACS Synthetic Biology, 2022, 11, 2259-2266.	3.8	0
2	Epstein-Barr Virus Limits the Accumulation of IPO7, an Essential Gene Product. Frontiers in Microbiology, 2021, 12, 643327.	3.5	1
3	How Epstein–Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Are Maintained Together to Transform the Same B-Cell. Viruses, 2021, 13, 1478.	3.3	3
4	The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. MBio, 2021, 12, e0224321.	4.1	21
5	Viruses and Human Cancer. , 2020, , 165-179.e7.		1
6	Epstein–Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms, 2020, 8, 1824.	3.6	63
7	4D Analyses Show That Replication Compartments Are Clonal Factories in Which Epstein–Barr Viral DNA Amplification Is Coordinated. Proceedings (mdpi), 2020, 50, 140.	0.2	0
8	Burkitt Lymphomas Evolve to Escape Dependencies on Epstein-Barr Virus. Frontiers in Cellular and Infection Microbiology, 2020, 10, 606412.	3.9	18
9	An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. Journal of Virology, 2019, 93, .	3.4	25
10	How Kaposi's sarcoma-associated herpesvirus stably transforms peripheral B cells towards lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16519-16528.	7.1	32
11	Four-dimensional analyses show that replication compartments are clonal factories in which Epstein–Barr viral DNA amplification is coordinated. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24630-24638.	7.1	11
12	Plasmid Partitioning by Human Tumor Viruses. Journal of Virology, 2018, 92, .	3.4	21
13	Long-distance communication: Looping of human papillomavirus genomes regulates expression of viral oncogenes. PLoS Biology, 2018, 16, e3000062.	5.6	0
14	Dissecting the regulation of EBV's BART miRNAs in carcinomas. Virology, 2017, 505, 148-154.	2.4	16
15	Kaposi's sarcoma–associated herpesvirus stably clusters its genomes across generations to maintain itself extrachromosomally. Journal of Cell Biology, 2017, 216, 2745-2758.	5.2	31
16	Using Organotypic Epithelial Tissue Culture to Study the Human Papillomavirus Life Cycle. Current Protocols in Microbiology, 2016, 41, 14B.8.1-14B.8.19.	6.5	14
17	Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6467-E6475.	7.1	127
18	Epstein-Barr Virus: The Path from Latent to Productive Infection. Annual Review of Virology, 2016, 3, 359-372	6.7	43

#	Article	IF	CITATIONS
19	Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. Journal of Experimental Medicine, 2016, 213, 2065-2080.	8.5	108
20	The AT-hook DNA binding ability of the Epstein Barr virus EBNA1 protein is necessary for the maintenance of viral genomes in latently infected cells. Virology, 2015, 484, 251-258.	2.4	19
21	Epstein-Barr Virus: The Path from Association to Causality for a Ubiquitous Human Pathogen. PLoS Biology, 2014, 12, e1001939.	5.6	21
22	ldentification of Properties of the Kaposi's Sarcoma-Associated Herpesvirus Latent Origin of Replication That Are Essential for the Efficient Establishment and Maintenance of Intact Plasmids. Journal of Virology, 2014, 88, 8490-8503.	3.4	11
23	Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Current Opinion in Virology, 2014, 7, 61-65.	5.4	41
24	Viruses and Human Cancer. , 2014, , 154-168.e7.		1
25	Epstein-Barr Viral Productive Amplification Reprograms Nuclear Architecture, DNA Replication, and Histone Deposition. Cell Host and Microbe, 2013, 14, 607-618.	11.0	44
26	Replication of Epstein-Barr Viral DNA. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013029-a013029.	5.5	92
27	Potential Cellular Functions of Epstein-Barr Nuclear Antigen 1 (EBNA1) of Epstein-Barr Virus. Viruses, 2013, 5, 226-240.	3.3	45
28	Characterization and Intracellular Trafficking of Epstein-Barr Virus BBLF1, a Protein Involved in Virion Maturation. Journal of Virology, 2012, 86, 9647-9655.	3.4	36
29	Monitoring Plasmid Replication in Live Mammalian Cells over Multiple Generations by Fluorescence Microscopy. Journal of Visualized Experiments, 2012, , e4305.	0.3	3
30	The Latent Membrane Protein 1 (LMP1) Oncogene of Epstein-Barr Virus Can Simultaneously Induce and Inhibit Apoptosis in B Cells. Journal of Virology, 2012, 86, 4380-4393.	3.4	70
31	Comparing Proteomics and RISC Immunoprecipitations to Identify Targets of Epstein-Barr Viral miRNAs. PLoS ONE, 2012, 7, e47409.	2.5	8
32	How Human Tumor Viruses Make Use of Autophagy. Cells, 2012, 1, 617-630.	4.1	12
33	Lymphomas differ in their dependence on Epstein-Barr virus. Blood, 2011, 117, 1977-1985.	1.4	84
34	Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes. BMC Genomics, 2011, 12, 625.	2.8	50
35	Insights into the Evolution of Lymphomas Induced by Epstein–Barr Virus. Advances in Cancer Research, 2010, 108, 1-19.	5.0	28
36	Identifying Sites Bound by Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) in the Human Genome: Defining a Position-Weighted Matrix To Predict Sites Bound by EBNA1 in Viral Genomes. Journal of Virology, 2009, 83, 2930-2940.	3.4	62

#	Article	IF	CITATIONS
37	The Unfolded Protein Response and Autophagy: Herpesviruses Rule!. Journal of Virology, 2009, 83, 1168-1172.	3.4	45
38	Proof for EBV's sustaining role in Burkitt's lymphomas. Seminars in Cancer Biology, 2009, 19, 389-393.	9.6	34
39	The microRNAs of Epstein–Barr Virus are expressed at dramatically differing levels among cell lines. Virology, 2009, 386, 387-397.	2.4	130
40	ldentifying a property of origins of DNA synthesis required to support plasmids stably in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9639-9644.	7.1	17
41	MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5874-5878.	7.1	385
42	EBV Is Necessary for Proliferation of Dually Infected Primary Effusion Lymphoma Cells. Cancer Research, 2008, 68, 6963-6968.	0.9	31
43	The Affinity of EBNA1 for Its Origin of DNA Synthesis Is a Determinant of the Origin's Replicative Efficiency. Journal of Virology, 2008, 82, 5693-5702.	3.4	21
44	The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood, 2008, 111, 2280-2289.	1.4	91
45	A Membrane Leucine Heptad Contributes to Trafficking, Signaling, and Transformation by Latent Membrane Protein 1. Journal of Virology, 2007, 81, 9121-9130.	3.4	18
46	The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO Journal, 2007, 26, 4252-4262.	7.8	167
47	The plasmid replicon of Epstein–Barr virus: Mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid, 2007, 58, 1-12.	1.4	103
48	Micro mystery solution. Nature, 2006, 442, 33-34.	27.8	6
49	Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14188-14193.	7.1	125
50	Genome-Wide Expression Profiling Reveals EBV-Associated Inhibition of MHC Class I Expression in Nasopharyngeal Carcinoma. Cancer Research, 2006, 66, 7999-8006.	0.9	207
51	Essential Elements of a Licensed, Mammalian Plasmid Origin of DNA Synthesis. Molecular and Cellular Biology, 2006, 26, 1124-1134.	2.3	32
52	Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene, 2005, 24, 1711-1717.	5.9	125
53	Origins of bidirectional replication of Epstein-Barr virus: Models for understanding mammalian origins of DNA synthesis. Journal of Cellular Biochemistry, 2005, 94, 247-256.	2.6	34
54	High Physiological Levels of LMP1 Result in Phosphorylation of eIF2α in Epstein-Barr Virus-Infected Cells. Journal of Virology, 2004, 78, 1657-1664.	3.4	59

Arthur Sugden

#	Article	IF	CITATIONS
55	Epstein–Barr virus sustains Burkitt's lymphomas and Hodgkin's disease. Trends in Molecular Medicine, 2004, 10, 331-336.	6.7	59
56	LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO Journal, 2003, 22, 3027-3038.	7.8	61
57	CD40 and its viral mimic, LMP1: similar means to different ends. Cellular Signalling, 2003, 15, 9-16.	3.6	111
58	EBNA-1, a Bifunctional Transcriptional Activator. Molecular and Cellular Biology, 2003, 23, 6901-6908.	2.3	79
59	Virus-based vectors for gene expression in mammalian cells: Epstein-Barr virus. New Comprehensive Biochemistry, 2003, , 55-70.	0.1	1
60	Epstein-Barr virus provides a survival factor to Burkitt's lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14269-14274.	7.1	234
61	LMP-1's Transmembrane Domains Encode Multiple Functions Required for LMP-1's Efficient Signaling. Journal of Virology, 2002, 76, 11551-11560.	3.4	30
62	In the beginning: a viral origin exploits the cell. Trends in Biochemical Sciences, 2002, 27, 1-3.	7.5	13
63	The cis -Acting Family of Repeats Can Inhibit as well as Stimulate Establishment of an oriP Replicon. Journal of Virology, 2001, 75, 10709-10720.	3.4	16
64	Establishment of an oriP Replicon Is Dependent upon an Infrequent, Epigenetic Event. Molecular and Cellular Biology, 2001, 21, 4149-4161.	2.3	84
65	EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. Reviews in Medical Virology, 2000, 10, 83-100.	8.3	163
66	The amino-terminus and membrane-spanning domains of LMP-1 inhibit cell proliferation. Oncogene, 2000, 19, 1400-1410.	5.9	60
67	Latent Membrane Protein 1 of Epstein-Barr Virus Inhibits as Well as Stimulates Gene Expression. Journal of Virology, 2000, 74, 9755-9761.	3.4	32
68	[18] Applications of oriP plasmids and their mode of replication. Methods in Enzymology, 1999, 306, 308-328.	1.0	13
69	The Linking Regions of EBNA1 Are Essential for Its Support of Replication and Transcription. Molecular and Cellular Biology, 1999, 19, 3349-3359.	2.3	98
70	The plasmid replicon of EBV consists of multiplecis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO Journal, 1998, 17, 6394-6403.	7.8	110
71	Fusions between Epstein-Barr Viral Nuclear Antigen-1 of Epstein-Barr Virus and the Large T-antigen of Simian Virus 40 Replicate Their Cognate Origins. Journal of Biological Chemistry, 1998, 273, 33073-33081.	3.4	23
72	Rep*: a Viral Element That Can Partially Replace the Origin of Plasmid DNA Synthesis of Epstein-Barr Virus. Journal of Virology, 1998, 72, 4657-4666.	3.4	50

#	Article	IF	CITATIONS
73	Studies on the Mechanism of DNA Linking by Epstein-Barr Virus Nuclear Antigen 1. Journal of Biological Chemistry, 1997, 272, 29873-29879.	3.4	31
74	Latent infection of B lymphocytes by Epstein-Barr virus. Seminars in Virology, 1994, 5, 197-205.	3.9	14
75	How some retro-viruses got their oncogenes. Trends in Biochemical Sciences, 1993, 18, 233-235.	7.5	13
76	EBV's open sesame. Trends in Biochemical Sciences, 1992, 17, 239-240.	7.5	2
77	Immortalizing Genes of Epstein-Barr Virus. Advances in Virus Research, 1991, 40, 19-55.	2.1	62
78	Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature, 1989, 340, 393-397.	27.8	619
79	An intricate route to immortality. Cell, 1989, 57, 5-7.	28.9	82
80	Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell, 1988, 55, 427-433.	28.9	438
81	Latency comes of age for herpesviruses. Cell, 1988, 52, 787-789.	28.9	69
82	Replication of Plasmids Derived from Bovine Papilloma Virus Type 1 and Epstein-Barr Virus in Cells in Culture. Annual Review of Cell Biology, 1987, 3, 87-108.	26.1	82
83	Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature, 1985, 313, 812-815.	27.8	1,399
84	Transforming Functions Associated with Epstein-Barr Virus. Journal of Investigative Dermatology, 1984, 83, S82-S87.	0.7	15
85	Expression of Virus-Associated Functions in Cells Transformed in Vitro by Epstein-Barr Virus: Epstein-Barr Virus Cell Surface Antigen and Virus-Release from Transformed Cells. , 1984, , 165-177.		12
86	Identification of antigenic determinants unique to the surfaces of cells transformed by Epstein–Barr virus. Nature, 1981, 294, 458-460.	27.8	139
87	The structure of the termini of the DNA of Epstein-Barr virus. Cell, 1979, 17, 661-671.	28.9	132
88	The Molecular Biology of Lymphotropic Herpesviruses. Advances in Cancer Research, 1979, 30, 239-278.	5.0	12
89	Infection of EBV-Genome-Negative and – Positive Human Lymphoblastoid Cell Lines with Biologically Different Preparations of EBV. Intervirology, 1974, 3, 232-244.	2.8	70
90	Inhibition by α-Amanitin of Simian Virus 40-Specific Ribonucleic Acid Synthesis in Nuclei of Infected Monkey Cells. Journal of Virology, 1972, 10, 1086-1089.	3.4	59

#	Article	IF	CITATIONS
91	EBNA-1: a protein pivotal to latent infection by Epsteinâ \in "Barr virus. , 0, .		1
92	Herpes Simplex Virus DNA Replication and Genome Maturation. , 0, , 189-213.		20
93	Retrovirus Variation and Evolution. , 0, , 221-244.		5
94	Reprint of Temin's 1964 Paper Proposing the DNA Provirus Hypothesis. , 0, , 25-40.		1
95	Viruses, Genes, and Cancer: a Lineage of Discovery. , 0, , 81-94.		2
96	Mammalian Development and Human Cancer: from the Phage Group to the Genetics of Intestinal Cancer. , 0, , 95-107.		2
97	Malignant Transformation of Cells by the v-Rel Oncoprotein. , 0, , 109-128.		4
98	Under the Influence: from the Provirus Hypothesis to Multistep Carcinogenesis. , 0, , 185-188.		0
99	On the Origin of Oncogenes. , 0, , 61-80.		0
100	The Dilemma of Developing and Testing AIDS Vaccines. , 0, , 301-312.		3
101	Reprint of Temin and Mizutani's 1970 Paper Reporting the Discovery of Reverse Transcriptase. , 0, , 47-53.		0
102	Reprint of Temin and Rubin's 1958 Paper Describing the Focus Assay for Transformation by Rous Sarcoma Virus. , 0, , 1-24.		0
103	Progress in the Molecular Medicine of Cancer. , 0, , 129-152.		0
104	Cherish An Idea That Does Not Attach Itself to Anything. , 0, , 271-286.		0
105	Reprint of Temin's 1971 Paper Proposing the Protovirus Hypothesis. , 0, , 55-60.		0