Carlos Renato R Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570294/publications.pdf

Version: 2024-02-01

79 papers 5,211 citations

172457 29 h-index 70 g-index

80 all docs 80 docs citations

80 times ranked

4588 citing authors

#	Article	IF	CITATIONS
1	The Genome Sequence of <i>Trypanosoma cruzi</i> , Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.	12.6	1,273
2	A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends Tcl to TcVI. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 1051-1054.	1.6	846
3	The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution, 2012, 12, 240-253.	2.3	728
4	Ancestral Genomes, Sex, and the Population Structure of Trypanosoma cruzi. PLoS Pathogens, 2006, 2, e24.	4.7	225
5	Virus-Host Coevolution: Common Patterns of Nucleotide Motif Usage in Flaviviridae and Their Hosts. PLoS ONE, 2009, 4, e6282.	2.5	156
6	Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. Journal of Molecular Biology, 1997, 273, 114-121.	4.2	111
7	Thi1, a thiamine biosynthetic gene inArabidopsis thaliana, complements bacterial defects in DNA repair. Plant Molecular Biology, 1996, 31, 585-593.	3.9	100
8	Is Pregnancy Associated with Severe Dengue? A Review of Data from the Rio de Janeiro Surveillance Information System. PLoS Neglected Tropical Diseases, 2013, 7, e2217.	3.0	88
9	Overview of DNA Repair in <i>Trypanosoma cruzi, Trypanosoma brucei,</i> and <i>Leishmania major</i> Journal of Nucleic Acids, 2010, 2010, 1-14.	1.2	7 5
10	Oxidative Stress and DNA Lesions: The Role of 8-Oxoguanine Lesions in Trypanosoma cruzi Cell Viability. PLoS Neglected Tropical Diseases, 2013, 7, e2279.	3.0	71
11	Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in <i>Trypanosoma cruzi (i). Environmental and Molecular Mutagenesis, 2014, 55, 309-321.</i>	2.2	70
12	How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. Mutation Research - Reviews in Mutation Research, 2016, 767, 8-22.	5.5	66
13	Probing Population Dynamics of <i>Trypanosoma cruzi</i> during Progression of the Chronic Phase in Chagasic Patients. Journal of Clinical Microbiology, 2009, 47, 1718-1725.	3.9	62
14	Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family. PLoS ONE, 2013, 8, e60209.	2.5	55
15	Genetic profiling of Trypanosoma cruzi directly in infected tissues using nested PCR of polymorphic microsatellites. International Journal for Parasitology, 2008, 38, 839-850.	3.1	51
16	Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection. PLoS Neglected Tropical Diseases, 2010, 4, e846.	3.0	50
17	A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 433-444.	1.6	50
18	Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2008, 157, 65-72.	1.1	47

#	Article	IF	CITATIONS
19	Characterization of the Trypanosoma cruzi Rad51 gene and its role in recombination events associated with the parasite resistance to ionizing radiation. Molecular and Biochemical Parasitology, 2006, 149, 191-200.	1.1	42
20	Chitosan grafted into mesoporous silica nanoparticles as benznidazol carrier for Chagas diseases treatment. Microporous and Mesoporous Materials, 2018, 272, 265-275.	4.4	40
21	Single-Nucleotide Polymorphisms of the <i>Trypanosoma cruzi MSH2</i> Gene Support the Existence of Three Phylogenetic Lineages Presenting Differences in Mismatch-Repair Efficiency. Genetics, 2003, 164, 117-126.	2.9	40
22	Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase \hat{I}^{ϱ} in colorectal cancer. Oncogene, 2007, 26, 3387-3394.	5.9	38
23	DNA polymerase kappa from <i>Trypanosoma cruzi</i> localizes to the mitochondria, bypasses 8â€oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Molecular Microbiology, 2009, 71, 185-197.	2.5	38
24	Cloning of a cDNA from Arabidopsis thaliana homologous to the human XPB gene. Gene, 1998, 208, 207-213.	2.2	37
25	DNA metabolism and genetic diversity in Trypanosomes. Mutation Research - Reviews in Mutation Research, 2006, 612, 40-57.	5.5	37
26	Genetic analyses of Trypanosoma cruzi isolates from naturally infected triatomines and humans in northeastern Brazil. Acta Tropica, 2010, 115, 205-211.	2.0	37
27	Functional Characterization of 8-Oxoguanine DNA Glycosylase of Trypanosoma cruzi. PLoS ONE, 2012, 7, e42484.	2.5	34
28	Trypanosoma cruzi MSH2: Functional analyses on different parasite strains provide evidences for a role on the oxidative stress response. Molecular and Biochemical Parasitology, 2011, 176, 8-16.	1.1	31
29	Molecular cloning and characterization of the DNA mismatch repair gene class 2 from the Trypanosoma cruzi. Gene, 2001, 272, 323-333.	2.2	30
30	Evidence of substantial recombination among Trypanosoma cruzi II strains from Minas Gerais. Infection, Genetics and Evolution, 2014, 22, 183-191.	2.3	30
31	Cell culture and animal infection with distinct Trypanosoma cruzi strains expressing red and green fluorescent proteins. International Journal for Parasitology, 2008, 38, 289-297.	3.1	29
32	DNA polymerase beta from Trypanosoma cruzi is involved in kinetoplast DNA replication and repair of oxidative lesions. Molecular and Biochemical Parasitology, 2012, 183, 122-131.	1.1	29
33	How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor. Molecular and Biochemical Parasitology, 2014, 193, 93-100.	1.1	29
34	Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2016, 10, e0005181.	3.0	29
35	Biochemical studies with DNA polymerase \hat{l}^2 and DNA polymerase \hat{l}^2 -PAK of Trypanosoma cruzi suggest the involvement of these proteins in mitochondrial DNA maintenance. DNA Repair, 2008, 7, 1882-1892.	2.8	28
36	The MHC Gene Region of Murine Hosts Influences the Differential Tissue Tropism of Infecting Trypanosoma cruzi Strains. PLoS ONE, 2009, 4, e5113.	2.5	28

#	Article	IF	Citations
37	Trypanosoma brucei BRCA2 acts in a life cycle-specific genome stability process and dictates BRC repeat number-dependent RAD51 subnuclear dynamics. Nucleic Acids Research, 2013, 41, 943-960.	14.5	26
38	Nucleotide excision repair in <scp><i>T</i></scp> <i>rypanosoma brucei</i> : specialization of transcription. Molecular Microbiology, 2014, 92, 756-776.	2.5	25
39	Cloning and characterization of <i>DNA polymerase</i> î· from <i>Trypanosoma cruzi</i> Roles for translesion bypass of oxidative damage. Environmental and Molecular Mutagenesis, 2009, 50, 375-386.	2.2	23
40	The recombinase Rad51 plays a key role in events of genetic exchange in Trypanosoma cruzi. Scientific Reports, 2018, 8, 13335.	3.3	23
41	The Influence of Recombinational Processes to Induce Dormancy in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 5.	3.9	23
42	Trypanosoma cruzi: ancestral genomes and population structure. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 108-114.	1.6	23
43	Recruitment kinetics of the homologous recombination pathway in procyclic forms of Trypanosoma brucei after ionizing radiation treatment. Scientific Reports, 2018, 8, 5405.	3.3	22
44	Prostaglandin F2 \hat{l}_{\pm} synthase in <i>Trypanosoma cruzi</i> plays critical roles in oxidative stress and susceptibility to benznidazole. Royal Society Open Science, 2017, 4, 170773.	2.4	21
45	Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni. Scientific Reports, 2018, 8, 3877.	3.3	20
46	Unequivocal Identification of Subpopulations in Putative Multiclonal Trypanosoma cruzi Strains by FACs Single Cell Sorting and Genotyping. PLoS Neglected Tropical Diseases, 2012, 6, e1722.	3.0	18
47	Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication. Parasitology Research, 2015, 114, 419-430.	1.6	18
48	Catalase expression impairs oxidative stress-mediated signalling in <i>Trypanosoma cruzi</i> Parasitology, 2017, 144, 1498-1510.	1.5	18
49	Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genetics and Molecular Biology, 2018, 41, 466-474.	1.3	18
50	Mismatch repair in Trypanosoma brucei: Heterologous expression of MSH2 from Trypanosoma cruzi provides new insights into the response to oxidative damage. Gene, 2008, 411, 19-26.	2.2	16
51	Characterization and comparative functional analysis in yeast of a Schistosoma mansoni Rho1 GTPase gene. Molecular and Biochemical Parasitology, 2002, 125, 103-112.	1.1	14
52	Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei. Nucleic Acids Research, 2014, 42, 2906-2918.	14.5	14
53	The in vivo and in vitro roles of Trypanosoma cruzi Rad51 in the repair of DNA double strand breaks and oxidative lesions. PLoS Neglected Tropical Diseases, 2018, 12, e0006875.	3.0	14
54	Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress. PLoS ONE, 2014, 9, e97526.	2.5	13

#	Article	IF	Citations
55	Trypanosoma cruzi Gene Expression in Response to Gamma Radiation. PLoS ONE, 2012, 7, e29596.	2.5	13
56	Chaetocinâ€"A histone methyltransferase inhibitorâ€"Impairs proliferation, arrests cell cycle and induces nucleolar disassembly in Trypanosoma cruzi. Acta Tropica, 2017, 170, 149-160.	2.0	12
57	Escherichia coli as a model system to study DNA repair genes of eukaryotic organisms. Genetics and Molecular Research, 2003, 2, 77-91.	0.2	12
58	Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor. PLoS Neglected Tropical Diseases, 2009, 3, e547.	3.0	10
59	A directed approach for the identification of transcripts harbouring the spliced leader sequence and the effect of trans-splicing knockdown in Schistosoma mansoni. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 707-717.	1.6	10
60	DNA lesions and repair in trypanosomatids infection. Genetics and Molecular Biology, 2020, 43, e20190163.	1.3	8
61	The Corynebacterium pseudotuberculosis genome contains two formamidopyrimidine-DNA glycosylase enzymes, only one of which recognizes and excises 8-oxoguanine lesion. Gene, 2016, 575, 233-243.	2.2	7
62	Differential Modulation of Mouse Heart Gene Expression by Infection With Two Trypanosoma cruzi Strains: A Transcriptome Analysis. Frontiers in Genetics, 2020, 11, 1031.	2.3	7
63	ATR Kinase Is a Crucial Player Mediating the DNA Damage Response in Trypanosoma brucei. Frontiers in Cell and Developmental Biology, 2020, 8, 602956.	3.7	7
64	Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. Infection, Genetics and Evolution, 2016, 44, 318-329.	2.3	6
65	Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. Infection, Genetics and Evolution, 2017, 55, 332-342.	2.3	6
66	Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase. PLoS ONE, 2016, 11, e0157270.	2.5	6
67	Schistosoma mansoni: The IMP4 gene is involved in DNA repair/tolerance after treatment with alkylating agent methyl methane sulfonate. Experimental Parasitology, 2007, 116, 25-34.	1.2	5
68	Modeling the zing finger protein SmZF1 from Schistosoma mansoni: Insights into DNA binding and gene regulation. Journal of Molecular Graphics and Modelling, 2013, 39, 29-38.	2.4	4
69	Cytotoxic, mutagenicity, and genotoxicity effects of guanylhydrazone derivatives. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 806, 1-10.	1.7	4
70	Functional complementation of a yeast knockout strain by Schistosoma mansoni Rho1 GTPase in the presence of caffeine, an agent that affects mutants defective in the protein kinase C signal transduction pathway. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 323-326.	1.6	4
71	LSSP-PCR of Trypanosoma cruzi: how the single primer sequence affects the kDNA signature. BMC Research Notes, 2013, 6, 174.	1.4	2
72	Identification of a new <i>Schistosoma mansoni</i> SMYB1 partner: putative roles in RNA metabolism. Parasitology, 2013, 140, 1085-1095.	1.5	2

#	Article	IF	CITATIONS
73	Mitochondrial behavior during nuclear and mitochondrial DNA repair in Trypanosoma cruzi epimastigotes. Experimental Parasitology, 2020, 219, 108016.	1.2	2
74	Trypanosoma brucei and Trypanosoma cruzi DNA Mismatch Repair Proteins Act Differently in the Response to DNA Damage Caused by Oxidative Stress. Frontiers in Cellular and Infection Microbiology, 2020, 10, 154.	3.9	2
75	UvrB protein of Corynebacterium pseudotuberculosis complements the phenotype of knockout Escherichia coli and recognizes DNA damage caused by UV radiation but not 8-oxoguanine in vitro. Gene, 2018, 639, 34-43.	2.2	1
76	Importance of Angomonas deanei KAP4 for kDNA arrangement, cell division and maintenance of the host-bacterium relationship. Scientific Reports, 2021, 11, 9210.	3.3	1
77	Isolation and characterization of HC1: a novel human DNA repair gene. Genetics and Molecular Research, 2009, 8, 247-260.	0.2	1
78	The heterologous expression of Escherichia coli MutT enzyme is involved in the protection against oxidative stress in Leishmania braziliensis. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e190469.	1.6	0
79	Bioinformatics and expression analysis of the Xeroderma Pigmentosum complementation group C (XPC) of Trypanosoma evansi in Trypanosoma cruzi cells. Brazilian Journal of Biology, 2021, 83, e243910.	0.9	0