Jun Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569723/publications.pdf

Version: 2024-02-01

119	6,649	44	78
papers	citations	h-index	g-index
122	122	122	7283
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamic and structural studies on synergetic energy dissipation mechanisms of single-, double-, and triple-network hydrogels sequentially crosslinked by multiple non-covalent interactions. Polymer, 2022, 250, 124868.	3.8	8
2	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	5.8	129
3	Hydration and Thermal Response Kinetics of a Cross-Linked Thermoresponsive Copolymer Film on a Hydrophobic PAN Substrate Coating Probed by <i>In Situ</i> Neutron Reflectivity. Langmuir, 2021, 37, 6819-6829.	3.5	11
4	Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan–Gelatin Hydrogel Composites for Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22902-22913.	8.0	72
5	Recent progress in polymer hydrogel bioadhesives. Journal of Polymer Science, 2021, 59, 1312-1337.	3.8	77
6	Ion-Excited Mechanically Active Self-Assembling Membranes for Rapid Wound Healing. ACS Applied Bio Materials, 2021, 4, 605-619.	4.6	3
7	Multifunctional conductive hydrogels and their applications as smart wearable devices. Journal of Materials Chemistry B, 2021, 9, 2561-2583.	5.8	166
8	White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. Journal of Materials Chemistry C, 2020, 8, 247-252.	5 . 5	32
9	Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Journal of Materials Chemistry B, 2020, 8, 10549-10558.	5.8	31
10	Antibacterial Zwitterionic Polyelectrolyte Hydrogel Adhesives with Adhesion Strength Mediated by Electrostatic Mismatch. ACS Applied Materials & Interfaces, 2020, 12, 46816-46826.	8.0	77
11	Application of a novel thermoâ€sensitive injectable hydrogel in therapy in situ for drug accurate controlled release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3200-3216.	3.4	9
12	Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52307-52318.	8.0	95
13	C60-Decorated Melanin Nanoparticles Conjugated with Hyaluronic Acid for Synergistic Theranostic and Immunotherapy of Tumors under near-Infrared Excitation. ACS Applied Nano Materials, 2020, 3, 8817-8828.	5.0	13
14	Shape memory effect and rapid reversible actuation of nanocomposite hydrogels with electrochemically controlled local metal ion coordination and crosslinking. Journal of Materials Chemistry B, 2020, 8, 9679-9685.	5.8	14
15	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51969-51977.	8.0	79
16	Triblock Copolymer Micelle-Crosslinked Hydrogels. Advances in Polymer Science, 2020, , 211-241.	0.8	3
17	3D Bioprinting Microgels: Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth (Adv. Funct. Mater. 13/2020). Advanced Functional Materials, 2020, 30, 2070085.	14.9	1
18	Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions. Polymer, 2020, 192, 122319.	3.8	30

#	Article	IF	Citations
19	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	5.8	372
20	Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Materials Horizons, 2020, 7, 1872-1882.	12.2	273
21	Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Spheroid Growth. Advanced Functional Materials, 2020, 30, 1910573.	14.9	99
22	Programmable and Reversible 3D-/4D-Shape-Morphing Hydrogels with Precisely Defined Ion Coordination. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26476-26484.	8.0	41
23	Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair. Journal of Materials Chemistry B, 2019, 7, 5490-5501.	5.8	69
24	Tough Responsive Polymer Hydrogels and Devices Crosslinked by Block Copolymer Micelles. Macromolecular Symposia, 2019, 385, 1800188.	0.7	3
25	Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomaterialia, 2019, 100, 255-269.	8.3	56
26	Does serum interleukin-6 guide the diagnosis of persistent infection in two-stage hip revision for periprosthetic joint infection?. Journal of Orthopaedic Surgery and Research, 2019, 14, 354.	2.3	16
27	Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of Materials Chemistry B, 2019, 7, 24-29.	5.8	165
28	Clinical Applications of UHMWPE in Joint Implants. Springer Series in Biomaterials Science and Engineering, 2019, , 1-20.	1.0	1
29	Natural Polyphenol-Stabilized Highly Cross-Linked UHMWPE for Joint Implants. Springer Series in Biomaterials Science and Engineering, 2019, , 93-114.	1.0	2
30	High-Temperature Melted, Cross-Linked, and Stabilized Ultrahigh Molecular Weight Polyethylene. Springer Series in Biomaterials Science and Engineering, 2019, , 115-150.	1.0	1
31	Super tough bilayer actuators based on multi-responsive hydrogels crosslinked by functional triblock copolymer micelle macro-crosslinkers. Journal of Materials Chemistry B, 2019, 7, 2619-2625.	5.8	45
32	Effect of solvent–matrix interactions on structures and mechanical properties of micelleâ€crosslinked gels. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 473-483.	2.1	8
33	Hydrogel properties and applications. Journal of Materials Chemistry B, 2019, 7, 1523-1525.	5.8	101
34	Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3506-3515.	8.0	309
35	Highly Crosslinked UHMWPE for Joint Implants. Springer Series in Biomaterials Science and Engineering, 2019, , 21-68.	1.0	2
36	Responsive Bilayered Hydrogel Actuators Assembled by Supramolecular Recognition. MRS Advances, 2018, 3, 1583-1588.	0.9	0

#	Article	IF	Citations
37	Tough and selfâ€recoverable hydrogels crosslinked by triblock copolymer micelles and Fe ³⁺ coordination. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 865-876.	2.1	41
38	Macroscopic assembly of oppositely charged polyelectrolyte hydrogels. Journal of Materials Chemistry B, 2018, 6, 257-264.	5.8	43
39	Risk factors and clinical characteristics of deep knee infection in patients with intra-articular injections: A matched retrospective cohort analysis. Seminars in Arthritis and Rheumatism, 2018, 47, 911-916.	3.4	26
40	Synergistic pH and Temperature-Driven Actuation of Poly(NIPAM- <i>co</i> -DMAPMA)/Clay Nanocomposite Hydrogel Bilayers. ACS Omega, 2018, 3, 17914-17921.	3.5	21
41	Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chemistry of Materials, 2018, 30, 8062-8069.	6.7	318
42	Preoperatively elevated serum inflammatory markers increase the risk of periprosthetic joint infection following total knee arthroplasty in patients with osteoarthritis. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1719-1724.	2.0	12
43	Strong and tough hydrogels crosslinked by multiâ€functional polymer colloids. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1336-1350.	2.1	60
44	Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41724-41731.	8.0	90
45	Tough responsive hydrogels and applications as smart devices. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1279-1280.	2.1	8
46	Meta-analysis of sonication prosthetic fluid PCR for diagnosing periprosthetic joint infection. PLoS ONE, 2018, 13, e0196418.	2.5	26
47	Conductive graphene oxide hydrogels reduced and bridged by <scp>l</scp> -cysteine to support cell adhesion and growth. Journal of Materials Chemistry B, 2017, 5, 511-516.	5.8	52
48	Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets. Composites Science and Technology, 2017, 151, 139-146.	7.8	34
49	Tough and multi-responsive hydrogels based on core-shell structured macro-crosslinkers. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1286-1296.	3.8	12
50	Effects of simulated oxidation on the <i>in vitro</i> wear and mechanical properties of irradiated and melted highly crosslinked UHMWPE. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 316-322.	3.4	31
51	Tough and responsive oppositely charged nanocomposite hydrogels for use as bilayer actuators assembled through interfacial electrostatic attraction. Journal of Materials Chemistry B, 2016, 4, 3239-3246.	5.8	80
52	Non-covalent Tough Hydrogels for Functional Actuators. MRS Advances, 2016, 1, 501-507.	0.9	1
53	Synergistic toughening of nanocomposite double network hydrogels by physical adsorption and chemical bonding of polymer chains to inorganic nanospheres and nanorods: a comparative study. RSC Advances, 2016, 6, 37974-37981.	3.6	22
54	Single cell migration dynamics mediated by geometric confinement. Colloids and Surfaces B: Biointerfaces, 2016, 145, 72-78.	5.0	18

#	Article	IF	CITATIONS
55	Correction: Multi-responsive nanocomposite hydrogels with high strength and toughness. Journal of Materials Chemistry B, 2016, 4, 6609-6609.	5.8	2
56	Electric Field Actuation of Tough Electroactive Hydrogels Cross-Linked by Functional Triblock Copolymer Micelles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26326-26331.	8.0	102
57	Colour-tunable quantum dots/poly(NIPAM-co-AAc) hybrid microgels based on electrostatic interactions. RSC Advances, 2016, 6, 98147-98152.	3.6	14
58	Multi-responsive nanocomposite hydrogels with high strength and toughness. Journal of Materials Chemistry B, 2016, 4, 1733-1739.	5.8	42
59	Vitamin E can be used to hinder scissioning in radiation crossâ€linked UHMWPE during highâ€temperature melting. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
60	Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5029-5037.	8.0	288
61	Tough and Biocompatible Hydrogels Based on in Situ Interpenetrating Networks of Dithiol-Connected Graphene Oxide and Poly(vinyl alcohol). ACS Applied Materials & Samp; Interfaces, 2015, 7, 3003-3008.	8.0	61
62	Multi-responsive and tough hydrogels based on triblock copolymer micelles as multi-functional macro-crosslinkers. Chemical Communications, 2015, 51, 8512-8515.	4.1	87
63	Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration. Biochemical Engineering Journal, 2015, 98, 29-37.	3.6	56
64	Natural Polyphenols Enhance Stability of Crosslinked UHMWPE for Joint Implants. Clinical Orthopaedics and Related Research, 2015, 473, 760-766.	1.5	15
65	Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids and Surfaces B: Biointerfaces, 2015, 132, 146-154.	5.0	49
66	Tough biodegradable chitosan–gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Advances, 2015, 5, 55640-55647.	3.6	78
67	From 3D to 4D printing: approaches and typical applications. Journal of Mechanical Science and Technology, 2015, 29, 4281-4288.	1.5	164
68	Versatile controlled ion release for synthesis of recoverable hybrid hydrogels with high stretchability and notch-insensitivity. Chemical Communications, 2015, 51, 15534-15537.	4.1	40
69	Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF- \hat{l}^21 from porous PLGA microspheres. Colloids and Surfaces B: Biointerfaces, 2015, 125, 51-57.	5.0	29
70	Morphological transformations of nonequilibrium assemblies of amphiphilic diblock copolymer. Colloid Journal, 2014, 76, 774-781.	1.3	2
71	Micro-contact printing of graphene oxide nanosheets for fabricating patterned polymer brushes. Chemical Communications, 2014, 50, 7103.	4.1	34
72	Super-tough and thermo-healable hydrogel – promising for shape-memory absorbent fiber. Journal of Materials Chemistry B, 2014, 2, 7631-7638.	5.8	100

#	Article	IF	Citations
73	Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. Journal of Materials Chemistry B, 2014, 2, 1539.	5.8	90
74	Surface functionalized barium sulfate nanoparticles: controlled in situ synthesis and application in bone cement. Journal of Materials Chemistry B, 2014, 2, 1264-1274.	5.8	28
75	Effect of squalene absorption on oxidative stability of highly crosslinked UHMWPE stabilized with natural polyphenols. Polymer Degradation and Stability, 2014, 110, 113-120.	5.8	13
76	Tough and Fatigue Resistant Biomimetic Hydrogels of Interlaced Self-Assembled Conjugated Polymer Belts with a Polyelectrolyte Network. Chemistry of Materials, 2014, 26, 3522-3529.	6.7	68
77	Super Tough, Ultrastretchable, and Thermoresponsive Hydrogels with Functionalized Triblock Copolymer Micelles as Macro-Cross-Linkers. ACS Macro Letters, 2014, 3, 496-500.	4.8	176
78	Controlled Evaporative Self-Assembly of Poly(acrylic acid) in a Confined Geometry for Fabricating Patterned Polymer Brushes. Langmuir, 2014, 30, 4863-4867.	3.5	7
79	Shape memory/change effect in a double network nanocomposite tough hydrogel. European Polymer Journal, 2014, 58, 41-51.	5.4	44
80	Instability/collapse of polymeric materials and their structures in stimulus-induced shape/surface morphology switching. Materials & Design, 2014, 59, 176-192.	5.1	41
81	Stabilization of highly crosslinked ultra high molecular weight polyethylene with natural polyphenols. Polymer Degradation and Stability, 2014, 105, 197-205.	5.8	22
82	Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility. Chinese Chemical Letters, 2013, 24, 710-714.	9.0	31
83	Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B: Biointerfaces, 2013, 103, 318-325.	5.0	93
84	Generalized Synthesis of Mesoporous Rare Earth Oxide Thin Films through Amphiphilic Ionic Block Copolymer Templating. European Journal of Inorganic Chemistry, 2013, 2013, 1251-1257.	2.0	8
85	Controlled in situ synthesis of surface functionalized BaSO4 nanoparticles for improved bone cement reinforcement. Journal of Materials Chemistry B, 2013, 1, 4043.	5.8	11
86	Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. Journal of Materials Chemistry B, 2013, 1, 4727.	5.8	36
87	High temperature melted, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with low wear and high impact strength. Polymer, 2013, 54, 199-209.	3.8	47
88	Versatile fabrication of arbitrarily shaped multi-membrane hydrogels suitable for biomedical applications. Journal of Materials Chemistry B, 2013, 1, 485-492.	5.8	27
89	Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 2013, 88, 327-339.	3.2	326
90	Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter, 2012, 8, 6048.	2.7	197

#	Article	IF	Citations
91	Wear resistant UHMWPE with high toughness by high temperature melting and subsequent radiation cross-linking. Polymer, 2011, 52, 1155-1162.	3.8	35
92	Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer, 2010, 51, 2721-2731.	3.8	67
93	3D Hierarchically Ordered Composite Block Copolymer Hollow Sphere Arrays by Solution Wetting. Langmuir, 2010, 26, 12336-12341.	3.5	12
94	Aqueous Networks and Toroids of Amphiphilic Block Copolymer with Nonâ€ionic Surfactants. ChemPhysChem, 2009, 10, 1190-1194.	2.1	11
95	Lamella reorientation in thin films of a symmetric poly(l-lactic acid)-block-polystyrene upon crystallization at different temperatures. Polymer, 2009, 50, 1588-1595.	3.8	8
96	Super-hydrophobicity of silica nanoparticles modified with vinyl groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 15-19.	4.7	59
97	Dewetting behavior of polystyrene film filled with (C6H5C2H4NH3)2PbI4. Journal of Chemical Physics, 2008, 129, 054905.	3.0	12
98	Photoluminescent nanoparticles of organic–inorganic hybrids prepared by phase transfer complexation at the organic–aqueous solution interface. Nanotechnology, 2007, 18, 025704.	2.6	1
99	Surface morphology evolution of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl) Tj ETQq1 1 2007, 48, 2425-2433.	0.784314 3.8	1 rgBT /Ove 5
100	Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces. Applied Surface Science, 2006, 252, 2229-2234.	6.1	87
101	Fabrication of arrays of silver nanoparticle aggregates by microcontact printing and block copolymer nanoreactors. Journal of Applied Polymer Science, 2006, 100, 2737-2743.	2.6	13
102	Shear-induced slippage of the self-assembly of crown ether-centered two-armed copolymers. Applied Surface Science, 2005, 252, 1132-1138.	6.1	1
103	Water-induced morphology evolution of block copolymer micellar thin films. Polymer, 2005, 46, 5377-5384.	3.8	37
104	Self-organization and luminescent properties of nanostructured europium (III)-block copolymer complex thin films. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2181-2189.	2.1	27
105	Acid-induced morphological transition of block copolymer brush adsorbed on mica surface. Polymer International, 2005, 54, 1021-1026.	3.1	1
106	Molecular motions of different scales at thin polystyrene film surface by lateral force microscopy. Journal of Chemical Physics, 2005, 123, 064713.	3.0	19
107	Early Stage Interplay of Microphase Separation and Crystallization in Crystallineâ°'Coil Poly(I-lactic) Tj ETQq1 1 0.7	/84314 rgE 4.8	BT/Overloc
108	Ordered Honeycomb-Structured Gold Nanoparticle Films with Changeable Pore Morphology:  From Circle to Ellipse. Langmuir, 2005, 21, 2017-2021.	3.5	94

#	Article	IF	CITATIONS
109	Patterned self-adaptive polymer brushes by "grafting to―approach and microcontact printing. Surface Science, 2004, 572, 490-496.	1.9	13
110	Ordered droplet formation by thin polymer film dewetting on a stripe-patterned substrate. Journal of Colloid and Interface Science, 2004, 269, 158-163.	9.4	58
111	Ordered macroporous films from self-assembly of two-armed polymer with a crown ether core. Polymer, 2004, 45, 7389-7394.	3.8	11
112	Reversibly strain-tunable elastomeric photonic crystals. Chemical Physics Letters, 2004, 390, 285-289.	2.6	29
113	Hole Nucleation and Growth Induced by Crystallization and Microphase Separation of Thin Semicrystalline Diblock Copolymer Films. Macromolecules, 2004, 37, 6918-6925.	4.8	16
114	Self-Assembly of Crystallineâ^'Coil Diblock Copolymer in Solvents with Varying Selectivity:Â From Spinodal-like Aggregates to Spheres, Cylinders, and Lamellae. Macromolecules, 2004, 37, 976-986.	4.8	80
115	Formation and Photoluminescence of Silver Nanoparticles Stabilized by a Two-Armed Polymer with a Crown Ether Core. Langmuir, 2004, 20, 9775-9779.	3.5	94
116	Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics, 2003, 204, 125-130.	2.2	65
117	AFM Study of the Self-Assembly Behavior of Hexa-Armed Star Polymers with a Discotic Triphenylene Core. Macromolecular Rapid Communications, 2003, 24, 742-747.	3.9	16
118	Fabrication of a Metal Particle Array Based on a Self-Assembled Template from a Two-Armed Polymer. Macromolecular Rapid Communications, 2003, 24, 487-491.	3.9	15
119	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1453-1455.	0.5	5