Andrew Flyak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569432/publications.pdf

Version: 2024-02-01

331670 395702 2,129 36 21 33 h-index citations g-index papers 39 39 39 3261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	B cell overexpression of FCRL5 and PD-1 is associated with low antibody titers in HCV infection. PLoS Pathogens, 2022, 18, e1010179.	4.7	6
2	Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad neutralization. Immunity, 2022, 55, 341-354.e7.	14.3	21
3	Repeated exposure to heterologous hepatitis C viruses associates with enhanced neutralizing antibody breadth and potency. Journal of Clinical Investigation, 2022, 132, .	8.2	5
4	Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nature Communications, 2022, 13, .	12.8	4
5	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	6.4	22
6	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	14.3	230
7	Mechanisms of HCV resistance to broadly neutralizing antibodies. Current Opinion in Virology, 2021, 50, 23-29.	5.4	5
8	SARS-CoV-2 B cell receptor signatures in at-risk populations. Journal of Clinical Investigation, 2021, 131, .	8.2	0
9	Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17156-17165.	7.1	17
10	An ultralong CDRH2 in HCV neutralizing antibody demonstrates structural plasticity of antibodies against E2 glycoprotein. ELife, 2020, 9, .	6.0	21
11	Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2. Journal of Virology, 2019, 93, .	3.4	37
12	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	12.8	24
13	Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. Journal of Virology, 2019, 93, .	3.4	15
14	Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance. Journal of Clinical Investigation, 2019, 129, 4786-4796.	8.2	33
15	Synergistic anti-HCV broadly neutralizing human monoclonal antibodies with independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E82-E91.	7.1	52
16	The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host and Microbe, 2018, 23, 101-109.e4.	11.0	40
17	HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design. Cell Host and Microbe, 2018, 24, 703-716.e3.	11.0	95
18	Broadly Neutralizing Antibody Mediated Clearance of Human Hepatitis C Virus Infection. Cell Host and Microbe, 2018, 24, 717-730.e5.	11.0	78

#	Article	IF	Citations
19	Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S565-S573.	4.0	13
20	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	14.3	61
21	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	13.3	68
22	Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathogens, 2018, 14, e1007204.	4.7	16
23	Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Reports, 2018, 24, 1802-1815.e5.	6.4	64
24	Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Science Translational Medicine, 2017, 9, .	12.4	64
25	Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight, 2017, 2, .	5.0	129
26	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	12.6	101
27	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	4.1	86
28	Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	13.3	92
29	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	28.9	160
30	Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies. Journal of Virology, 2016, 90, 3890-3901.	3.4	41
31	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	28.9	130
32	Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody. Cell, 2015, 160, 904-912.	28.9	110
33	Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host and Microbe, 2015, 18, 86-95.	11.0	116
34	Polyclonal antibodies against the human cell surface CD34 marker. Cytology and Genetics, 2011, 45, 133-142.	0.5	0
35	IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells. Journal of Immunology, 2011, 187, 6335-6345.	0.8	139
36	In silico analysis of the structure of variable domains of mouse single-chain antibodies specific to the human recombinant interferon \hat{l}^21b . Cytology and Genetics, 2009, 43, 42-47.	0.5	0