
Timothy R Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6568949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Discovery via a Compendium of Expression Profiles. Cell, 2000, 102, 109-126.	28.9	2,412
2	The Human Transcription Factors. Cell, 2018, 172, 650-665.	28.9	2,048
3	Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 2014, 158, 1431-1443.	28.9	1,515
4	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	27.8	1,281
5	Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 2001, 19, 342-347.	17.5	1,225
6	DNA-Binding Specificities of Human Transcription Factors. Cell, 2013, 152, 327-339.	28.9	1,085
7	The DNA-encoded nucleosome organization of a eukaryotic genome. Nature, 2009, 458, 362-366.	27.8	1,063
8	The human splicing code reveals new insights into the genetic determinants of disease. Science, 2015, 347, 1254806.	12.6	1,053
9	Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function. Cell, 2007, 131, 174-187.	28.9	878
10	Diversity and Complexity in DNA Recognition by Transcription Factors. Science, 2009, 324, 1720-1723.	12.6	874
11	A high-resolution atlas of nucleosome occupancy in yeast. Nature Genetics, 2007, 39, 1235-1244.	21.4	765
12	Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 2006, 21, 319-330.	9.7	618
13	Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences. Cell, 2008, 133, 1266-1276.	28.9	552
14	Exploration of Essential Gene Functions via Titratable Promoter Alleles. Cell, 2004, 118, 31-44.	28.9	538
15	Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO Journal, 2010, 29, 2147-2160.	7.8	497
16	The draft genome and transcriptome of Cannabis sativa. Genome Biology, 2011, 12, R102.	9.6	479
17	RBPDB: a database of RNA-binding specificities. Nucleic Acids Research, 2011, 39, D301-D308.	14.5	477
18	Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nature Biotechnology, 2009, 27, 667-670.	17.5	418

#	Article	IF	CITATIONS
19	A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters. Molecular Cell, 2008, 32, 878-887.	9.7	415
20	Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Molecular Cell, 2006, 21, 87-96.	9.7	409
21	Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme. Molecular Cell, 2007, 27, 262-274.	9.7	404
22	Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Research, 2010, 20, 861-873.	5.5	382
23	Most "Dark Matter―Transcripts Are Associated With Known Genes. PLoS Biology, 2010, 8, e1000371.	5.6	377
24	High-Definition Macromolecular Composition of Yeast RNA-Processing Complexes. Molecular Cell, 2004, 13, 225-239.	9.7	345
25	Evaluation of methods for modeling transcription factor sequence specificity. Nature Biotechnology, 2013, 31, 126-134.	17.5	341
26	Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nature Genetics, 2002, 31, 255-265.	21.4	313
27	SMAUG Is a Major Regulator of Maternal mRNA Destabilization in Drosophila and Its Translation Is Activated by the PAN GU Kinase. Developmental Cell, 2007, 12, 143-155.	7.0	280
28	C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nature Biotechnology, 2015, 33, 555-562.	17.5	271
29	The functional landscape of mouse gene expression. Journal of Biology, 2004, 3, 21.	2.7	259
30	Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A.Âthaliana. Cell Reports, 2014, 8, 2015-2030.	6.4	249
31	G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics, 2009, 10, 442.	2.6	248
32	RNAcontext: A New Method for Learning the Sequence and Structure Binding Preferences of RNA-Binding Proteins. PLoS Computational Biology, 2010, 6, e1000832.	3.2	223
33	A Panoramic View of Yeast Noncoding RNA Processing. Cell, 2003, 113, 919-933.	28.9	222
34	H2B Ubiquitylation Acts as a Barrier to Ctk1 Nucleosomal Recruitment Prior to Removal by Ubp8 within a SAGA-Related Complex. Molecular Cell, 2007, 27, 275-288.	9.7	196
35	YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Research, 2012, 40, D169-D179.	14.5	195
36	TFCat: the curated catalog of mouse and human transcription factors. Genome Biology, 2009, 10, R29.	9.6	193

#	Article	IF	CITATIONS
37	Genetic Selection of Peptide Inhibitors of Biological Pathways. Science, 1999, 285, 591-595.	12.6	185
38	High Nucleosome Occupancy Is Encoded at Human Regulatory Sequences. PLoS ONE, 2010, 5, e9129.	2.5	163
39	A physical and genetic map of <i>Cannabis sativa</i> identifies extensive rearrangements at the <i>THC/CBD acid synthase</i> loci. Genome Research, 2019, 29, 146-156.	5.5	160
40	Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. Journal of Cell Biology, 2008, 180, 563-578.	5.2	159
41	Identifying transcription factor functions and targets by phenotypic activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12045-12050.	7.1	156
42	Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors. Molecular Cell, 2017, 65, 539-553.e7.	9.7	143
43	Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends in Genetics, 2010, 26, 66-74.	6.7	139
44	Multiparameter functional diversity of human C2H2 zinc finger proteins. Genome Research, 2016, 26, 1742-1752.	5.5	131
45	Why Are There Still Over 1000 Uncharacterized Yeast Genes?. Genetics, 2007, 176, 7-14.	2.9	130
46	Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma. Cancer Cell, 2017, 32, 101-114.e8.	16.8	121
47	Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Research, 2011, 39, 3188-3203.	14.5	112
48	CG methylated microarrays identify a novel methylated sequence bound by the CEBPB ATF4 heterodimer that is active in vivo. Genome Research, 2013, 23, 988-997.	5.5	111
49	Similarity regression predicts evolution of transcription factor sequence specificity. Nature Genetics, 2019, 51, 981-989.	21.4	105
50	Prediction and Testing of Novel Transcriptional Networks Regulating Embryonic Stem Cell Self-Renewal and Commitment. Cell Stem Cell, 2007, 1, 71-86.	11.1	98
51	The Splicing Factor Prp43p, a DEAH Box ATPase, Functions in Ribosome Biogenesis. Molecular and Cellular Biology, 2006, 26, 513-522.	2.3	96
52	The Specificities of Four Yeast Dihydrouridine Synthases for Cytoplasmic tRNAs. Journal of Biological Chemistry, 2004, 279, 17850-17860.	3.4	94
53	Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. ELife, 2015, 4, .	6.0	85
54	High-throughput characterization of protein-RNA interactions. Briefings in Functional Genomics, 2015, 14, 74-89.	2.7	83

#	Article	lF	CITATIONS
55	Yeast and drug discovery. Functional and Integrative Genomics, 2002, 2, 199-211.	3.5	82
56	Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays. Nucleic Acids Research, 2011, 39, 4680-4690.	14.5	82
57	Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biology, 2015, 16, 94.	8.8	80
58	The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation. Cell Reports, 2015, 13, 1206-1220.	6.4	79
59	Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes. PLoS Genetics, 2016, 12, e1006401.	3.5	75
60	A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics, 2005, 6, 104.	2.8	72
61	Mapping Yeast Transcriptional Networks. Genetics, 2013, 195, 9-36.	2.9	72
62	Establishing legitimacy and function in the new transcriptome. Briefings in Functional Genomics & Proteomics, 2009, 8, 424-436.	3.8	62
63	A Pair of RNA-Binding Proteins Controls Networks of Splicing Events Contributing to Specialization of Neural Cell Types. Molecular Cell, 2014, 54, 946-959.	9.7	62
64	Transcriptional networks: reverse-engineering gene regulation on a global scale. Current Opinion in Microbiology, 2004, 7, 638-646.	5.1	56
65	Affinity regression predicts the recognition code of nucleic acid–binding proteins. Nature Biotechnology, 2015, 33, 1242-1249.	17.5	55
66	The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biology, 2020, 21, 195.	8.8	55
67	Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Genome Research, 2020, 30, 962-973.	5.5	55
68	Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biology, 2010, 11, 140.	8.8	53
69	A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT. PLoS Pathogens, 2015, 11, e1004967.	4.7	53
70	RankMotif++: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors. Bioinformatics, 2007, 23, i72-i79.	4.1	52
71	Detection and discovery of RNA modifications using microarrays. Nucleic Acids Research, 2005, 33, e2-e2.	14.5	50
72	Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. ELife, 2016, 5, .	6.0	48

#	Article	IF	CITATIONS
73	RNAcompete methodology and application to determine sequence preferences of unconventional RNA-binding proteins. Methods, 2017, 118-119, 3-15.	3.8	46
74	The promise of functional genomics: completing the encyclopedia of a cell. Current Opinion in Microbiology, 2004, 7, 546-554.	5.1	44
75	A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity. Nucleic Acids Research, 2015, 43, 9147-9157.	14.5	44
76	The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry, 2018, 293, 3218-3233.	3.4	44
77	A Novel C2H2 Transcription Factor that Regulates gliA Expression Interdependently with GliZ in Aspergillus fumigatus. PLoS Genetics, 2014, 10, e1004336.	3.5	36
78	Paralogs hnRNP L and hnRNP LL Exhibit Overlapping but Distinct RNA Binding Constraints. PLoS ONE, 2013, 8, e80701.	2.5	36
79	RNAcompete-S: Combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection. Methods, 2017, 126, 18-28.	3.8	35
80	A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. Rna, 2009, 15, 2174-2185.	3.5	34
81	Esf2p, a U3-Associated Factor Required for Small-Subunit Processome Assembly and Compaction. Molecular and Cellular Biology, 2005, 25, 5523-5534.	2.3	33
82	Non-base-contacting residues enable kaleidoscopic evolution of metazoan C2H2 zinc finger DNA binding. Genome Biology, 2017, 18, 167.	8.8	33
83	Response to "The Reality of Pervasive Transcription― PLoS Biology, 2011, 9, e1001102.	5.6	30
84	Global analysis of yeast RNA processing identifies new targets of RNase III and uncovers a link between tRNA 5' end processing and tRNA splicing. Nucleic Acids Research, 2005, 33, 3048-3056.	14.5	27
85	[14] Microarray Analysis of RNA Processing and Modification. Methods in Enzymology, 2006, 410, 300-316.	1.0	27
86	Predicting the binding preference of transcription factors to individual DNA <i>k</i> -mers. Bioinformatics, 2009, 25, 1012-1018.	4.1	25
87	Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE. Bioinformatics, 2015, 31, 2879-2881.	4.1	23
88	How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome. Nucleic Acids Research, 2018, 46, 10514-10529.	14.5	23
89	Comparison of ChIP-Seq Data and a Reference Motif Set for Human KRAB C2H2 Zinc Finger Proteins. G3: Genes, Genomes, Genetics, 2018, 8, 219-229.	1.8	22
90	'Validation' in genome-scale research. Journal of Biology, 2008, 8, 3.	2.7	21

#	Article	IF	CITATIONS
91	A unified model for yeast transcript definition. Genome Research, 2014, 24, 154-166.	5.5	20
92	ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Research, 2019, 47, 2856-2870.	14.5	20
93	Motif models for RNA-binding proteins. Current Opinion in Structural Biology, 2018, 53, 115-123.	5.7	19
94	ESF1 is required for 18S rRNA synthesis in Saccharomyces cerevisiae. Nucleic Acids Research, 2004, 32, 1993-1999.	14.5	18
95	Motif comparison based on similarity of binding affinity profiles. Bioinformatics, 2016, 32, 3504-3506.	4.1	16
96	Transcription factors read epigenetics. Science, 2017, 356, 489-490.	12.6	16
97	Poly-dA:dT Tracts Form an In Vivo Nucleosomal Turnstile. PLoS ONE, 2014, 9, e110479.	2.5	15
98	Neurospora crassa developmental control mediated by the FLB-3 transcription factor. Fungal Biology, 2018, 122, 570-582.	2.5	14
99	Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III. Rna, 2005, 11, 1225-1237.	3.5	13
100	The TRIM-NHL protein NHL-2 is a co-factor in the nuclear and somatic RNAi pathways in C. elegans. ELife, 2018, 7, .	6.0	13
101	Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes and Development, 2022, 36, 225-240.	5.9	13
102	Information propagation within the Genetic Network of Saccharomyces cerevisiae. BMC Systems Biology, 2010, 4, 143.	3.0	12
103	A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chemical Biology, 2018, 13, 3000-3010.	3.4	9
104	Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics, 2022, 221, .	2.9	6
105	Diverse Eukaryotic CGG-Binding Proteins Produced by Independent Domestications of hAT Transposons. Molecular Biology and Evolution, 2021, 38, 2070-2075.	8.9	4
106	GENRATE: A GENERATIVE MODEL THAT FINDS AND SCORES NEW GENES AND EXONS IN GENOMIC MICROARRAY DATA. , 2004, , .		3
107	Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biology, 2021, 22, 285.	8.8	3
108	A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochemical Journal, 2020, 477, 1345-1362.	3.7	2