Tim Willinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6568588/publications.pdf

Version: 2024-02-01

32 3,257 22 27
papers citations h-index g-index

33 33 6040 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Pulmonary Macrophages. , 2022, , 190-199.		O
2	CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. Journal of Experimental Medicine, 2022, 219, .	8.5	23
3	Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy. Science Immunology, 2021, 6, .	11.9	62
4	Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity, 2021, 54, 259-275.e7.	14.3	107
5	CD5 Surface Expression Marks Intravascular Human Innate Lymphoid Cells That Have a Distinct Ontogeny and Migrate to the Lung. Frontiers in Immunology, 2021, 12, 752104.	4.8	9
6	Editorial: Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 829644.	4.8	0
7	Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice. Biochemical Pharmacology, 2020, 174, 113672.	4.4	10
8	Origin and ontogeny of lung macrophages: from mice to humans. Immunology, 2020, 160, 126-138.	4.4	103
9	Metabolic Control of Innate Lymphoid Cell Migration. Frontiers in Immunology, 2019, 10, 2010.	4.8	40
10	Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria. Journal of Experimental Medicine, 2019, 216, 728-742.	8.5	113
11	Metabolite Sensing by Colonic ILC3s: How Far Is Too Ffar2 Go?. Immunity, 2019, 51, 786-788.	14.3	O
12	Oxysterols in intestinal immunity and inflammation. Journal of Internal Medicine, 2019, 285, 367-380.	6.0	57
13	Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity, 2018, 48, 120-132.e8.	14.3	149
14	Dynamin 2-dependent endocytosis sustains T-cell receptor signaling and drives metabolic reprogramming in T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4423-4428.	7.1	46
15	Development and function of human innate immune cells in a humanized mouse model. Nature Biotechnology, 2014, 32, 364-372.	17.5	629
16	Dynamin 2–dependent endocytosis is required for sustained S1PR1 signaling. Journal of Experimental Medicine, 2014, 211, 685-700.	8.5	40
17	ESCaping Rejection: A Step Forward for Embryonic-Stem-Cell-Based Regenerative Medicine. Cell Stem Cell, 2014, 14, 3-4.	11.1	1
18	Dynamin 2–dependent endocytosis is required for sustained S1PR1 signaling. Journal of Cell Biology, 2014, 204, 2047OIA57.	5.2	0

#	Article	IF	CITATIONS
19	Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine. Annual Review of Immunology, 2013, 31, 635-674.	21.8	304
20	Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8670-8675.	7.1	154
21	Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2390-2395.	7.1	202
22	Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2378-2383.	7.1	169
23	Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends in Immunology, 2011, 32, 321-327.	6.8	117
24	A Mouse Model for the Human Pathogen Salmonella Typhi. Cell Host and Microbe, 2010, 8, 369-376.	11.0	154
25	Human Thrombopoietin Knockin Mice Efficiently Support Human Hematopoiesis In Vivo. Blood, 2010, 116, 403-403.	1.4	0
26	Human Interleukin-3/Granulocyte Macrophage-Colony Stimulating Factor Knock-In Mice Support Human Myeloid Cell Reconstitution and Human Immune Responses In the Lung Blood, 2010, 116, 3789-3789.	1.4	0
27	Requirement for AHNAK1-mediated calcium signaling during T lymphocyte cytolysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9785-9790.	7.1	44
28	Disruption of Myosin 1e Promotes Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 86-94.	6.1	91
29	Humanized Mice for Modeling Human Infectious Disease: Challenges, Progress, and Outlook. Cell Host and Microbe, 2009, 6, 5-9.	11.0	202
30	Human Naive CD8 T Cells Down-Regulate Expression of the WNT Pathway Transcription Factors Lymphoid Enhancer Binding Factor 1 and Transcription Factor 7 (T Cell Factor-1) following Antigen Encounter In Vitro and In Vivo. Journal of Immunology, 2006, 176, 1439-1446.	0.8	150
31	Molecular Signatures Distinguish Human Central Memory from Effector Memory CD8 T Cell Subsets. Journal of Immunology, 2005, 175, 5895-5903.	0.8	227
32	Targeting of a B7-1 (CD80) immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells. Blood, 2001, 97, 3138-3145.	1.4	43