
Eric N Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6566788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993, 364, 501-506.	27.8	1,184
2	Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature, 2000, 408, 106-111.	27.8	953
3	Gene Regulatory Networks in the Evolution and Development of the Heart. Science, 2006, 313, 1922-1927.	12.6	903
4	Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 2010, 11, 353-365.	37.0	829
5	Activation of Cardiac Gene Expression by Myocardin, a Transcriptional Cofactor for Serum Response Factor. Cell, 2001, 105, 851-862.	28.9	806
6	Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351, 400-403.	12.6	804
7	Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genetics, 1997, 16, 154-160.	21.4	670
8	A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351, 271-275.	12.6	634
9	Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science, 2014, 345, 1184-1188.	12.6	595
10	Know Your Neighbors: Three Phenotypes in Null Mutants of the Myogenic bHLH Gene MRF4. Cell, 1996, 85, 1-4.	28.9	585
11	MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine, 2014, 20, 368-376.	30.7	527
12	Molecular Pathways Controlling Heart Development. Science, 1996, 272, 671-676.	12.6	473
13	Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013, 499, 301-305.	27.8	440
14	Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14855-14860.	7.1	429
15	Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 2018, 362, 86-91.	12.6	405
16	Sizing up the heart: development redux in disease. Genes and Development, 2003, 17, 1937-1956.	5.9	346
17	Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nature Genetics, 1998, 18, 266-270.	21.4	345
18	Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature, 2016, 539, 433-436.	27.8	301

#	Article	IF	CITATIONS
19	Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356, 323-327.	12.6	301
20	Independent Signals Control Expression of the Calcineurin Inhibitory Proteins MCIP1 and MCIP2 in Striated Muscles. Circulation Research, 2000, 87, E61-8.	4.5	292
21	A decade of discoveries in cardiac biology. Nature Medicine, 2004, 10, 467-474.	30.7	276
22	Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1082-1087.	7.1	270
23	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	13.7	268
24	Immune Modulation of Stem Cells and Regeneration. Cell Stem Cell, 2014, 15, 14-25.	11.1	250
25	Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature, 2016, 534, 119-123.	27.8	244
26	Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature, 1996, 384, 570-573.	27.8	224
27	The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science, 2019, 365, 1428-1434.	12.6	202
28	Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Science Advances, 2018, 4, eaap9004.	10.3	200
29	Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell, 2016, 164, 1248-1256.	28.9	198
30	Muscle as a "Mediator―of Systemic Metabolism. Cell Metabolism, 2015, 21, 237-248.	16.2	197
31	Mining for Micropeptides. Trends in Cell Biology, 2017, 27, 685-696.	7.9	191
32	CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science Advances, 2019, 5, eaav4324.	10.3	190
33	CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science Advances, 2017, 3, e1602814.	10.3	189
34	Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. Journal of Experimental Medicine, 2014, 211, 2249-2263.	8.5	170
35	Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Science Signaling, 2016, 9, ra119.	3.6	168
36	Requirement of a Myocardin-Related Transcription Factor for Development of Mammary Myoepithelial Cells. Molecular and Cellular Biology, 2006, 26, 5797-5808.	2.3	166

#	Article	IF	CITATIONS
37	Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11864-11869.	7.1	158
38	Identification of aprx1 limb enhancer. Genesis, 2000, 26, 225-229.	1.6	156
39	LATS-YAP/TAZ controls lineage specification by regulating TCFÎ ² signaling and Hnf4α expression during liver development. Nature Communications, 2016, 7, 11961.	12.8	155
40	A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 338-343.	7.1	153
41	The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model. Economics Letters, 2013, 118, 33-37.	1.9	143
42	Myomaker is essential for muscle regeneration. Genes and Development, 2014, 28, 1641-1646.	5.9	141
43	G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia, 2012, 55, 2682-2692.	6.3	139
44	Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. Journal of Clinical Investigation, 2011, 121, 3258-3268.	8.2	138
45	CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019, 70, 239-255.	12.2	130
46	Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development (Cambridge), 2014, 141, 4267-4278.	2.5	122
47	A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nature Cell Biology, 2017, 19, 202-213.	10.3	118
48	MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation. Cell Reports, 2018, 23, 3701-3709.	6.4	118
49	Prevention of Cardiac Hypertrophy by Calcineurin Inhibition. Circulation Research, 1999, 84, 623-632.	4.5	114
50	Toward the Goal of Human Heart Regeneration. Cell Stem Cell, 2020, 26, 7-16.	11.1	114
51	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 2020, 6, eaay6812.	10.3	114
52	Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports, 2017, 8, 548-560.	4.8	108
53	KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. Journal of Clinical Investigation, 2014, 124, 3529-3539.	8.2	103
54	Coactivation of MEF2 by the SAP Domain Proteins Myocardin and MASTR. Molecular Cell, 2006, 23, 83-96.	9.7	101

#	Article	IF	CITATIONS
55	Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development (Cambridge), 2010, 137, 2365-2374.	2.5	101
56	Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution. Cell Reports, 2020, 33, 108472.	6.4	99
57	Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Developmental Cell, 2020, 53, 102-116.e8.	7.0	95
58	Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18455-18465.	7.1	94
59	hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3020-9.	7.1	90
60	Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch. Developmental Cell, 2016, 36, 316-330.	7.0	90
61	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	7.1	90
62	ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes and Development, 2017, 31, 1770-1783.	5.9	87
63	The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. ELife, 2018, 7, .	6.0	86
64	Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. Journal of Clinical Investigation, 2007, 117, 1324-1334.	8.2	86
65	The relationship between energy and equity markets: Evidence from volatility impulse response functions. Energy Economics, 2014, 43, 297-305.	12.1	83
66	MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nature Communications, 2014, 5, 3970.	12.8	80
67	HDAC4 Represses Matrix Metalloproteinase-13 Transcription in Osteoblastic Cells, and Parathyroid Hormone Controls This Repression. Journal of Biological Chemistry, 2010, 285, 9616-9626.	3.4	79
68	Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development (Cambridge), 2015, 142, 2962-71.	2.5	79
69	Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nature Communications, 2018, 9, 5230.	12.8	79
70	YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biology, 2020, 18, e3000941.	5.6	78
71	<scp>MED</scp> 13â€dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Molecular Medicine, 2014, 6, 1610-1621.	6.9	77
72	A comparative molecular analysis of four rat smooth muscle cell lines. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 217-226.	1.5	76

#	Article	IF	CITATIONS
73	Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated <i>MuRF1</i> Expression. Circulation Research, 2015, 117, 424-436.	4.5	76
74	Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell, 2019, 25, 69-86.e5.	11.1	72
75	Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3864-3869.	7.1	71
76	Stac3 has a direct role in skeletal muscle-type excitation–contraction coupling that is disrupted by a myopathy-causing mutation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10986-10991.	7.1	69
77	Hypothalamic leptin action is mediated by histone deacetylase 5. Nature Communications, 2016, 7, 10782.	12.8	68
78	Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I. Diabetes, 2017, 66, 64-74.	0.6	68
79	Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development (Cambridge), 2018, 145, .	2.5	66
80	Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 2015, 126, 2005-2015.	1.4	65
81	Structure–function analysis of myomaker domains required for myoblast fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2116-2121.	7.1	65
82	Yap and Taz play a crucial role in neural crest-derived craniofacial development. Development (Cambridge), 2015, 143, 504-15.	2.5	62
83	MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes and Development, 2012, 26, 190-202.	5.9	61
84	The LIM protein, CRP1, is a smooth muscle marker. Developmental Dynamics, 1999, 214, 229-238.	1.8	60
85	Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nature Communications, 2021, 12, 5270.	12.8	59
86	The Multifunctional Ca2+/Calmodulin-dependent Kinase II δ (CaMKIIδ) Controls Neointima Formation after Carotid Ligation and Vascular Smooth Muscle Cell Proliferation through Cell Cycle Regulation by p21. Journal of Biological Chemistry, 2011, 286, 7990-7999.	3.4	53
87	Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1649-1654.	7.1	53
88	Control of Cardiac Hypertrophy and Heart Failure by Histone Acetylation/Deacetylation. Novartis Foundation Symposium, 2008, , 3-19.	1.1	51
89	Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular Therapy, 2020, 28, 2044-2055.	8.2	51
90	Pax3 and Hippo Signaling Coordinate Melanocyte Gene Expression in Neural Crest. Cell Reports, 2014, 9, 1885-1895.	6.4	49

#	Article	IF	CITATIONS
91	Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11950-11955.	7.1	48
92	Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump asÂMonomers. Journal of Molecular Biology, 2019, 431, 4429-4443.	4.2	48
93	Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. Journal of Clinical Investigation, 2015, 125, 1569-1578.	8.2	48
94	Toward the correction of muscular dystrophy by gene editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
95	The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nature Cell Biology, 2021, 23, 467-475.	10.3	45
96	Myocardin-related transcription factors are required for cardiac development and function. Developmental Biology, 2015, 406, 109-116.	2.0	44
97	DEVELOPMENT: The Path to the Heart and the Road Not Taken. Science, 2001, 291, 2327-2328.	12.6	44
98	Histone Deacetylase 7 (Hdac7) Suppresses Chondrocyte Proliferation and β-Catenin Activity during Endochondral Ossification. Journal of Biological Chemistry, 2015, 290, 118-126.	3.4	42
99	Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development (Cambridge), 2013, 140, 3645-3656.	2.5	41
100	Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proceedings of the United States of America, 2015, 112, 9914-9919.	7.1	41
101	KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. ELife, 2017, 6, .	6.0	40
102	RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development. Developmental Cell, 2022, 57, 959-973.e7.	7.0	40
103	Income inequality, equities, household debt, and interest rates: Evidence from a century of data. Journal of International Money and Finance, 2018, 80, 1-14.	2.5	36
104	Do commodities make effective hedges for equity investors?. Research in International Business and Finance, 2017, 42, 1274-1288.	5.9	35
105	NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11299-11308.	7.1	35
106	Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proceedings of the United States of America, 2016, 113, E4494-503.	7.1	34
107	Stac proteins associate with the critical domain for excitation–contraction coupling in the II–III loop of CaV1.1. Journal of General Physiology, 2018, 150, 613-624.	1.9	34
108	A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism. Genes and Development, 2016, 30, 434-446.	5.9	32

#	Article	IF	CITATIONS
109	Regulation of intraocular pressure by microRNA cluster miR-143/145. Scientific Reports, 2017, 7, 915.	3.3	32
110	Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell–derived skeletal muscle in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
111	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	4.5	32
112	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	28.8	31
113	Mutations in the Histone Modifier PRDM6 Are Associated with Isolated Nonsyndromic Patent Ductus Arteriosus. American Journal of Human Genetics, 2016, 98, 1082-1091.	6.2	29
114	Myocardin-related transcription factors are required for skeletal muscle development. Development (Cambridge), 2016, 143, 2853-61.	2.5	28
115	Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes and Development, 2019, 33, 626-640.	5.9	27
116	Cullin-3–RING ubiquitin ligase activity is required for striated muscle function in mice. Journal of Biological Chemistry, 2018, 293, 8802-8811.	3.4	26
117	The International Effects of US Uncertainty. International Journal of Finance and Economics, 2015, 20, 242-252.	3.5	24
118	"Black Swans―before the "Black Swan―evidence from international LIBOR–OIS spreads. Journal of International Money and Finance, 2012, 31, 1339-1357.	2.5	21
119	Asymmetric tax multipliers. Journal of Macroeconomics, 2015, 43, 38-48.	1.3	21
120	The relative contributions of equity and subordinated debt signals as predictors of bank distress during the financial crisis. Journal of Financial Stability, 2015, 16, 118-137.	5.2	20
121	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Molecular Therapy - Methods and Clinical Development, 2021, 22, 122-132.	4.1	20
122	The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
123	Scleraxis messenger ribonucleic acid is expressed in C2C12 myoblasts and its level is down-regulated by bone morphogenetic protein-2 (BMP2). Journal of Cellular Biochemistry, 1997, 67, 66-74.	2.6	18
124	Improving cardiac rhythm with a biological pacemaker. Science, 2014, 345, 268-269.	12.6	18
125	Undermining the endothelium by ablation of MAPK-MEF2 signaling. Journal of Clinical Investigation, 2004, 113, 1110-1112.	8.2	18
126	The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nature Communications, 2021, 12, 690.	12.8	17

#	Article	IF	CITATIONS
127	Fibroblast growth factor downregulates expression of a basic helix-loop-helix-type transcription factor, scleraxis, in a chondrocyte-like cell line, TC6. Journal of Cellular Biochemistry, 1998, 70, 468-477.	2.6	16
128	Identification of a multipotent Twist2-expressing cell population in the adult heart. Proceedings of the United States of America, 2018, 115, E8430-E8439.	7.1	16
129	Direct reprogramming as a route to cardiac repair. Seminars in Cell and Developmental Biology, 2022, 122, 3-13.	5.0	16
130	Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Circulation Research, 2021, 129, 602-616.	4.5	16
131	Measuring the Economic Costs of Terrorism. , 2012, , .		15
132	A genetic blueprint for growth and development of the heart. Harvey Lectures, 2002, 98, 41-64.	0.2	15
133	Sema3a-Nrp1 Signaling Mediates Fast-Twitch Myofiber Specificity of Tw2+ Cells. Developmental Cell, 2019, 51, 89-98.e4.	7.0	14
134	A Historical Analysis of the Taylor Curve. Journal of Money, Credit and Banking, 2012, 44, 1285-1299.	1.6	13
135	An empirical investigation of the Taylor curve. Journal of Macroeconomics, 2012, 34, 380-390.	1.3	13
136	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
137	Trout myomaker contains 14 minisatellites and two sequence extensions but retains fusogenic function. Journal of Biological Chemistry, 2019, 294, 6364-6374.	3.4	12
138	Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. Molecular Therapy - Nucleic Acids, 2022, 28, 154-167.	5.1	12
139	MyoR Modulates Cardiac Conduction by Repressing Gata4. Molecular and Cellular Biology, 2015, 35, 649-661.	2.3	11
140	Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. Journal of Neuroscience, 2019, 39, 7958-7967.	3.6	11
141	What is a better cross-hedge for energy: Equities or other commodities?. Global Finance Journal, 2019, 42, 100417.	5.1	11
142	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	2.6	11
143	Protocol for Single-Nucleus Transcriptomics of Diploid and Tetraploid Cardiomyocytes in Murine Hearts. STAR Protocols, 2020, 1, 100049.	1.2	10
144	A myocardin-adjacent lncRNA balances SRF-dependent gene transcription in the heart. Genes and Development, 2021, 35, 835-840.	5.9	10

#	Article	IF	CITATIONS
145	Income inequality and household debt: a cointegration test. Applied Economics Letters, 2015, 22, 1469-1473.	1.8	9
146	Presidential approval and macroeconomic conditions: evidence from a nonlinear model. Applied Economics, 2016, 48, 4558-4572.	2.2	9
147	Secreted MG53 From Striated Muscle Impairs Systemic Insulin Sensitivity. Circulation, 2019, 139, 915-917.	1.6	8
148	Effect of uncertainty on U.S. stock returns and volatility: evidence from over eighty years of high-frequency data. Applied Economics Letters, 2020, 27, 1305-1311.	1.8	8
149	A Reexamination of Real Stock Returns, Real Interest Rates, Real Activity, and Inflation: Evidence from a Large Data Set. Financial Review, 2017, 52, 405-433.	1.8	7
150	Hippo in the Path to Heart Repair. Circulation Research, 2014, 115, 332-334.	4.5	6
151	Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029843.	6.2	6
152	Toward CRISPR Therapies for Cardiomyopathies. Circulation, 2021, 144, 1525-1527.	1.6	6
153	Sentiment's effect on the variance of stock returns. Applied Economics Letters, 2020, 27, 1469-1473.	1.8	5
154	Tax multipliers and monetary policy: Evidence from a threshold model. Economics Letters, 2014, 122, 116-118.	1.9	4
155	Nonlinear Taylor rules: evidence from a large dataset. Studies in Nonlinear Dynamics and Econometrics, 2018, 22, .	0.3	4
156	The effects of U.S. quantitative easing on South Africa. Review of Financial Economics, 2020, 38, 321-331.	1.1	4
157	Discretionary monetary policy, quantitative easing and the decline in US labor share. Economics and Business Letters, 2015, 4, 63.	0.7	4
158	Forecasting key US macroeconomic variables with a factorâ€augmented Qual VAR. Journal of Forecasting, 2017, 36, 640-650.	2.8	3
159	An evaluation of ECB policy in the Euro's big four. Journal of Macroeconomics, 2016, 48, 203-213.	1.3	2
160	Considerations for Cardiac CRISPR. Circulation Research, 2017, 121, 1111-1112.	4.5	2
161	Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution Journal of Clinical Oncology, 2019, 37, e15739-e15739.	1.6	2
162	Using Romer and Romer's new measure of monetary policy shocks to identify the AD and AS shocks. Applied Economics, 2013, 45, 2838-2846.	2.2	1

#	Article	IF	CITATIONS
163	Was the Euro good for Greece?. Applied Economics Letters, 2014, 21, 248-251.	1.8	Ο
164	Entrepreneurialism in the TranslationalÂBiologic Sciences. JACC Basic To Translational Science, 2018, 3, 1-8.	4.1	0
165	P2570Synergistic activation of the cardiac enhancer landscape during reprogramming. European Heart Journal, 2019, 40, .	2.2	Ο
166	Leaders in Cardiovascular Research: Eric Olson. Cardiovascular Research, 2020, 116, e54-e55.	3.8	0
167	The Taylor curve: international evidence. Applied Economics, 2021, 53, 4680-4691.	2.2	0
168	Control of Muscle Growth and Remodeling by Calciumâ€Đependent Transcription. FASEB Journal, 2006, 20, A423.	0.5	0
169	Mef2C Is a Lineage-Restricted Target Gene of Scl/Tal1 and Regulates Megakaryopoiesis and B-Cell Homeostasis. Blood, 2008, 112, 278-278.	1.4	Ο
170	Protein kinaseâ€Ð1 overexpression in mice prevents lipidâ€induced insulin resistance and cardiomyopathy by upregulation of glucose uptake. FASEB Journal, 2011, 25, 914.3.	0.5	0
171	Heart making and heart breaking: The molecular circuitry of cardiac development, disease and regeneration. FASEB Journal, 2012, 26, 210.1.	0.5	Ο
172	Renal Medullary Histone Deacetylase Dependent Regulation of Fluidâ€Electrolyte Homeostasis During High Salt Feeding. FASEB Journal, 2019, 33, 866.5.	0.5	0
173	Monetary policy and the racial wage gap. Empirical Economics, 0, , 1.	3.0	0
174	Title is missing!. , 2020, 18, e3000941.		0
175	Title is missing!. , 2020, 18, e3000941.		Ο
176	Title is missing!. , 2020, 18, e3000941.		0
177	Title is missing!. , 2020, 18, e3000941.		Ο
178	Title is missing!. , 2020, 18, e3000941.		0
179	Title is missing!. , 2020, 18, e3000941.		Ο