
Jonathan Gressel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6566340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenics are imperative for biofuel crops. Plant Science, 2008, 174, 246-263.	3.6	320
2	Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnology Advances, 2012, 30, 1023-1030.	11.7	209
3	Modelling the Effectiveness of Herbicide Rotations and Mixtures as Strategies to Delay or Preclude Resistance. Weed Technology, 1990, 4, 186-198.	0.9	200
4	Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protection, 2004, 23, 661-689.	2.1	183
5	Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Science, 1990, 69, 157-166.	3.6	175
6	Tandem constructs: preventing the rise of superweeds. Trends in Biotechnology, 1999, 17, 361-366.	9.3	156
7	Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Management Science, 2011, 67, 253-257.	3.4	140
8	Are Herbicide mixtures useful for Delaying the Rapid Evolution of Resistance? a Case Study. Weed Technology, 1994, 8, 635-648.	0.9	121
9	Transgenic crops against parasites. Nature, 1995, 374, 220-221.	27.8	114
10	Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Protection, 2003, 22, 697-706.	2.1	109
11	Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nature Biotechnology, 2002, 20, 1035-1039.	17.5	103
12	Glyphosate Suppression of an Elicited Defense Response. Plant Physiology, 1992, 98, 654-659.	4.8	101
13	Weedy (Red) Rice. Advances in Agronomy, 2015, , 181-228.	5.2	96
14	Evolving understanding of the evolution of herbicide resistance. Pest Management Science, 2009, 65, 1164-1173.	3.4	93
15	A strategy to provide longâ€ŧerm control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Management Science, 2009, 65, 723-731.	3.4	89
16	A revolving dose strategy to delay the evolution of both quantitative vs major monogene resistances to pesticides and drugs. International Journal of Pest Management, 1998, 44, 161-180.	1.8	86
17	Long-term dry preservation of viable mycelia of two mycoherbicidal organisms. Crop Protection, 1999, 18, 643-649.	2.1	74
18	Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta, 2000, 211, 50-61.	3.2	71

#	Article	IF	CITATIONS
19	Transgenically Enhanced Expression of Indole-3-Acetic Acid Confers Hypervirulence to Plant Pathogens. Phytopathology, 2002, 92, 590-596.	2.2	70
20	Tandem constructs to mitigate transgene persistence: tobacco as a model. Molecular Ecology, 2004, 13, 697-710.	3.9	65
21	Control of parasitic witchweeds (<i>Striga</i> spp.) on corn (<i>Zea mays</i>) resistant to acetolactate synthase inhibitors. Weed Science, 1998, 46, 459-466.	1.5	54
22	Imazapyr and pyrithiobac movement in soil and from maize seed coats to control Striga in legume intercropping. Crop Protection, 2002, 21, 611-619.	2.1	53
23	Agriculture: The selector of improbable mutations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12215-12216.	7.1	53
24	lmazapyr seed dressings for Striga control on acetolactate synthase target-site resistant maize. Crop Protection, 2001, 20, 885-895.	2.1	51
25	Sequence Evidence for Sporadic Intergeneric DNA Introgression from Wheat into a Wild Aegilops Species. Molecular Biology and Evolution, 2005, 22, 2055-2062.	8.9	51
26	Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotechnology Journal, 2006, 4, 7-21.	8.3	50
27	CHARACTERIZATION OF THE 32 ,000 DALTON MEMBRANE PROTEINâ€"I. EARLY SYNTHESIS DURING PHOTOINDUCED PLASTID DEVELOPMENT OF <i>SPIRODELA</i> . Photochemistry and Photobiology, 1978, 27, 161-165.	2.5	49
28	Crops with targetâ€site herbicide resistance for <i>Orobanche</i> and <i>Striga</i> control. Pest Management Science, 2009, 65, 560-565.	3.4	48
29	Environmental risks of large scale cultivation of microalgae: Mitigation of spills. Algal Research, 2013, 2, 286-298.	4.6	46
30	Molecular biology of weed control. , 2000, 9, 355-382.		45
31	Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends in Biotechnology, 2001, 19, 149-154.	9.3	45
32	Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa. Plant Biotechnology Journal, 2006, 4, 23-33.	8.3	45
33	Microbiome facilitated pest resistance: potential problems and uses. Pest Management Science, 2018, 74, 511-515.	3.4	45
34	Metabolism of lignin related aromatic compounds by Aspergillus japonicus. Archives of Microbiology, 1983, 135, 147-154.	2.2	44
35	Dealing with transgene flow of crop protection traits from crops to their relatives. Pest Management Science, 2015, 71, 658-667.	3.4	43
36	MASSIVE ACCUMULATION OF PHYTOENE INDUCED BY NORFLURAZON IN <i>DUNALIELLA BARDAWIL</i> (CHLOROPHYCEAE) PREVENTS RECOVERY FROM PHOTOINHIBITION ¹ . Journal of Phycology, 1987, 23, 176-181.	2.3	42

#	Article	IF	CITATIONS
37	Perspective: present pesticide discovery paradigms promote the evolution of resistance – learn from nature and prioritize multiâ€target site inhibitor design. Pest Management Science, 2020, 76, 421-425.	3.4	42
38	Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series. Planta, 2005, 222, 372-385.	3.2	40
39	Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations. BMC Biotechnology, 2009, 9, 93.	3.3	40
40	Isolation, Purification, and Identification of 2-(p-Hydroxyphenoxy)-5, 7-Dihydroxychromone: A Fungal-Induced Phytoalexin from Cassia obtusifolia. Plant Physiology, 1992, 98, 303-308.	4.8	38
41	Problems in qualifying and quantifying assumptions in plant protection models: Resultant simulations can be mistaken by a factor of million. Crop Protection, 2005, 24, 1007-1015.	2.1	38
42	Infection of Tubercles of the Parasitic Weed Orobanche aegyptiaca by Mycoherbicidal Fusarium Species. Annals of Botany, 2002, 90, 567-578.	2.9	36
43	How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance?. Pest Management Science, 2017, 73, 22-34.	3.4	36
44	Let them eat (GM) straw. Trends in Biotechnology, 2003, 21, 525-530.	9.3	35
45	INDUCTION OF Trichoderma SPORULATION BY NANOSECOND LASER PULSES: EVIDENCE AGAINST CRYPTOCHROME CYCLING. Photochemistry and Photobiology, 1990, 51, 99-104.	2.5	31
46	Negative cross-resistance in triazine-resistant biotypes ofEchinochloa crus-galliandConyza canadensis. Weed Science, 2000, 48, 176-180.	1.5	31
47	Transformation of carrots with mutant acetolactate synthase forOrobanche (broomrape) control. Pest Management Science, 2002, 58, 1187-1193.	3.4	30
48	Appropriateness of biotechnology to African agriculture: Striga and maize as paradigms. Plant Cell, Tissue and Organ Culture, 2002, 69, 105-110.	2.3	30
49	Negative Cross Resistance; a Possible Key to Atrazine Resistance Management: A Call for Whole Plant Data. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 470-473.	1.4	26
50	Herbicide Applied to Imidazolinone Resistant-Maize Seed as a <i>Striga</i> Control Option for Small-Scale African Farmers. Weed Science, 2012, 60, 283-289.	1.5	26
51	Mode of Evolved Photooxidant Resistance to Herbicides and Xenobiotics. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 463-469.	1.4	25
52	Ultralow Calcium Requirements of Fungi Facilitate Use of Calcium Regulating Agents to Suppress Host Calcium-Dependent Defenses, Synergizing Infection by a Mycoherbicide. Journal of Agricultural and Food Chemistry, 2002, 50, 6353-6360.	5.2	25
53	Needs for and effectiveness of slow release herbicide seed treatment Striga control formulations for protection against early season crop phytotoxicity. Crop Protection, 2009, 28, 845-853.	2.1	25
54	Correlation of Glutathione Peroxidase to Paraquat/Oxidative Stress Resistance in Conyza Determined by Direct Fluorometric Assay. Pesticide Biochemistry and Physiology, 2000, 66, 182-194.	3.6	22

#	Article	IF	CITATIONS
55	Commentary: Hormesis can be used in enhancing plant productivity and health; but not as previously envisaged. Plant Science, 2013, 213, 123-127.	3.6	22
56	Suppressing aflatoxin biosynthesis is not a breakthrough if not useful. Pest Management Science, 2018, 74, 17-21.	3.4	22
57	LIGHT REQUIREMENTS FOR THE ENHANCED SYNTHESIS OF A PLASTID mRNA DURING SPIRODELA GREENING. Photochemistry and Photobiology, 1978, 27, 167-169.	2.5	21
58	Universal inheritable barcodes for identifying organisms. Trends in Plant Science, 2002, 7, 542-544.	8.8	20
59	Herbicides as Synergists for Mycoherbicides, and Vice Versa. Weed Science, 2010, 58, 324-328.	1.5	19
60	The Needs for New Herbicide-Resistant Crops. , 1992, , 283-294.		18
61	Hypothesis: Transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination. Plant Science, 2008, 175, 410-414.	3.6	17
62	Presence of the rapidly-labelled 32 000-dalton chloroplast membrane protein in triazine resistant biotypes. FEBS Letters, 1982, 140, 36-40.	2.8	16
63	Assessing and Managing Biological Risks of Plants Used for Bioremediation, Including Risks of Transgene Flow. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 154-165.	1.4	16
64	The other, ignored HIV $\hat{a} \in$ " highly invasive vegetation. Food Security, 2009, 1, 463-478.	5.3	16
65	Needs for and environmental risks from transgenic crops in the developing world. New Biotechnology, 2010, 27, 522-527.	4.4	15
66	Molecular Containment and Mitigation of Genes within Crops — Prevention of Gene Establishment in Volunteer Offspring and Feral Strains. , 2005, , 371-388.		14
67	Transforming a <i>NEP</i> 1 toxin gene into two <i>Fusarium</i> spp. to enhance mycoherbicide activity on <i>Orobanche</i> —failure and success. Pest Management Science, 2009, 65, 588-595.	3.4	13
68	A Review of the Place of in vitro Cell Culture Systems in Studies of Action, Metabolism and Resistance of Biocides Affecting Photosynthesis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1979, 34, 905-913.	1.4	12
69	Transgene Containment Using Cytokinin-Reversible Male Sterility in Constitutive, Gibberellic Acid–Insensitive (Δgai) Transgenic Tobacco. Journal of Plant Growth Regulation, 2005, 24, 19-27.	5.1	12
70	Cultivated microalgae spills: hard to predict/easier to mitigate risks. Trends in Biotechnology, 2014, 32, 65-69.	9.3	12
71	APPROACHES TO AND SUCCESSES IN DEVELOPING TRANSGENICALLY ENHANCED MYCOHERBICIDES. , 2007, , 297-305.		11
72	Use of Multicopy Transposons Bearing Unfitness Genes in Weed Control: Four Example Scenarios. Plant Physiology, 2014, 166, 1221-1231.	4.8	11

4

#	Article	IF	CITATIONS
73	RHYTHMS IN BLUE-LIGHT-INDUCED CONIDIATION OF WILD TYPE AND A MUTANT STRAIN OF Trichoderma harzianum. Photochemistry and Photobiology, 1988, 47, 425-431.	2.5	10
74	SUCCESS WITH THE LOW BIOTECH OF SEED-COATED IMIDAZOLINONE-RESISTANT MAIZE. , 2007, , 145-158.		10
75	Gene flow of transgenic seed-expressed traits: Biosafety considerations. Plant Science, 2010, 179, 630-634.	3.6	9
76	Overexpression of <i>epsps</i> transgene in weedy rice: insufficient evidence to support speculations about biosafety. New Phytologist, 2014, 202, 360-362.	7.3	9
77	FUSARIUM OXYSPORUM F. SP. STRIGA, ATHLETES FOOT OR ACHILLES HEEL?. , 2007, , 213-222.		8
78	MASSIVE ACCUMULATION OF PHYTOENE INDUCED BY NORFLURAZON IN <i>DUNALIELLA BARDAWIL</i> (CHLOROPHYCEAE) PREVENTS RECOVERY FROM PHOTOINHIBITION ¹ . Journal of Phycology, 1987, 23, 176-181.	2.3	8
79	Genomics and Weeds: A Synthesis. , 0, , 221-247.		8
80	FAILSAFE MECHANISMS FOR PREVENTING GENE FLOW AND ORGANISM DISPERSAL OF ENHANCED MICROBIAL BIOCONTROL AGENTS. , 2007, , 353-362.		7
81	Fungal transformation of Colletotrichum coccodes with bacterial oahA to suppress defenses of Abutilon theophrasti. Crop Protection, 2009, 28, 749-755.	2.1	7
82	Perspective: Consider Removing 'Inherited' from Definitions of Pesticide Resistance. Outlooks on Pest Management, 2015, 26, 220-222.	0.2	7
83	Quantification of Infection by Alternaria cassiae Using Leaf Immunoâ€Autoradiography and Radioimmunosorbent Assays. Journal of Phytopathology, 1993, 138, 233-243.	1.0	6
84	Infertile interspecific hybrids between transgenically mitigated Nicotiana tabacum and Nicotiana sylvestris did not backcross to N. sylvestris. Plant Science, 2006, 170, 953-961.	3.6	6
85	Weed genomics advance: a commentary. Pest Management Science, 2010, 66, 1041-1041.	3.4	6
86	Containing and mitigating transgene flow from crops to weeds, to wild species, and to crops. , 2012, , 509-523.		5
87	Synergizing Pesticides To Reduce Use Rates. ACS Symposium Series, 1993, , 48-61.	0.5	4
88	Prevention Versus Remediation in Resistance Management. ACS Symposium Series, 1996, , 169-186.	0.5	4
89	Biotechnologies for Directly Generating Crops Resistant to Parasites. , 2013, , 433-458.		4

90 Transgenic Herbicide-Resistant Crops—Advantages, Drawbacks, and Failsafes. , 2002, , .

#	Article	IF	CITATIONS
91	A new approach to Striga control. Outlooks on Pest Management, 2003, 14, 51-53.	0.2	3
92	Assessing Risks and Containing or Mitigating Gene Flow of Transgenic and Non-transgenic Phytoremediating Plants. , 2006, , 259-284.		3
93	Catch 22: All Doses Select for Resistance. When Will This Happen and How To Slow Evolution?. ACS Symposium Series, 2017, , 61-72.	0.5	3
94	Arabidopsis Is Not a Weed, and Mostly Not a Good Model for Weed Genomics; There Is No Good Model for Weed Genomics. , 0, , 25-32.		3
95	AN INTEGRATED APPROACH TO BIOLOGICAL CONTROL OF PLANT DISEASES AND WEEDS IN EUROPE. , 2006, , 257-274.		3
96	TRANSGENIC BIOCONTROL AGENTS TO OVERCOME EVOLUTIONARY BARRIERS. , 2007, , 313-323.		3
97	Perspective: It is time to consider new ways to attack unpesticidable (undruggable) target sites by designing peptide pesticides. Pest Management Science, 2022, 78, 2108-2112.	3.4	3
98	International Organization for Resistant Pest Management (IOPRM) - A Step Toward Rational Resistance Management Recommendations. Weed Technology, 1992, 6, 765-770.	0.9	2
99	Title is missing!. Integrated Pest Management Reviews, 2002, 7, 63-64.	0.1	2
100	Are integrated pest management (IPM) and resistance management synonymous or antagonistic?. Pest Management Science, 2015, 71, 329-330.	3.4	2
101	Direct evidence for the lack of methylation of two pulse labeled plant RNAs. Plant and Cell Physiology, 1974, , .	3.1	0
102	Dynamics of Weed Populations—Roger Cousens and (A.) Martin Mortimer, 1995, Cambridge University Press, Cambridge, U.K., 332 pp. ISBN 0-521-49649-7 (hard cover) £50; ISBN 0-521-49969-0 (paperback) £15 Weed Technology, 1996, 10, 5-6.	0.9	0
103	World Weeds: Natural Histories and Distributions. L. Holm, J. Doll, E. Holm, J. Pancho, and J. Herberger J. Wiley, New York. 1,129 p. + xv, 1997. Cloth. ISBN 0471-04701-5, \$195 Weed Technology, 1997, 11, 633-634.	0.9	0
104	Transgenic marine algae for aquaculture: a coupled solution for protein sufficiency. , 0, , 233-246.		0