List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6563943/publications.pdf Version: 2024-02-01

LIANU IN LI

#	Article	IF	CITATIONS
1	The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016, 105, 52-76.	10.3	1,335
2	Prospects for reducing the processing cost of lithium ion batteries. Journal of Power Sources, 2015, 275, 234-242.	7.8	588
3	Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources, 2013, 229, 239-248.	7.8	472
4	Materials processing for lithium-ion batteries. Journal of Power Sources, 2011, 196, 2452-2460.	7.8	343
5	From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chemical Reviews, 2022, 122, 903-956.	47.7	343
6	Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion. Chemistry of Materials, 2014, 26, 6272-6280.	6.7	236
7	Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. Journal of Applied Electrochemistry, 2017, 47, 405-415.	2.9	217
8	Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing. Journal of Energy Storage, 2019, 25, 100862.	8.1	188
9	Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. Jom, 2017, 69, 1484-1496.	1.9	186
10	Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP. Drying Technology, 2018, 36, 234-244.	3.1	158
11	Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Storage Materials, 2020, 24, 188-197.	18.0	155
12	Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources. Journal of Power Sources, 2016, 312, 70-79.	7.8	132
13	Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation. Advanced Energy Materials, 2020, 10, 2001204.	19.5	129
14	Identifying the limiting electrode in lithium ion batteries for extreme fast charging. Electrochemistry Communications, 2018, 97, 37-41.	4.7	126
15	Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. Journal of Materials Chemistry A, 2013, 1, 6249.	10.3	125
16	Fast formation cycling for lithium ion batteries. Journal of Power Sources, 2017, 342, 846-852.	7.8	119
17	Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics, 2013, 15, 19496.	2.8	108
18	Optimization of LiFePO ₄ Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing. Langmuir, 2012, 28, 3783-3790.	3.5	89

#	Article	IF	CITATIONS
19	Neutron Diffraction and Magnetic Susceptibility Studies on a High-Voltage Li _{1.2} Mn _{0.55} Ni _{0.15} Co _{0.10} O ₂ Lithium Ion Battery Cathode: Insight into the Crystal Structure. Chemistry of Materials, 2013, 25, 4064-4070.	6.7	89
20	Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO ₄ Cathode Dispersions and Polyethyleneimine Dispersant. Journal of the Electrochemical Society, 2013, 160, A201-A206.	2.9	88
21	Disintegration of Meatball Electrodes for LiNi x Mn y Co z O2 Cathode Materials. Experimental Mechanics, 2018, 58, 549-559.	2.0	86
22	Formation Challenges of Lithium-Ion Battery Manufacturing. Joule, 2019, 3, 2884-2888.	24.0	86
23	Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mechanics Letters, 2016, 9, 495-502.	4.1	83
24	Sustainable Direct Recycling of Lithiumâ€lon Batteries via Solvent Recovery of Electrode Materials. ChemSusChem, 2020, 13, 5664-5670.	6.8	80
25	Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode Performance. MRS Advances, 2016, 1, 1029-1035.	0.9	78
26	Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3470-3478.	8.0	77
27	Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots. Journal of Materials Chemistry C, 2019, 7, 5468-5476.	5.5	75
28	Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes—A Green and Sustainable Manufacturing System. IScience, 2020, 23, 101081.	4.1	74
29	Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. Journal of Colloid and Interface Science, 2013, 405, 118-124.	9.4	69
30	What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?. Journal of Power Sources, 2018, 384, 136-144.	7.8	69
31	Superior Performance of LiFePO ₄ Aqueous Dispersions via Corona Treatment and Surface Energy Optimization. Journal of the Electrochemical Society, 2012, 159, A1152-A1157.	2.9	65
32	Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells. ACS Applied Materials & Interfaces, 2017, 9, 18799-18808.	8.0	65
33	Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with Graphite Anodes and NMC532 Cathodes. Journal of the Electrochemical Society, 2017, 164, A1195-A1202.	2.9	64
34	Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport. Journal of Power Sources, 2015, 300, 123-131.	7.8	63
35	Analysis of electrolyte imbibition through lithium-ion battery electrodes. Journal of Power Sources, 2019, 424, 193-203.	7.8	61
36	Lithium and transition metal dissolution due to aqueous processing in lithium-ion battery cathode active materials. Journal of Power Sources, 2020, 466, 228315.	7.8	61

#	Article	IF	CITATIONS
37	Insight on electrolyte infiltration of lithium ion battery electrodes by means of a new three-dimensional-resolved lattice Boltzmann model. Energy Storage Materials, 2021, 38, 80-92.	18.0	61
38	Cathode materials review. AIP Conference Proceedings, 2014, , .	0.4	60
39	Towards Understanding of Cracking during Drying of Thick Aqueous-Processed LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3162-3169.	6.7	59
40	Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1755-A1764.	2.9	57
41	Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots. Nanoscale, 2019, 11, 16553-16561.	5.6	57
42	Balancing formation time and electrochemical performance of high energy lithium-ion batteries. Journal of Power Sources, 2018, 402, 107-115.	7.8	56
43	Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries. Energy Storage Materials, 2020, 29, 254-265.	18.0	54
44	Beneficial rheological properties of lithium-ion battery cathode slurries from elevated mixing and coating temperatures. Journal of Energy Storage, 2019, 26, 100994.	8.1	53
45	Carbon Coated Porous Titanium Niobium Oxides as Anode Materials of Lithium-Ion Batteries for Extreme Fast Charge Applications. ACS Applied Energy Materials, 2020, 3, 5657-5665.	5.1	53
46	Characterization of Surface Free Energy of Composite Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2493-A2501.	2.9	52
47	Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes. Journal of Energy Storage, 2019, 26, 101034.	8.1	52
48	Electrospun SnO2 and TiO2 Composite Nanofibers for Lithium Ion Batteries. Electrochimica Acta, 2014, 117, 68-75.	5.2	51
49	Elucidation of Separator Effect on Energy Density of Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3377-A3383.	2.9	51
50	Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy. ACS Applied Materials & Interfaces, 2018, 10, 18641-18649.	8.0	50
51	Hydrogen permeation through thin supported SrCe0.7Zr0.2Eu0.1O3â^î^ membranes; dependence of flux on defect equilibria and operating conditions. Journal of Membrane Science, 2011, 381, 126-131.	8.2	48
52	Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. Journal of Power Sources, 2020, 474, 228601.	7.8	47
53	High temperature SrCe0.9Eu0.1O3â^l^ proton conducting membrane reactor for H2 production using the water–gas shift reaction. Applied Catalysis B: Environmental, 2009, 92, 234-239.	20.2	46
54	Limiting Internal Short-Circuit Damage by Electrode Partition for Impact-Tolerant Li-Ion Batteries. Joule, 2018, 2, 155-167.	24.0	45

#	Article	IF	CITATIONS
55	Structural transformation in a Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold. RSC Advances, 2013, 3, 7479.	3.6	44
56	Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods. ACS Energy Letters, 2016, 1, 981-986.	17.4	43
57	Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy & Sustainability, 2015, 2, 1.	3.0	42
58	Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Analytical Methods, 2014, 6, 674-683.	2.7	41
59	Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. Journal of Power Sources, 2021, 515, 230429.	7.8	41
60	Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochimica Acta, 2018, 270, 54-61.	5.2	39
61	Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries. Extreme Mechanics Letters, 2018, 20, 73-80.	4.1	39
62	Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading. Journal of Power Sources, 2018, 378, 139-145.	7.8	39
63	On electrolyte wetting through lithium-ion battery separators. Extreme Mechanics Letters, 2020, 40, 100960.	4.1	38
64	Operando Acoustic Monitoring of SEI Formation and Long-Term Cycling in NMC/SiGr Composite Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 020517.	2.9	36
65	Hydrogen permeation through thin supported SrZr0.2Ce0.8â^'xEuxO3â^'δ membranes. Journal of Membrane Science, 2009, 345, 1-4.	8.2	35
66	Aqueous Ni-rich-cathode dispersions processed with phosphoric acid for lithium-ion batteries with ultra-thick electrodes. Journal of Colloid and Interface Science, 2021, 581, 635-643.	9.4	34
67	Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. , 2016, , 295-328.		33
68	Enabling aqueous processing for LiNi0.80Co0.15Al0.05O2 (NCA)-based lithium-ion battery cathodes using polyacrylic acid. Electrochimica Acta, 2021, 380, 138203.	5.2	33
69	Multifunctional approaches for safe structural batteries. Journal of Energy Storage, 2021, 40, 102747.	8.1	33
70	Deconvoluting the benefits of porosity distribution in layered electrodes on the electrochemical performance of Li-ion batteries. Energy Storage Materials, 2022, 47, 462-471.	18.0	32
71	Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the Graphite Anode. Journal of the Electrochemical Society, 2016, 163, A2866-A2875.	2.9	31
72	Enabling high rate charge and discharge capability, low internal resistance, and excellent cycleability for Li-ion batteries utilizing graphene additives. Electrochimica Acta, 2018, 273, 200-207.	5.2	31

ARTICLE IF CITATIONS Advances in electrode materials for Li-based rechargeable batteries. RSC Advances, 2017, 7, 33789-33811. Al2O3/TiO2 coated separators: Roll-to-roll processing and implications for improved battery safety 74 30 7.8 and performance. Journal of Power Sources, 2021, 507, 230259. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Oyerlock Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in 76 10.7 29 lithium-ion batteries. Journal of Materials Science and Technology, 2020, 54, 77-86. Designing electrode architectures to facilitate electrolyte infiltration for lithium-ion batteries. 18.0 29 Energy Storage Materials, 2022, 49, 268-277. Processing–Structure–Property Relationships for Ligninâ€Based Carbonaceous Materials Used in 78 3.8 27 Energyâ€Storage Applications. Energy Technology, 2017, 5, 1311-1321. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite lithium ion cells with poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 79 148-155. Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries. 80 3.2 26 Sustainability, 2018, 10, 2840. Si Oxidation and H₂ Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes. Journal of Physical Chemistry C, 2018, 122, 9746-9754. 3.1 Fabrication of Thinâ€Film SrCe_{0.9}Eu_{0.1}O_{3â^'Î} Hydrogen Separation 82 Membranes on Ni–SrCeO₃ Porous Tubular Supports. Journal of the American Ceramic 3.8 21 Society, 2009, 92, 1849-1852. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery. Journal of the 2.9 Electrochemical Society, 2016, 163, A2776-A2780. Eutectic Synthesis of the P2-Type Na_{<i>x</i>}Fe_{1/2}Mn_{1/2}O₂ Cathode with Improved Cell 84 8.0 21 Design for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 23951-23958. Machine learning 3D-resolved prediction of electrolyte infiltration in battery porous electrodes. 7.8 Journal of Power Sources, 2021, 511, 230384. Recent progress and future prospects of atomic layer deposition to prepare/modify solid-state electrolytes and interfaces between electrodes for next-generation lithium batteries. Nanoscale 86 4.6 21 Advances, 2021, 3, 2728-2740. Design and processing for high performance Li ion battery electrodes with double-layer structure. 8.1 21 Journal of Energy Storage, 2021, 44, 103582. Preparation of porous Si and TiO₂ nanofibres using a sulphurâ€templating method for 88 1.8 20 lithium storage. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 877-881. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and 4.8 20 experiments. Journal of the Mechanics and Physics of Solids, 2017, 100, 85-102. Supercapacitive Properties of Micropore―and Mesoporeâ€Rich Activated Carbon in Ionicâ€Liquid 90 6.8 20

JIANLIN LI

6

Electrolytes with Various Constituent Ions. ChemSusChem, 2019, 12, 449-456.

#	Article	IF	CITATIONS
91	Improved lithium storage capacity and high rate capability of nitrogen-doped graphite-like electrode materials prepared from thermal pyrolysis of graphene quantum dots. Electrochimica Acta, 2020, 354, 136642.	5.2	19
92	SrCe0.7Zr0.2Eu0.1O3-based hydrogen transport water gas shift reactor. International Journal of Hydrogen Energy, 2012, 37, 16006-16012.	7.1	18
93	Carbon dioxide reforming of methane in a SrCe0.7Zr0.2Eu0.1O3â^' proton conducting membrane reactor. International Journal of Hydrogen Energy, 2012, 37, 19125-19132.	7.1	18
94	Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2 cathodes: NMP-soluble binder. II — Chemical changes in the anode. Journal of Power Sources, 2018, 385, 156-164.	7.8	18
95	Preparation of MgCo2O4/graphite composites as cathode materials for magnesium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1399-1407.	2.5	18
96	Catalytically active gold nanoparticles confined in periodic mesoporous organosilica (PMOs) by a modified external passivation route. Microporous and Mesoporous Materials, 2009, 117, 98-103.	4.4	17
97	Unconventional irreversible structural changes in a high-voltage Li–Mn-rich oxide for lithium-ion battery cathodes. Journal of Power Sources, 2015, 283, 423-428.	7.8	17
98	High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green Energy and Environment, 2019, 4, 375-381.	8.7	17
99	Bilayer hybrid graphite anodes via freeze tape casting for extreme fast charging applications. Carbon, 2022, 196, 525-531.	10.3	17
100	Permeation Through SrCe[sub 0.9]Eu[sub 0.1]O[sub 3â^î]/Ni–SrCeO[sub 3] Tubular Hydrogen Separation Membranes. Journal of the Electrochemical Society, 2009, 156, B791.	2.9	16
101	Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries. RSC Advances, 2015, 5, 92878-92884.	3.6	15
102	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie - International Edition, 2020, 59, 9773-9779.	13.8	15
103	Operando Analysis of Gas Evolution in TiNb ₂ O ₇ (TNO)-Based Anodes for Advanced High-Energy Lithium-Ion Batteries under Fast Charging. ACS Applied Materials & Interfaces, 2021, 13, 55145-55155.	8.0	15
104	Stability of SrCe[sub 1â^'x]Zr[sub x]O[sub 3â^'Î] under Water Gas Shift Reaction Conditions. Journal of the Electrochemical Society, 2010, 157, B383.	2.9	14
105	Atomic layer oxidation on graphene sheets for tuning their oxidation levels, electrical conductivities, and band gaps. Nanoscale, 2018, 10, 15521-15528.	5.6	14
106	Roll-To-Roll Atomic Layer Deposition of Titania Nanocoating on Thermally Stabilizing Lithium Nickel Cobalt Manganese Oxide Cathodes for Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10619-10631.	5.1	13
107	Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density. Electrochimica Acta, 2017, 254, 123-129.	5.2	12
108	Effect of formation protocol: Cells containing Si-Graphite composite electrodes. Journal of Power Sources, 2019, 435, 126548.	7.8	12

#	Article	IF	CITATIONS
109	Effect of Solvent on Fluorescence Emission from Polyethylene Glycol-Coated Graphene Quantum Dots under Blue Light Illumination. Nanomaterials, 2021, 11, 1383.	4.1	12
110	Atomic-scale constituting stable interface for improved LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ cathodes of lithium-ion batteries. Nanotechnology, 2021, 32, 115401.	2.6	12
111	A Bilayer Electrolyte Design to Enable High-Areal-Capacity Composite Cathodes in Polymer Electrolytes Based Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 1409-1413.	5.1	12
112	Linear control of the oxidation level on graphene oxide sheets using the cyclic atomic layer reduction technique. Nanoscale, 2019, 11, 7833-7838.	5.6	11
113	Deconvoluting sources of failure in lithium metal batteries containing NMC and PEO-based electrolytes. Electrochimica Acta, 2022, 404, 139579.	5.2	11
114	Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by a cyclic atomic layer reduction technique. Carbon, 2018, 137, 234-241.	10.3	10
115	Bio-inspired interfaces for easy-to-recycle lithium-ion batteries. Extreme Mechanics Letters, 2020, 34, 100594.	4.1	10
116	Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder. Journal of the Electrochemical Society, 2019, 166, A1121-A1126.	2.9	9
117	Effects of Plasticizer Content and Ceramic Addition on Electrochemical Properties of Cross-Linked Polymer Electrolyte. Journal of the Electrochemical Society, 2021, 168, 050549.	2.9	9
118	Innovative and Economically Beneficial Use of Corn and Corn Products in Electrochemical Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 10678-10703.	6.7	9
119	Stability of \$\$ {ext{SrCe}}_{{0.9}} {ext{Eu}}_{{0.1}} {ext{O}}_{{3 - delta }} \$\$ and \$\$ {ext{SrZr}}_{{0.2}} {ext{Ce}}_{{0.7}} {ext{Eu}}_{{0.1}} {ext{O}}_{{3 - delta }} \$\$ under H2 atmospheres. Ionics, 2009, 15, 525-530.	2.4	8
120	Reinvigorating Reverseâ€Osmosis Membrane Technology to Stabilize the V 2 O 5 Lithiumâ€Ion Battery Cathode. ChemElectroChem, 2017, 4, 1181-1189.	3.4	8
121	Synthesis of MgCo2O4-coated Li4Ti5O12 composite anodes using co-precipitation method for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 3197-3207.	2.5	7
122	Effect of overcharge on lithium-ion cells: Silicon/graphite anodes. Journal of Power Sources, 2019, 432, 73-81.	7.8	7
123	Review—Electrospun Inorganic Solid-State Electrolyte Fibers for Battery Applications. Journal of the Electrochemical Society, 2022, 169, 050527.	2.9	7
124	In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment. Journal of Power Sources, 2018, 375, 138-148.	7.8	6
125	Micronâ€size Silicon Monoxide Asymmetric Membranes for Highly Stable Lithium Ion Battery Anode. ChemistrySelect, 2018, 3, 8662-8668	1.5	6
126	Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite cells–effect of binder. Journal of Power Sources, 2020, 448, 227414.	7.8	6

#	Article	IF	CITATIONS
127	Amino-functionalization on graphene oxide sheets using an atomic layer amidation technique. Journal of Materials Chemistry C, 2020, 8, 700-705.	5.5	5
128	Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries. Batteries, 2022, 8, 12.	4.5	5
129	Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering. Angewandte Chemie, 2020, 132, 9860-9866.	2.0	4
130	Effect of binder on the overcharge response in LiFePO4-containing cells. Journal of Power Sources, 2020, 450, 227595.	7.8	4
131	Polypeptide-based batteries toward sustainable and cyclic manufacturing. CheM, 2021, 7, 1705-1707.	11.7	4
132	Stability of Zr-Doped SrCeO3-d Under Wet CO/CO2 Atmospheres. ECS Transactions, 2008, 11, 81-87.	0.5	3
133	Correlation of Oxygen Anion Redox Activity to Inâ€Plane Honeycomb Cation Ordering in Na _{ <i>x</i>} Ni _{<i>y</i>} Mn _{1â~' <i>y</i>} O ₂ Cathodes. Advanced Energy and Sustainability Research, 0, , 2200027.	5.8	3
134	Preparation and gas permeation of supported Î ³ -Al2O3 membranes used as substrate layer for microporous membranes. Journal Wuhan University of Technology, Materials Science Edition, 2005, 20, 27-30.	1.0	1
135	Exploratory spatial distribution of dynamic wireless charging demand for EVs. , 2016, , .		1
136	Tin asymmetric membranes for high capacity sodium ion battery anodes. Materials Today Communications, 2020, 24, 100998.	1.9	1
137	Editorial for focus on nanophase materials for next-generation lithium-ion batteries and beyond. Nanotechnology, 2021, , .	2.6	1
138	Advanced Materials Processing for Lithium Ion Battery Applications. ECS Meeting Abstracts, 2012, , .	0.0	0
139	Rücktitelbild: Observation of Ion Electrosorption in Metal–Organic Framework Micropores with In Operando Smallâ€Angle Neutron Scattering (Angew. Chem. 24/2020). Angewandte Chemie, 2020, 132, 9868-9868.	2.0	0
140	Bio-inspired nanotechnology for easy-to-recycle lithium-ion batteries. , 2022, , 141-158.		0