Daoyan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562979/publications.pdf

Version: 2024-02-01

38	1,280	21 h-index	35
papers	citations		g-index
38	38	38	1781
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Water extract of Cayratia albifolia C.L.Li root relieves zymosan A-induced inflammation by restraining M1 macrophage polarization. Phytomedicine, 2022, 96, 153901.	5.3	4
2	Recurrent moderate hypoglycemia accelerates the progression of Alzheimer's disease through impairment of the TRPC6/GLUT3 pathway. JCI Insight, 2022, 7, .	5.0	12
3	Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3. Circulation, 2022, 145, 375-391.	1.6	38
4	TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. International Journal of Obesity, 2022, 46, 1544-1555.	3.4	1
5	Activation of Transient Receptor Potential Channel Vanilloid 4 by DPP-4 (Dipeptidyl Peptidase-4) Inhibitor Vildagliptin Protects Against Diabetic Endothelial Dysfunction. Hypertension, 2020, 75, 150-162.	2.7	18
6	Reducing NADPH Synthesis Counteracts Diabetic Nephropathy through Restoration of AMPK Activity in Type 1 Diabetic Rats. Cell Reports, 2020, 32, 108207.	6.4	12
7	Lowâ€glucoseâ€sensitive TRPC6 dysfunction drives hypoglycemiaâ€induced cognitive impairment in diabetes. Clinical and Translational Medicine, 2020, 10, e205.	4.0	14
8	Transient Receptor Potential Channel Canonical Type 3 Deficiency Antagonizes Myofibroblast Transdifferentiation In Vivo. BioMed Research International, 2020, 2020, 1-12.	1.9	3
9	High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients. Hypertension Research, 2020, 43, 679-687.	2.7	10
10	Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism: Clinical and Experimental, 2020, 105, 154182.	3.4	53
11	Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- or Age-Related Whitening of Brown Adipose Tissue. Diabetes, 2020, 69, 165-180.	0.6	77
12	Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Science China Life Sciences, 2020, 63, 1665-1677.	4.9	10
13	Impairment of Bitter Taste Sensor Transient Receptor Potential Channel M5-Mediated Aversion Aggravates High-Salt Intake and Hypertension. Hypertension, 2019, 74, 1021-1032.	2.7	14
14	TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochemical and Biophysical Research Communications, 2019, 519, 674-681.	2.1	22
15	Caloric Restriction Exacerbates Angiotensin II–Induced Abdominal Aortic Aneurysm in the Absence of p53. Hypertension, 2019, 73, 547-560.	2.7	19
16	Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats. Kidney and Blood Pressure Research, 2018, 43, 439-448.	2.0	11
17	Non-insulin determinant pathways maintain glucose homeostasis upon metabolic surgery. Cell Discovery, 2018, 4, 58.	6.7	8
18	Deficiency of PKD2L1 (TRPP3) Exacerbates Pathological Cardiac Hypertrophy by Augmenting NCX1-Mediated Mitochondrial Calcium Overload. Cell Reports, 2018, 24, 1639-1652.	6.4	27

#	Article	IF	CITATIONS
19	Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)–salt-induced hypertension. Clinical Science, 2017, 131, 567-581.	4.3	36
20	Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Current Hypertension Reports, 2017, 19, 31.	3.5	7
21	Enhancement of Neural Salty Preference in Obesity. Cellular Physiology and Biochemistry, 2017, 43, 1987-2000.	1.6	18
22	Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure. Hypertension, 2017, 70, 1291-1299.	2.7	68
23	Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3–Mediated Calcium Handling in the Vasculature From Hypertensive Rats. Journal of the American Heart Association, 2017, 6, .	3.7	32
24	Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Coldâ€Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction. Journal of the American Heart Association, 2017, 6, .	3.7	31
25	Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Scientific Reports, 2016, 6, 25746.	3.3	30
26	Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension. Hypertension, 2016, 67, 541-549.	2.7	142
27	Sodium Intake Regulates Glucose Homeostasis through the PPARÎ / Adiponectin-Mediated SGLT2 Pathway. Cell Metabolism, 2016, 23, 699-711.	16.2	76
28	Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1–Mediated Protein Kinase A/Uncoupling Protein 2 Pathway. Hypertension, 2016, 67, 451-460.	2.7	61
29	Mitochondrial respiratory dysfunctions of blood mononuclear cells link with cardiac disturbance in patients with early-stage heart failure. Scientific Reports, 2015, 5, 10229.	3.3	46
30	Activation of <scp>TRPV1</scp> attenuates high saltâ€induced cardiac hypertrophy through improvement of mitochondrial function. British Journal of Pharmacology, 2015, 172, 5548-5558.	5.4	58
31	Transient Receptor Potential Vanilloid 1 Activation by Dietary Capsaicin Promotes Urinary Sodium Excretion by Inhibiting Epithelial Sodium Channel α Subunit–Mediated Sodium Reabsorption. Hypertension, 2014, 64, 397-404.	2.7	42
32	TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR- $\langle i \rangle \hat{l} \langle i \rangle$ Upregulation. PPAR Research, 2014, 2014, 1-12.	2.4	55
33	Gastrointestinal Intervention Ameliorates High Blood Pressure Through Antagonizing Overdrive of the Sympathetic Nerve in Hypertensive Patients and Rats. Journal of the American Heart Association, 2014, 3, e000929.	3.7	27
34	Imbalance and dysfunction of transient receptor potential channels contribute to the pathogenesis of hypertension. Science China Life Sciences, 2014, 57, 818-825.	4.9	12
35	Increased Migration of Monocytes in Essential Hypertension Is Associated with Increased Transient Receptor Potential Channel Canonical Type 3 Channels. PLoS ONE, 2012, 7, e32628.	2.5	27
36	Transient Receptor Potential Vanilloid Type-1 Channel in Cardiometabolic Protection. Journal of the Korean Society of Hypertension, 2011, 17, 37.	0.2	6

#	Article	IF	CITATION
37	Increased Transient Receptor Potential Canonical Type 3 Channels in Vasculature From Hypertensive Rats. Hypertension, 2009, 53, 70-76.	2.7	108
38	The Role of Transient Receptor Potential Channels in Metabolic Syndrome. Hypertension Research, 2008, 31, 1989-1995.	2.7	45