
Anees A Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews, 2022, 452, 214282.	18.8	57
2	Electrochemical performance of the Mn-doped CeO2: nanoparticles for sensitive electrocatalysts the urea concentrations. Journal of the Australian Ceramic Society, 2022, 58, 217-225.	1.9	3
3	Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews, 2022, 457, 214423.	18.8	53
4	Perovskite Nanoparticles as an Electrochemical Sensing Platform for Detection of Warfarin. Biosensors, 2022, 12, 92.	4.7	1
5	Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews, 2022, 462, 214523.	18.8	85
6	Facile synthesized NaGdF ₄ :Yb,Er peanutâ€shaped, highly biocompatible, colloidal upconversion nanospheres. Luminescence, 2022, 37, 1048-1056.	2.9	2
7	Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coordination Chemistry Reviews, 2022, 466, 214584.	18.8	38
8	Nanostructured CeO2:Ag platform for electrochemically sensitive detection of nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126116.	4.7	20
9	Electrochemical sensitive detection of hydrazine through cobalt-doped cerium oxide nanostructured platform. Journal of Materials Science: Materials in Electronics, 2021, 32, 13897-13905.	2.2	9
10	Tailoring the structure-morphology-vibrational-optical-dielectric and electrical characteristics of Ce@NiO NPs produced by facile combustion route for optoelectronics. Materials Science in Semiconductor Processing, 2021, 126, 105647.	4.0	22
11	Dielectric and electrical properties of La@NiO SNPs for high-performance optoelectronic applications. Ceramics International, 2021, 47, 15611-15621.	4.8	29
12	Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells. Coordination Chemistry Reviews, 2021, 436, 213805.	18.8	47
13	Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coordination Chemistry Reviews, 2021, 436, 213821.	18.8	76
14	Facile fabrication of novel nanostructured Au@Pbl2 thin films and their structure, optical and NLO studies for higher order nonlinear applications. Materials Chemistry and Physics, 2021, 265, 124458.	4.0	17
15	Highly hydrophilic CaF2:Yb/Er upconversion nanoparticles: Structural, morphological, and optical properties. Journal of Fluorine Chemistry, 2021, 247, 109820.	1.7	5
16	New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coordination Chemistry Reviews, 2021, 440, 213971.	18.8	60
17	Physiochemical characterization of highly biocompatible, and colloidal LaF3:Yb/Er upconversion nanoparticles. Photochemical and Photobiological Sciences, 2021, 20, 1195-1208.	2.9	7
18	Sensitive electrochemical detection of 4-nitrophenol through Copper doped CeO2 nanoparticles. Journal of Electroceramics, 2021, 47, 51-59.	2.0	1

#	Article	IF	CITATIONS
19	Zinc influence on nanostructured tin oxide (SnO2) films as ammonia sensor at room temperature. Surfaces and Interfaces, 2021, 25, 101195.	3.0	7
20	Nickle-ion-substituted ceria nanoparticles-based electrochemical sensor for sensitive detection of thiourea. Journal of Materials Science: Materials in Electronics, 2021, 32, 23266-23274.	2.2	5
21	Microwave-assisted synthesis of Cu doped PbS nanostructures with enhanced dielectric and electrical properties for optoelectronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115268.	3.5	21
22	Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews, 2021, 444, 214040.	18.8	96
23	Advancement in upconversion nanoparticles based NIR-driven photocatalysts. Renewable and Sustainable Energy Reviews, 2021, 151, 111631.	16.4	47
24	Biocompatible NaYF4:Yb,Er upconversion nanoparticles: Colloidal stability and optical properties. Journal of Saudi Chemical Society, 2021, 25, 101390.	5.2	8
25	In-vitro cytotoxicity evaluation of surface design luminescent lanthanide core/shell nanocrystals. Arabian Journal of Chemistry, 2020, 13, 1259-1270.	4.9	11
26	Facilely fabricated Dy:PbI2/glass thin films and their structural, linear and nonlinear optical studies for opto-nonlinear applications. Vacuum, 2020, 173, 109122.	3.5	22
27	Synthesis, optical properties and toxic potentiality of photoluminescent lanthanum oxide nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125511.	4.7	12
28	Highly Water-Soluble Luminescent Silica-Coated Cerium Fluoride Nanoparticles Synthesis, Characterizations, and <i>In Vitro</i> Evaluation of Possible Cytotoxicity. ACS Omega, 2020, 5, 19174-19180.	3.5	6
29	Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed CdS thin films: Effect of Gd doping content. Materials Chemistry and Physics, 2020, 255, 123615.	4.0	30
30	Novel rare earth Dy doping impact on physical properties of PbI2 nanostructures synthesized by microwave route for optoelectronics. Materials Characterization, 2020, 170, 110688.	4.4	7
31	Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles. Scientific Reports, 2020, 10, 15012.	3.3	50
32	A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 395, 112465.	3.9	51
33	Optically active neodymium hydroxide surface-functionalized mesoporous silica micro-cocoons for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110877.	5.0	12
34	Toxicity response of highly colloidal, bioactive, monodisperse SiO2@ Pr(OH)3 hollow microspheres. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110390.	5.0	8
35	Synthesis of NiO–CeO2 nanocomposite for electrochemical sensing of perilous 4-nitrophenol. Journal of Materials Science: Materials in Electronics, 2019, 30, 17643-17653.	2.2	22
36	Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO3 perovskites. Scientific Reports, 2019, 9, 7747.	3.3	51

#	Article	IF	CITATIONS
37	Luminescent surface-functionalized mesoporous core-shell nanospheres and their cytotoxicity evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 146-156.	4.7	4
38	Optimization of Redox and Catalytic Performance of LaFeO3 Perovskites: Synthesis and Physicochemical Properties. Journal of Electronic Materials, 2019, 48, 4351-4361.	2.2	16
39	Mitigation of acyl-homoserine lactone (AHL) based bacterial quorum sensing, virulence functions, and biofilm formation by yttrium oxide core/shell nanospheres: Novel approach to combat drug resistance. Scientific Reports, 2019, 9, 18476.	3.3	10
40	Aqueous dispersible green luminescent yttrium oxide:terbium microspheres with nanosilica shell coating. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 348-355.	3.9	14
41	Mesoporous multi-silica layer-coated Y2O3:Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation. Materials Science and Engineering C, 2019, 96, 365-373.	7.3	42
42	Preparation, characterizations and in vitro cytotoxic activity of nickel oxide nanoparticles on HT-29 and SW620 colon cancer cell lines. Journal of Trace Elements in Medicine and Biology, 2019, 52, 12-17.	3.0	33
43	Highly colloidal luminescent porous Tb-doped gadolinium oxide nanoparticles: Photophysical and luminescent properties. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 10-16.	3.9	15
44	Mesoporous silica modified luminescent Gd2O3:Eu nanoparticles: physicochemical and luminescence properties. Journal of Sol-Gel Science and Technology, 2019, 89, 785-795.	2.4	22
45	Mesoporous luminescent GdF3:Tb@LaF3@SiO2 nanorods: comparative structural and optoelectronic studies. Journal of Porous Materials, 2019, 26, 335-342.	2.6	8
46	Impact of Ni Ion-Doping on Structural, Optoelectronic and Redox Properties of CeO2 Nanoparticles. Journal of Electronic Materials, 2018, 47, 2557-2564.	2.2	4
47	Synthesis, structural, and photoluminescence studies of LaF3:Pr, LaF3:Pr@LaF3, and LaF3:Pr@LaF3@SiO2 nanophosphors. Journal of the Australian Ceramic Society, 2018, 54, 493-500.	1.9	12
48	Highly biocompatible, monodispersed and mesoporous La(OH)3:Eu@mSiO2 core-shell nanospheres: Synthesis and luminescent properties. Colloids and Surfaces B: Biointerfaces, 2018, 163, 133-139.	5.0	24
49	Facile Synthesis Method for the Preparation of Largeâ€scale Ultraâ€small GdPO ₄ :Tb and GdPO ₄ :Tb@LaPO ₄ Nanowires. Journal of the Chinese Chemical Society, 2018, 65, 490-496.	1.4	11
50	Structural and spectroscopic studies of LaPO4:Ce/Tb@LaPO4@SiO2 nanorods: Synthesis and role of surface coating. Vibrational Spectroscopy, 2018, 94, 43-48.	2.2	17
51	Silicaâ€modified luminescent LaPO ₄ :Eu@LaPO ₄ @SiO ₂ core/shell nanorods: Synthesis, structural and luminescent properties. Luminescence, 2018, 33, 112-118.	2.9	24
52	The Role of Solvent Environment on the Optical Behavior of Chemically Synthesized Silicon Nanoparticles. Journal of Spectroscopy, 2018, 2018, 1-9.	1.3	6
53	Nanocubic magnesium oxide: Towards hydrazine sensing. Vacuum, 2018, 155, 682-688.	3.5	14
54	Physiochemical and Optical Properties of GdF3:Pr@LaF3@SiO2 Microspheres. Materials Research, 2018, 21, .	1.3	5

#	Article	IF	CITATIONS
55	THERMAL DECOMPOSITION AND KINETIC STUDIES OF TANNIC ACID USING MODEL FREE-METHODS. Journal of the Chilean Chemical Society, 2018, 63, 3824-3828.	1.2	17
56	Effect of Surface Functionalization on Structural and Optical Properties of Luminescent LaF ₃ :Sm Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 1043-1050.	0.9	6
57	Impact of surface coating on morphological, optical and photoluminescence properties of YF 3 :Tb 3+ nanoparticles. Chinese Chemical Letters, 2017, 28, 651-657.	9.0	11
58	Preparation and Spectroscopic, Microscopic, Thermogravimetric, and Electrochemical Characterization of Silver-Doped Cerium(IV) Oxide Nanoparticles. Analytical Letters, 2017, 50, 1360-1371.	1.8	12
59	In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 153, 320-326.	5.0	47
60	Photochemical studies of monodispersed YPO 4 :Eu microspheres: The role of surface modification on structural and luminescence properties. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 343, 126-132.	3.9	22
61	Role of surface modification on physicochemical properties of luminescent YPO4:Tb nanorods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 286-291.	4.7	19
62	Effect of surface coating on structural and photophysical properties of CePO 4 :Tb, nanorods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 222, 43-48.	3.5	22
63	Evaluation of <i>in vitro</i> cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals. Science and Technology of Advanced Materials, 2017, 18, 364-373.	6.1	43
64	Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. Journal of Fluorine Chemistry, 2017, 199, 7-13.	1.7	22
65	Comparative Structural, Optical, and Photoluminescence Studies of <scp>YF₃</scp> :Pr, <scp>YF₃</scp> :Pr@ <scp>LaF₃</scp> , and <scp>YF₃</scp> :Pr@ <scp>LaF₃</scp> @ <scp>SiO₂</scp> Core–Shell Nanocrystals. Journal of the Chinese Chemical Society, 2017, 64, 440-448.	1.4	12
66	Physiochemical properties of greatly enhanced photoluminescence of aqueous dispersible upconversion CaF2:Yb/Er nanoparticles. Photochemical and Photobiological Sciences, 2017, 16, 890-896.	2.9	13
67	Influence of surface functionalization on structural and photo-luminescence properties of CeF 3 :Tb nanoparticles. Applied Surface Science, 2017, 409, 285-290.	6.1	24
68	Designing of luminescent GdPO 4 :Eu@LaPO 4 @SiO 2 core/shell nanorods: Synthesis, structural and luminescence properties. Solid State Sciences, 2017, 71, 117-122.	3.2	34
69	Surface Coating Effect on Structural, Optical and Photoluminescence Properties of Eu3+ Doped Yttrium Fluoride Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 194-200.	3.7	8
70	Impact of LaF ₃ and silica shell formation on the crystal, optical and photo-luminescence properties of LaF ₃ :Ce/Tb nanoparticles. Materials Chemistry Frontiers, 2017, 1, 727-734.	5.9	10
71	In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres. Saudi Journal of Biological Sciences, 2017, 24, 1392-1403.	3.8	18
72	In Vitro Cytotoxicity of Mesoporous SiO ₂ @Eu(OH) ₃ Core-Shell Nanospheres in MCF-7. Journal of Nanomaterials, 2016, 2016, 1-6.	2.7	15

#	Article	IF	CITATIONS
73	A facile synthesis approach and impact of shell formation on morphological structure and luminescent properties of aqueous dispersible NaGdF4:Yb/Er upconversion nanorods. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	17
74	Influence of copper ion doping on structural, optical and redox properties of CeO2 nanoparticles. Journal of Electroceramics, 2016, 36, 150-157.	2.0	29
75	Influence of Shell Formation on Morphological Structure, Optical and Emission Intensity on Aqueous Dispersible NaYF4:Ce/Tb Nanoparticles. Journal of Fluorescence, 2016, 26, 1151-1159.	2.5	23
76	Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties. Journal of Materials Science: Materials in Medicine, 2016, 27, 178.	3.6	31
77	Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3:Yb/Er nanoparticles. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	17
78	<i>In vitro</i> evaluation of anticancer and biological activities of synthesized manganese oxide nanoparticles. MedChemComm, 2016, 7, 1647-1653.	3.4	47
79	Synthesis, Structural and Optical Properties of Mn-Doped Ceria Nanoparticles: A Promising Catalytic Material. Acta Metallurgica Sinica (English Letters), 2016, 29, 265-273.	2.9	43
80	Enhanced luminescence efficiency of aqueous dispersible NaYF ₄ :Yb/Er nanoparticles and the effect of surface coating. RSC Advances, 2016, 6, 22074-22082.	3.6	64
81	Design, synthesis and in vitro evaluation of anticancer and antibacterial potential of surface modified Tb(OH) ₃ @SiO ₂ core–shell nanoparticles. RSC Advances, 2016, 6, 18667-18677.	3.6	18
82	Effect of cobalt doping on structural, optical and redox properties cerium oxide nanoparticles. Phase Transitions, 2016, 89, 261-272.	1.3	32
83	Synthesis and characterization of YVO ₄ :Eu ³⁺ nanoparticles: kinetics and isotherm studies for the removal of Cd ²⁺ metal ion. Desalination and Water Treatment, 2016, 57, 2081-2088.	1.0	17
84	Physicochemical and Redox Characteristics of Fe Ionâ€doped CeO ₂ Nanoparticles. Journal of the Chinese Chemical Society, 2015, 62, 925-932.	1.4	19
85	DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. Sensors, 2015, 15, 14539-14568.	3.8	104
86	In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. Journal of Biological Inorganic Chemistry, 2015, 20, 1319-1326.	2.6	58
87	Optical and structural studies of CaMoO4:Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles. Journal of Luminescence, 2015, 157, 257-263.	3.1	40
88	Nd-doped calcium molybdate core and particles: synthesis, optical and photoluminescence studies. Applied Physics A: Materials Science and Processing, 2014, 116, 1719-1728.	2.3	28
89	Enhanced photoluminescence in CaMoO4:Eu3+ by Gd3+ co-doping. Dalton Transactions, 2014, 43, 4779.	3.3	108
90	Structural and photoluminescence properties of Tb-doped CaMoO4 nanoparticles with sequential surface coatings. Materials Chemistry and Physics, 2014, 147, 715-721.	4.0	49

#	Article	IF	CITATIONS
91	Influence of Surface Coating on Structural and Photoluminescent Properties of CaMoO4:Pr Nanoparticles. Journal of Fluorescence, 2014, 24, 1253-1262.	2.5	42
92	Enhanced luminescence of CaMoO ₄ :Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe ₃ O ₄ : cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells. Integrative Biology (United Kingdom), 2014, 6, 53-64.	1.3	69
93	Influence of Gd ³⁺ co-doping on structural property of CaMoO ₄ :Eu nanoparticles. Dalton Transactions, 2014, 43, 4770-4778.	3.3	76
94	Effect of surface coating on optical properties of Eu3+-doped CaMoO4 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 131, 30-36.	3.9	53
95	Facile synthesis of water-soluble luminescent mesoporous Tb(OH)3@SiO2 core-shell nanospheres. Nanoscale Research Letters, 2013, 8, 163.	5.7	22
96	In-vitro cyto-toxicity, geno-toxicity, and bio-imaging evaluation of one-pot synthesized luminescent functionalized mesoporous SiO2@Eu(OH)3 core-shell microspheres. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1328-1335.	3.3	64
97	Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors. Physical Chemistry Chemical Physics, 2013, 15, 3480.	2.8	98
98	Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer. Materials, 2013, 6, 4361-4374.	2.9	45
99	Optical and Electrical Studies of Polyaniline/ZnO Nanocomposite. Journal of Nanomaterials, 2013, 2013, 1-5.	2.7	24
100	Effect of Environments on Optical Properties of Chemically Prepared Si Nanoparticles. Advanced Science, Engineering and Medicine, 2013, 5, 965-970.	0.3	2
101	Nanoporous characteristics of sol—gel-derived ZnO thin film. Journal of Semiconductors, 2012, 33, 042002.	3.7	7
102	Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sensors and Actuators B: Chemical, 2012, 173, 698-703.	7.8	49
103	Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core–shell formation. Dalton Transactions, 2012, 41, 11032.	3.3	188
104	Preparation and photoluminescence properties of hydrothermally synthesized YVO4:Eu3+ nanofibers. Materials Letters, 2012, 88, 152-155.	2.6	19
105	Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide. Journal of Physics: Conference Series, 2012, 358, 012006.	0.4	13
106	One-pot synthesis and photoluminescence properties of luminescent functionalized mesoporous SiO2@Tb(OH)3 core–shell nanospheres. Journal of Materials Chemistry, 2012, 22, 16649.	6.7	61
107	Synthesis of water-soluble luminescent LaVO4:Ln3+ porous nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	18
108	Synthesis of optically active silica-coated NdF3 core–shell nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 432-436.	3.9	50

#	Article	IF	CITATIONS
109	Hypersensitivity in the 4f–4f absorption spectra of tris (acetylacetonato) neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions. Journal of Luminescence, 2012, 132, 51-60.	3.1	38
110	Optical and electrical properties of electrochemically deposited polyaniline/CeO ₂ hybrid nanocomposite film. Journal of Semiconductors, 2011, 32, 043001.	3.7	29
111	Optical and structural properties of nanostructured CeO2:Tb3+ film. Journal of Alloys and Compounds, 2011, 509, 262-265.	5.5	45
112	Luminescent mesoporous LaVO4:Eu3+ core-shell nanoparticles: synthesis, characterization, biocompatibility and their cytotoxicity. Journal of Materials Chemistry, 2011, 21, 19310.	6.7	97
113	Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. Polymers for Advanced Technologies, 2011, 22, 903-908.	3.2	24
114	Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry, 2010, 77, 75-81.	4.6	127
115	DNA-Based Applications in Nanobiotechnology. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-15.	3.0	36
116	Nanomaterials as Analytical Tools for Genosensors. Sensors, 2010, 10, 963-993.	3.8	74
117	Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors, 2010, 10, 6535-6581.	3.8	54
118	Synthesis and optical properties of nanostructured Ce(OH) ₄ . Journal of Semiconductors, 2010, 31, 033001.	3.7	32
119	Optical and structural properties of sol–gel derived nanostructured CeO ₂ film. Journal of Semiconductors, 2010, 31, 053001.	3.7	52
120	Synthesis and Characterization of a Biologically Active Lanthanum(III)–Catechin Complex and DNA Binding Spectroscopic Studies. Spectroscopy Letters, 2009, 42, 178-185.	1.0	11
121	Polyaniline-Cerium Oxide Nanocomposite for Hydrogen Peroxide Sensor. Journal of Nanoscience and Nanotechnology, 2009, 9, 4679-4685.	0.9	38
122	Nanostructured zinc oxide film for urea sensor. Materials Letters, 2009, 63, 2473-2475.	2.6	100
123	Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors and Actuators B: Chemical, 2009, 138, 572-580.	7.8	205
124	Nanostructured cerium oxide film for triglyceride sensor. Sensors and Actuators B: Chemical, 2009, 141, 551-556.	7.8	86
125	Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors and Actuators B: Chemical, 2009, 137, 727-735.	7.8	121
126	Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. Journal of Biotechnology, 2009, 142, 179-184.	3.8	132

#	Article	IF	CITATIONS
127	Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochemical Engineering Journal, 2009, 46, 132-140.	3.6	72
128	Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. Journal of Materials Research, 2009, 24, 1667-1673.	2.6	33
129	Sol–gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. Analyst, The, 2009, 134, 997.	3.5	59
130	Nanostructured zinc oxide platform for cholesterol sensor. Applied Physics Letters, 2009, 94, 143901.	3.3	105
131	A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology, 2009, 20, 055105.	2.6	106
132	Sol–Gel Derived Nanostructured Tin Oxide Film for Glucose Sensor. Sensor Letters, 2009, 7, 64-71.	0.4	13
133	Optical properties of pyridine funtionalized TbF3 nanoparticles. Journal of Nanoparticle Research, 2008, 10, 703-707.	1.9	23
134	Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochemistry Communications, 2008, 10, 1364-1368.	4.7	130
135	Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 2008, 616, 207-213.	5.4	250
136	Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 2008, 10, 1246-1249.	4.7	213
137	Zinc oxide-chitosan nanobiocomposite for urea sensor. Applied Physics Letters, 2008, 93, .	3.3	111
138	Sol-gel derived nanostructured cerium oxide film for glucose sensor. Applied Physics Letters, 2008, 92, .	3.3	138
139	Paramagnetic NMR shift, spectroscopic and molecular modeling studies of lanthanide(III)-morin complexes. Journal of Coordination Chemistry, 2008, 61, 3869-3878.	2.2	15
140	Solvent effect on optical properties of hydrated lanthanide tris-acetylacetone. Journal of Luminescence, 2007, 127, 446-452.	3.1	36
141	Optical absorption and NMR spectroscopic studies on paramagnetic neodymium(III) complexes with β-diketone and heterocyclic amines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1178-1188.	3.9	35
142	Nuclear magnetic resonance and optical absorption spectroscopic studies on paramagnetic praseodymium(III) complexes with β-diketone and heterocyclic amines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 176-183.	3.9	22
143	Optical absorption spectroscopic studies on holmium(III) complexes with β-diketone and heterocyclic amines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1305-1312.	3.9	24
144	Optical absorption and NMR spectroscopic studies on paramagnetic trivalent lanthanide complexes with 2,2′-bipyridine Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 873-884.	3.9	29