
Igal Szleifer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562568/publications.pdf Version: 2024-02-01

ICAL STIFLER

#	Article	IF	CITATIONS
1	Chromatin as self-returning walks: From population to single cell and back. Biophysical Reports, 2022, 2, 100042.	0.7	1
2	Proteins Adsorbing onto Surface-Modified Nanoparticles: Effect of Surface Curvature, pH, and the Interplay of Polymers and Proteins Acid–Base Equilibrium. Polymers, 2022, 14, 739.	2.0	5
3	Acid-Base Equilibrium and Dielectric Environment Regulate Charge in Supramolecular Nanofibers. Frontiers in Chemistry, 2022, 10, 852164.	1.8	6
4	Analysis of three-dimensional chromatin packing domains by chromatin scanning transmission electron microscopy (ChromSTEM). Scientific Reports, 2022, 12, .	1.6	18
5	Nanopore gates <i>via</i> reversible crosslinking of polymer brushes: a theoretical study. Soft Matter, 2021, 17, 2791-2802.	1.2	9
6	Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. Science Advances, 2021, 7, .	4.7	37
7	Design of Multifunctional Nanopore Using Polyampholyte Brush with Composition Gradient. ACS Nano, 2021, 15, 17678-17688.	7.3	14
8	Structure and dynamics of nanoconfined water and aqueous solutions. European Physical Journal E, 2021, 44, 136.	0.7	38
9	Dynamic Crowding Regulates Transcription. Biophysical Journal, 2020, 118, 2117-2129.	0.2	15
10	Disordered chromatin packing regulates phenotypic plasticity. Science Advances, 2020, 6, eaax6232.	4.7	34
11	Physical and data structure of 3D genome. Science Advances, 2020, 6, eaay4055.	4.7	32
12	Nanocompartmentalization of the Nuclear Pore Lumen. Biophysical Journal, 2020, 118, 219-231.	0.2	28
13	Nanoscale Chromatin Imaging and Analysis (nano-ChIA) Platform Bridges 4-D Chromatin Organization with Molecular Function. Microscopy and Microanalysis, 2020, 26, 1046-1050.	0.2	3
14	Charge regulation mechanism in end-tethered weak polyampholytes. Soft Matter, 2020, 16, 8832-8847.	1.2	13
15	Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers, 2020, 12, 2282.	2.0	16
16	Voltage-Triggered Structural Switching of Polyelectrolyte-Modified Nanochannels. Macromolecules, 2020, 53, 2616-2626.	2.2	16
17	Transport in nanopores and nanochannels: some fundamental challenges and nature-inspired solutions. Materials Today Advances, 2020, 5, 100047.	2.5	34
18	Modeling the nucleoporins that form the hairy pores. Biochemical Society Transactions, 2020, 48, 1447-1461.	1.6	11

#	Article	IF	CITATIONS
19	Effect of Polymer Surface Modification of Superparamagnetic Iron Oxide Nanoparticle Dispersions in High Salinity Environments. Langmuir, 2019, 35, 15864-15871.	1.6	3
20	Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology. PLoS ONE, 2019, 14, e0219006.	1.1	4
21	How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Current Opinion in Colloid and Interface Science, 2019, 41, 27-39.	3.4	26
22	Effect of collagenase–gelatinase ratio on the mechanical properties of a collagen fibril: a combined Monte Carlo–molecular dynamics study. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1809-1819.	1.4	11
23	Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. Journal of Colloid and Interface Science, 2019, 552, 701-711.	5.0	12
24	pH-Dependent structure of water-exposed surfaces of CdSe quantum dots. Chemical Communications, 2019, 55, 5435-5438.	2.2	11
25	Multimodal interference-based imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm. Nature Communications, 2019, 10, 1652.	5.8	16
26	Classification of RNA backbone conformations into rotamers using ¹³ C′ chemical shifts: exploring how far we can go. PeerJ, 2019, 7, e7904.	0.9	4
27	Competitive calcium ion binding to end-tethered weak polyelectrolytes. Soft Matter, 2018, 14, 2365-2378.	1.2	38
28	Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature. Journal of Physical Chemistry C, 2018, 122, 6669-6677.	1.5	9
29	A thermoresponsive, citrateâ€based macromolecule for bone regenerative engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1743-1752.	2.1	14
30	The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles. Biomaterials Science, 2018, 6, 1048-1058.	2.6	11
31	In silico study of principal sex hormone effects on post-injury synovial inflammatory response. PLoS ONE, 2018, 13, e0209582.	1.1	1
32	Hypercapnia Alters Expression of Immune Response, Nucleosome Assembly and Lipid Metabolism Genes in Differentiated Human Bronchial Epithelial Cells. Scientific Reports, 2018, 8, 13508.	1.6	30
33	Routes for nanoparticle translocation through polymer-brush-modified nanopores. Journal of Physics Condensed Matter, 2018, 30, 274006.	0.7	15
34	Effect of calcium ions on the interactions between surfaces end-grafted with weak polyelectrolytes. Journal of Chemical Physics, 2018, 149, 163309.	1.2	19
35	Insights into the Role of Counterions on Polyelectrolyte-Modified Nanopore Accessibility. Langmuir, 2018, 34, 5943-5953.	1.6	11
36	Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nature Communications, 2018, 9, 2395.	5.8	102

#	Article	IF	CITATIONS
37	Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy. Journal of Biophotonics, 2017, 10, 377-384.	1.1	13
38	The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression. Scientific Reports, 2017, 7, 41061.	1.6	64
39	Design of Multifunctional Nanogate in Response to Multiple External Stimuli Using Amphiphilic Diblock Copolymer. Journal of the American Chemical Society, 2017, 139, 6422-6430.	6.6	64
40	Mechanical properties of a collagen fibril under simulated degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 549-557.	1.5	22
41	Structural behavior of competitive temperature and pH-responsive tethered polymer layers. Soft Matter, 2017, 13, 6322-6331.	1.2	6
42	The effects of chemical fixation on the cellular nanostructure. Experimental Cell Research, 2017, 358, 253-259.	1.2	64
43	Macrogenomic engineering via modulation of the scaling of chromatin packing density. Nature Biomedical Engineering, 2017, 1, 902-913.	11.6	47
44	Theoretical Basis for Structure and Transport in Nanopores and Nanochannels. , 2017, , 27-60.		5
45	Advanced Modeling of Ion Transport in Polymer and Polyelectrolyte-Modified Nanochannels and Nanopores. , 2017, , 131-203.		1
46	Behavior of ligand binding assays with crowded surfaces: Molecular model of antigen capture by antibody-conjugated nanoparticles. PLoS ONE, 2017, 12, e0185518.	1.1	28
47	Using electron microscopy to calculate optical properties of biological samples. Biomedical Optics Express, 2016, 7, 4749.	1.5	7
48	What is the role of curvature on the properties of nanomaterials for biomedical applications?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 334-354.	3.3	33
49	The Effects of Chemical Fixation on the Cellular Nanostructure: A Correlative Study of Back-Scattered Interference Spectrometry Microscopy and TEM. Microscopy and Microanalysis, 2016, 22, 234-235.	0.2	0
50	The Greater Genomic Landscape: The Heterogeneous Evolution of Cancer. Cancer Research, 2016, 76, 5605-5609.	0.4	25
51	Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6372-E6381.	3.3	56
52	Adsorption and protonation of peptides and proteins in pH responsive gels. Journal Physics D: Applied Physics, 2016, 49, 323001.	1.3	22
53	Cover Image, Volume 8, Issue 3. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, i-i.	3.3	0
54	Controlling swelling/deswelling of stimuli-responsive hydrogel nanofilms in electric fields. Soft Matter, 2016, 12, 8359-8366.	1.2	20

#	Article	IF	CITATIONS
55	Controlling the hydration rate of a hydrophilic matrix in the core of an intravaginal ring determines antiretroviral release. Journal of Controlled Release, 2016, 224, 176-183.	4.8	15
56	Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects. Faraday Discussions, 2016, 191, 351-372.	1.6	10
57	Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes. Journal of Physical Chemistry C, 2016, 120, 4789-4798.	1.5	52
58	Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunology, 2016, 9, 1549-1558.	2.7	47
59	Differential Mechanisms of Tenofovir and Tenofovir Disoproxil Fumarate Cellular Transport and Implications for Topical Preexposure Prophylaxis. Antimicrobial Agents and Chemotherapy, 2016, 60, 1667-1675.	1.4	28
60	Dynamics of dissipative self-assembly of particles interacting through oscillatory forces. Faraday Discussions, 2016, 186, 399-418.	1.6	15
61	Molecular dynamics simulations of anchored viral peptide interactions. Biointerphases, 2015, 10, 029513.	0.6	1
62	Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips. Journal of Physical Chemistry C, 2015, 119, 27118-27124.	1.5	9
63	Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology, 2015, 11, 192-194.	3.9	108
64	Mesoporous Hybrid Thin Film Membranes with PMETAC@Silica Architectures: Controlling Ionic Gating through the Tuning of Polyelectrolyte Density. Chemistry of Materials, 2015, 27, 808-821.	3.2	60
65	Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid–base equilibrium. Soft Matter, 2015, 11, 6669-6679.	1.2	25
66	The role of steric interactions in dispersion of carbon nanotubes by poly(3-alkyl thiophenes) in organic solvents. Journal of Colloid and Interface Science, 2015, 452, 62-68.	5.0	13
67	Transport mechanisms in nanopores and nanochannels: can we mimic nature?. Materials Today, 2015, 18, 131-142.	8.3	206
68	Molecular and Thermodynamic Factors Explain the Passivation Properties of Poly(ethylene) Tj ETQq0 0 0 rgBT /Ov 31, 11491-11501.	erlock 10 1.6	Tf 50 227 Tc 15
69	Salt Pumping by Voltage-Gated Nanochannels. Journal of Physical Chemistry Letters, 2015, 6, 3534-3539.	2.1	13
70	How Does Confinement Change Ligand–Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels. Journal of the American Chemical Society, 2015, 137, 12539-12551.	6.6	43
71	Molecular Design of Antifouling Polymer Brushes Using Sequenceâ€6pecific Peptoids. Advanced Materials Interfaces, 2015, 2, 1400225.	1.9	77
72	Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms. Langmuir, 2014, 30, 15335-15344.	1.6	14

#	Article	IF	CITATIONS
73	Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers. Journal of Chemical Physics, 2014, 140, 024910.	1.2	39
74	Nematic Ordering of SWNT in Meso-Structured Thin Liquid Films of Polystyrenesulfonate. Langmuir, 2014, 30, 14963-14970.	1.6	3
75	Nonmonotonic Diffusion of Particles Among Larger Attractive Crowding Spheres. Physical Review Letters, 2014, 113, 138302.	2.9	31
76	Crowding-Induced Formation and Structural Alteration of Nuclear Compartments. International Review of Cell and Molecular Biology, 2014, 307, 73-108.	1.6	13
77	On the stability of nanoparticles coated with polyelectrolytes in high salinity solutions. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1689-1699.	2.4	21
78	Macromolecular Crowding as a Regulator of Gene Transcription. Biophysical Journal, 2014, 106, 1801-1810.	0.2	72
79	The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation. Biophysical Journal, 2014, 107, 1970-1979.	0.2	79
80	Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration. Journal of Chemical Physics, 2014, 141, 124909.	1.2	29
81	Self-Organized Polyelectrolyte End-Grafted Layers Under Nanoconfinement. ACS Nano, 2014, 8, 9998-10008.	7.3	22
82	Adsorption of Superparamagnetic Iron Oxide Nanoparticles on Silica and Calcium Carbonate Sand. Langmuir, 2014, 30, 784-792.	1.6	24
83	Albumin Hydrogels Formed by Electrostatically Triggered Self-Assembly and Their Drug Delivery Capability. Biomacromolecules, 2014, 15, 3625-3633.	2.6	65
84	Dissipative self-assembly of particles interacting through time-oscillatory potentials. Proceedings of the United States of America, 2014, 111, 9751-9756.	3.3	62
85	Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2014, 118, 921-930.	1.2	138
86	Membrane phospholipid redistribution in cancer microâ€particles and implications in the recruitment of cationic protein factors. Journal of Extracellular Vesicles, 2014, 3, 22653.	5.5	10
87	Entropic templating. Nature Materials, 2013, 12, 693-694.	13.3	6
88	Multiple-Time-Scale Motion in Molecularly Linked Nanoparticle Arrays. ACS Nano, 2013, 7, 108-116.	7.3	11
89	Antifouling Glycocalyx-Mimetic Peptoids. Journal of the American Chemical Society, 2013, 135, 13015-13022.	6.6	113
90	Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotechnology, 2013, 8, 676-681.	15.6	136

#	Article	IF	CITATIONS
91	Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano, 2013, 7, 9085-9097.	7.3	81
92	Adsorption of Acid and Polymer Coated Nanoparticles: A Statistical Thermodynamics Approach. Langmuir, 2013, 29, 14482-14493.	1.6	7
93	Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water. Journal of Chemical Physics, 2013, 139, 044509.	1.2	11
94	The Rate of Energy Dissipation Determines Probabilities of Nonâ€equilibrium Assemblies. Angewandte Chemie - International Edition, 2013, 52, 10304-10308.	7.2	22
95	Mode specific elastic constants for the gel, liquid-ordered, and liquid-disordered phases of DPPC/DOPC/cholesterol model lipid bilayers. Faraday Discussions, 2013, 161, 177-191.	1.6	17
96	How to optimize binding of coated nanoparticles: coupling of physical interactions, molecular organization and chemical state. Biomaterials Science, 2013, 1, 814.	2.6	20
97	pH-Controlled Nanoaggregation in Amphiphilic Polymer Co-networks. ACS Nano, 2013, 7, 2693-2704.	7.3	31
98	The water supercooled regime as described by four common water models. Journal of Chemical Physics, 2013, 139, 024506.	1.2	15
99	Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3363-3368.	3.3	139
100	The Rate of Energy Dissipation Determines Probabilities of Nonâ€equilibrium Assemblies. Angewandte Chemie, 2013, 125, 10494-10498.	1.6	7
101	Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16339-16343.	3.3	28
102	Stability of Superparamagnetic Iron Oxide Nanoparticles at Different pH Values: Experimental and Theoretical Analysis. Langmuir, 2012, 28, 6246-6255.	1.6	51
103	Molecular Dynamics Simulation of Lysozyme Adsorption/Desorption on Hydrophobic Surfaces. Journal of Physical Chemistry B, 2012, 116, 10189-10194.	1.2	97
104	Confinement induced lateral segregation of polymer coated nanospheres. Soft Matter, 2012, 8, 1688-1700.	1.2	10
105	Molecular theory of weak polyelectrolyte thin films. Soft Matter, 2012, 8, 1344-1354.	1.2	51
106	Surface-Grafted Polysarcosine as a Peptoid Antifouling Polymer Brush. Langmuir, 2012, 28, 16099-16107.	1.6	146
107	Tunable Diacetylene Polymerized Shell Microbubbles as Ultrasound Contrast Agents. Langmuir, 2012, 28, 3766-3772.	1.6	23
108	Optical Properties of Responsive Hybrid Au@Polymer Nanoparticles. ACS Nano, 2012, 6, 8397-8406.	7.3	58

#	Article	IF	CITATIONS
109	New insight into the electrochemical desorption of alkanethiol SAMs on gold. Physical Chemistry Chemical Physics, 2012, 14, 12355.	1.3	29
110	Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport. Soft Matter, 2012, 8, 7292.	1.2	99
111	An Experimental–Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes. Langmuir, 2012, 28, 2288-2298.	1.6	66
112	Phase Behavior of Lipid Bilayers under Tension. Biophysical Journal, 2012, 102, 517-522.	0.2	43
113	Time Dependence of Lysozyme Adsorption on End-Grafted Polymer Layers of Variable Grafting Density and Length. Langmuir, 2012, 28, 2122-2130.	1.6	19
114	Interacting nanoparticles with functional surface groups. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 852-862.	2.4	16
115	Theoretical studies of the phase behavior of DPPC bilayers in the presence of macroions. Soft Matter, 2011, 7, 4672.	1.2	9
116	Molecular Theory of Weak Polyelectrolyte Gels: The Role of pH and Salt Concentration. Macromolecules, 2011, 44, 147-158.	2.2	125
117	Effects of the Salt Concentration on Charge Regulation in Tethered Polyacid Monolayers. Langmuir, 2011, 27, 4679-4689.	1.6	21
118	Structural and Dynamical Characteristics of Peptoid Oligomers with Achiral Aliphatic Side Chains Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2011, 115, 10967-10975.	1.2	21
119	Halide Affinity for the Waterâ^'Air Interface in Aqueous Solutions of Mixtures of Sodium Salts. Journal of Physical Chemistry A, 2011, 115, 5895-5899.	1.1	30
120	Molecular Modeling of Domain Formation upon Protein Adsorption in Lipid Bilayers. Biophysical Journal, 2011, 100, 333a.	0.2	1
121	Interleaflet Coupling and Domain Registry in Phase-Separated Lipid Bilayers. Biophysical Journal, 2011, 100, 996-1004.	0.2	48
122	Structural Effects and Translocation of Doxorubicin in a DPPC/Chol Bilayer: The Role of Cholesterol. Biophysical Journal, 2011, 101, 378-385.	0.2	62
123	Specific Salt Effects on Poly(ethylene oxide) Electrolyte Solutions. Macromolecules, 2011, 44, 1719-1727.	2.2	54
124	Crowding-Induced Structural Alterations of Random-Loop Chromosome Model. Physical Review Letters, 2011, 106, 168102.	2.9	52
125	Lysozyme Adsorption on Polyethylene Surfaces: Why Are Long Simulations Needed?. Langmuir, 2011, 27, 12074-12081.	1.6	118
126	Anomalies in supercooled NaCl aqueous solutions: A microscopic perspective. Journal of Chemical Physics, 2011, 134, 244510.	1.2	20

#	Article	IF	CITATIONS
127	The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis. Physical Biology, 2011, 8, 015004.	0.8	33
128	Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte-Modified Nanopores. Journal of the American Chemical Society, 2011, 133, 17753-17763.	6.6	88
129	Morphology Control of Hairy Nanopores. ACS Nano, 2011, 5, 4737-4747.	7.3	89
130	Temperature dependence of ice critical nucleus size. Journal of Chemical Physics, 2011, 135, 034508.	1.2	60
131	How and Why Nanoparticle's Curvature Regulates the Apparent p <i>K</i> _a of the Coating Ligands. Journal of the American Chemical Society, 2011, 133, 2192-2197.	6.6	208
132	Structure of supercooled water in clusters and bulk and its relation to the two-state picture of water: Results from the TIP4P-ice model. European Physical Journal E, 2011, 34, 126.	0.7	10
133	Polymer-regulated pattern formation in pseudo-2D arrays of a fullerene derivative at the solution-Air interface. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 516-522.	2.4	1
134	Prompting Physicians to Address a Daily Checklist and Process of Care and Clinical Outcomes. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 680-686.	2.5	189
135	Molecular modeling of responsive polymer films. AICHE Journal, 2010, 56, 1952-1959.	1.8	5
136	Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study. Chemical Physics, 2010, 375, 503-507.	0.9	5
137	Halide and sodium ion parameters for modeling aqueous solutions in TIP5P-Ew water. Chemical Physics Letters, 2010, 489, 113-117.	1.2	16
138	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	13.3	5,007
139	Langmuir monolayers with internal dipoles: Understanding phase behavior using Monte Carlo simulations. Journal of Chemical Physics, 2010, 132, 014703.	1.2	4
140	Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5300-5305.	3.3	108
141	Structural transitions and dipole moment of water clusters (H2O)n=4–100. Journal of Chemical Physics, 2010, 133, 024506.	1.2	22
142	Order–disorder transition induced by surfactant micelles in single-walled carbon nanotubes dispersions. Soft Matter, 2010, 6, 5289.	1.2	16
143	Calculating Partition Coefficients of Chain Anchors in Liquid-Ordered and Liquid-Disordered Phases. Biophysical Journal, 2010, 98, 1883-1892.	0.2	24
144	Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters. Journal of the American Chemical Society, 2010, 132, 12404-12411.	6.6	171

#	Article	IF	CITATIONS
145	Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity. Nano Letters, 2010, 10, 1664-1670.	4.5	183
146	Depletion Effect on Polymers Induced by Small Depleting Spheres. Journal of Physical Chemistry C, 2010, 114, 20864-20869.	1.5	30
147	Hydrophobic-induced surface reorganization: molecular dynamics simulations of water nanodroplets on perfluorocarbon self-assembled monolayers. Soft Matter, 2010, 6, 1644.	1.2	11
148	Surfactant driven surface anchoring transitions in liquid crystal thin films. Soft Matter, 2010, 6, 5482.	1.2	18
149	Streptavidinâ^'Biotin Binding in the Presence of a Polymer Spacer. A Theoretical Description. Langmuir, 2009, 25, 12283-12292.	1.6	37
150	Stability and Liquid-Liquid Phase Separation in Mixed Saturated Lipid Bilayers. Biophysical Journal, 2009, 96, 3977-3986.	0.2	26
151	Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases, 2009, 4, FA22-FA32.	0.6	49
152	Analytical theory and Monte Carlo simulations of gel formation of charged chains. Soft Matter, 2009, 5, 629-636.	1.2	14
153	An isotopic effect in self-assembly of amphiphilic block copolymers: the role of hydrogen bonds. Soft Matter, 2009, 5, 5003.	1.2	17
154	A molecular theory of chemically modified electrodes with self-assembled redox polyelectrolye thin films: Reversible cyclic voltammetry. Electrochimica Acta, 2008, 53, 6740-6752.	2.6	13
155	Structure and Interactions of Aggrecans: Statistical Thermodynamic Approach. Biophysical Journal, 2008, 95, 4570-4583.	0.2	43
156	Aggregation and Self-Assembly of Amphiphilic Block Copolymers in Aqueous Dispersions of Carbon Nanotubes. Langmuir, 2008, 24, 4625-4632.	1.6	71
157	Molecular Theory of Chemically Modified Electrodes by Redox Polyelectrolytes under Equilibrium Conditions:  Comparison with Experiment. Journal of Physical Chemistry C, 2008, 112, 458-471.	1.5	64
158	The Role of Hydrogen Bonding in Tethered Polymer Layers. Journal of Physical Chemistry B, 2008, 112, 16238-16248.	1.2	49
159	Ligandâ^'Receptor Interactions between Surfaces: The Role of Binary Polymer Spacers. Langmuir, 2008, 24, 10324-10333.	1.6	28
160	Redox and Acidâ^'Base Coupling in Ultrathin Polyelectrolyte Films. Langmuir, 2008, 24, 2869-2877.	1.6	51
161	Quantitatively Modeling the Equilibrium Properties of Thiol-Decorated Gold Nanoparticles. Langmuir, 2008, 24, 8448-8451.	1.6	15
162	Tethered Polymer Layers. Advances in Chemical Physics, 2007, , 165-260.	0.3	133

#	Article	IF	CITATIONS
163	Phase Behavior and Charge Regulation of Weak Polyelectrolyte Grafted Layers. Physical Review Letters, 2007, 98, 018302.	2.9	96
164	The Role of Intefacial Diffuseness on Surface Segregation From Polymer Blends. Soft Materials, 2007, 5, 75-85.	0.8	0
165	Effects of block copolymer's architecture on its association with lipid membranes: Experiments and simulations. Journal of Chemical Physics, 2007, 127, 114904.	1.2	46
166	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates:  1. Experiment. Macromolecules, 2007, 40, 8756-8764.	2.2	252
167	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates:  2. Theory. Macromolecules, 2007, 40, 8765-8773.	2.2	149
168	Physical Adsorption of Block Copolymers to SWNT and MWNT:Â A Nonwrapping Mechanism. Macromolecules, 2007, 40, 3676-3685.	2.2	155
169	Stability and Phase Separation in Mixed Monopolar Lipid/Bolalipid Layers. Biophysical Journal, 2007, 93, 2609-2621.	0.2	21
170	Monte Carlo simulation and molecular theory of tethered polyelectrolytes. Journal of Chemical Physics, 2007, 126, 244902.	1.2	53
171	lons at the ice/vapor interface. Chemical Physics Letters, 2007, 436, 99-103.	1.2	44
172	Molecular dynamics simulation of ice growth from supercooled pure water and from salt solution. Annals of Glaciology, 2006, 44, 113-117.	2.8	40
173	Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft Matter, 2006, 2, 24-28.	1.2	47
174	Interactions between Charged Surfaces and Functionalized Grafted Polymer Layers. Industrial & Engineering Chemistry Research, 2006, 45, 5466-5476.	1.8	10
175	Weak polyelectrolytes tethered to surfaces: Effect of geometry, acid–base equilibrium and electrical permittivity. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2638-2662.	2.4	171
176	Salt-Induced Depression of Lower Critical Solution Temperature in a Surface-Grafted Neutral Thermoresponsive Polymer. Macromolecular Rapid Communications, 2006, 27, 697-701.	2.0	86
177	Controlled release of proteins from polymer-modified surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5769-5774.	3.3	61
178	Cluster Structure and Corralling Effect Driven by Interaction Mismatch in Two Dimensional Mixtures. Physical Review Letters, 2006, 96, 028701.	2.9	26
179	Phase Diagram of a Ternary Mixture of Cholesterol and Saturated and Unsaturated Lipids Calculated from a Microscopic Model. Physical Review Letters, 2006, 96, 098101.	2.9	73
180	Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer, 2005, 46, 7803-7818.	1.8	276

#	Article	IF	CITATIONS
181	Critical properties of thin films of polymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1849-1853.	2.4	1
182	Phase separation of saturated and mono-unsaturated lipids as determined from a microscopic model. Journal of Chemical Physics, 2005, 122, 044904.	1.2	55
183	Control of Carbon Nanotubeâ^'Surface Interactions:Â The Role of Grafted Polymers. Langmuir, 2005, 21, 12072-12075.	1.6	29
184	Ligandâ^'Receptor Interactions in Tethered Polymer Layers. Langmuir, 2005, 21, 11342-11351.	1.6	56
185	Molecular dynamics simulations of ice growth from supercooled water. Molecular Physics, 2005, 103, 2957-2967.	0.8	98
186	Kinetics of Protein Adsorption and Desorption on Surfaces with Grafted Polymers. Biophysical Journal, 2005, 89, 1516-1533.	0.2	144
187	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates. , 2005, , 287-315.		11
188	Enveloping of Charged Proteins by Lipid Bilayers. Journal of Physical Chemistry B, 2004, 108, 1491-1496.	1.2	23
189	Selective Dispersion of Single-Walled Carbon Nanotubes in the Presence of Polymers:Â the Role of Molecular and Colloidal Length Scales. Journal of the American Chemical Society, 2004, 126, 14850-14857.	6.6	204
190	Controlling Surface Interactions with Grafted Polymers. Journal of Materials Science, 2003, 11, 187-197.	1.2	10
191	Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior. Journal of Chemical Physics, 2003, 119, 1053-1065.	1.2	57
192	A Molecular Theory of Polymer Gels. Macromolecules, 2002, 35, 1373-1380.	2.2	55
193	Effect of Molecular Structure on the Adsorption of Protein on Surfaces with Grafted Polymers. Langmuir, 2002, 18, 5497-5510.	1.6	76
194	Adsorption of model charged proteins on charged surfaces with grafted polymers. Molecular Physics, 2002, 100, 2993-3003.	0.8	30
195	Size and Structure of Spontaneously Forming Liposomes in Lipid/PEG-Lipid Mixtures. Biophysical Journal, 2002, 83, 2419-2439.	0.2	80
196	Kinetics and Thermodynamics of Protein Adsorption: A Generalized Molecular Theoretical Approach. Biophysical Journal, 2001, 80, 2568-2589.	0.2	150
197	Tethered polymer layers: phase transitions and reduction of protein adsorption. Macromolecular Rapid Communications, 2000, 21, 423-448.	2.0	119
198	Prevention of protein adsorption by flexible and rigid chain molecules. Colloids and Surfaces B: Biointerfaces, 2000, 18, 169-182.	2.5	69

#	Article	IF	CITATIONS
199	Kinetic and thermodynamic control of protein adsorption. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9037-9041.	3.3	241
200	Correspondence between the pressure expressions and van der Waals theory for a curved surface. Journal of Chemical Physics, 2000, 112, 6023-6030.	1.2	8
201	Effect of Side Chain Rigidity on the Elasticity of Comb Copolymer Cylindrical Brushes:Â A Monte Carlo Simulation Study. Macromolecules, 1999, 32, 4439-4443.	2.2	91
202	Self-Assembly of Model Nonionic Amphiphilic Molecules. Langmuir, 1999, 15, 7901-7911.	1.6	54
203	Extended conformations of isolated molecular bottle-brushes: Influence of side-chain topology. Macromolecular Theory and Simulations, 1998, 7, 211-216.	0.6	76
204	Monolayers of diblock copolymer at the air-water interface: the attractive monomer-surface case. European Physical Journal B, 1998, 3, 365-375.	0.6	104
205	Prevention of Protein Adsorption by Tethered Poly(ethylene oxide) Layers:  Experiments and Single-Chain Mean-Field Analysis. Langmuir, 1998, 14, 176-186.	1.6	407
206	Spontaneous liposome formation induced by grafted poly(ethylene oxide) layers: Theoretical prediction and experimental verification. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1032-1037.	3.3	72
207	Extended conformations of isolated molecular bottle-brushes: Influence of side-chain topology. , 1998, 7, 211.		2
208	On lyotropic behavior of molecular bottle-brushes: A Monte Carlo computer simulation study. Journal of Chemical Physics, 1997, 107, 3267-3276.	1.2	117
209	Aggregation Behavior of a Lattice Model for Amphiphiles. Langmuir, 1997, 13, 5022-5031.	1.6	139
210	Protein Adsorption on Surfaces with Grafted Polymers. Biophysical Journal, 1997, 72, 595-612.	0.2	396
211	Polymers and proteins: interactions at interfaces. Current Opinion in Solid State and Materials Science, 1997, 2, 337-344.	5.6	176
212	Protein adsorption on tethered polymer layers: effect of polymer chain architecture and composition. Physica A: Statistical Mechanics and Its Applications, 1997, 244, 370-388.	1.2	92
213	Statistical thermodynamics of polymers near surfaces. Current Opinion in Colloid and Interface Science, 1996, 1, 416-423.	3.4	69
214	Phase behavior of tethered polymers with lateral mobility in poor solvents. Journal of Chemical Physics, 1995, 102, 3404-3413.	1.2	8
215	Structural and thermodynamic properties of endâ€grafted polymers on curved surfaces. Journal of Chemical Physics, 1995, 102, 8662-8669.	1.2	66
216	Monte Carlo simulations of chain molecules in confined environments. Journal of Chemical Physics, 1995, 102, 9069-9076.	1.2	46

#	Article	IF	CITATIONS
217	On the Structure and Pressure of Tethered Polymer Layers in Good Solvent. Macromolecules, 1995, 28, 3197-3204.	2.2	82
218	Phase Behavior of Grafted Polymers in Poor Solvents. Europhysics Letters, 1994, 28, 19-24.	0.7	44
219	Pressure isotherms, phase transition, instability, and structure of tethered polymers in good, Γ̃, and poor solvents. Journal of Chemical Physics, 1994, 100, 3210-3223.	1.2	81
220	Second virial coefficients of chain molecules: A Monte Carlo study. Molecular Physics, 1994, 81, 851-866.	0.8	32
221	Monte Carlo calculation of phase equilibria for a bead-spring polymeric model. Macromolecules, 1994, 27, 400-406.	2.2	114
222	Phase transitions in thin films of symmetric binary polymer mixtures. Molecular Physics, 1994, 81, 867-872.	0.8	33
223	Statistical thermodynamic theory of grafted polymeric layers. Journal of Chemical Physics, 1993, 98, 5006-5018.	1.2	110
224	Statistical mechanics of solvent induced forces and vibrational frequency shifts. Low density expansions and Monte Carlo simulations. Journal of Chemical Physics, 1993, 99, 9954-9961.	1.2	21
225	Structure and tension of the boundary between surface phases. Molecular Physics, 1993, 80, 729-739.	0.8	17
226	Monte Carlo simulation of the collapseâ€coil transition in homopolymers. Journal of Chemical Physics, 1992, 97, 6802-6808.	1.2	50
227	Surface tension, line tension, and wetting. Molecular Physics, 1992, 75, 925-943.	0.8	86
228	Determination of the chemical potentials of polymeric systems from Monte Carlo simulations. Physical Review Letters, 1991, 66, 2935-2938.	2.9	162
229	Chain packing statistics and thermodynamics of amphiphile monolayers. The Journal of Physical Chemistry, 1990, 94, 5081-5089.	2.9	91
230	A new meanâ€field theory for dilute polymer solutions: Phase diagram, conformational behavior and interfacial properties. Journal of Chemical Physics, 1990, 92, 6940-6952.	1.2	50
231	Molecular theory of curvature elasticity in surfactant films. Journal of Chemical Physics, 1990, 92, 6800-6817.	1.2	337
232	Structure and tension of the interface between dilute polymer solutions. Journal of Chemical Physics, 1989, 90, 7524-7534.	1.2	59
233	Curvature Elasticity of Pure and Mixed Surfactant Films. Physical Review Letters, 1988, 60, 1966-1969.	2.9	190
234	Statistical thermodynamics of molecular organization in mixed micelles and bilayers. Journal of Chemical Physics, 1987, 86, 7094-7109.	1.2	71

#	Article	IF	CITATIONS
235	Chain statistics in micelles and bilayers: Effects of surface roughness and internal energy. Journal of Chemical Physics, 1986, 85, 5345-5358.	1.2	79
236	Chain organization and thermodynamics in micelles and bilayers. II. Model calculations. Journal of Chemical Physics, 1985, 83, 3612-3620.	1.2	90
237	Chain organization and thermodynamics in micelles and bilayers. I. Theory. Journal of Chemical Physics, 1985, 83, 3597-3611.	1.2	194
238	Statistical thermodynamics of amphiphile chains in micelles. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 4601-4605.	3.3	58