Morgan Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6560374/publications.pdf

Version: 2024-02-01

237 papers

58,958 citations

127 h-index 231

248 all docs

248 docs citations

times ranked

248

50416 citing authors

g-index

#	Article	IF	CITATIONS
1	NMDA receptor-dependent prostaglandin-endoperoxide synthase 2 induction in neurons promotes glial proliferation during brain development and injury. Cell Reports, 2022, 38, 110557.	2.9	8
2	Regulation of purine metabolism connects KCTD13 to a metabolic disorder with autistic features. IScience, 2021, 24, 101935.	1.9	7
3	Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Reports, 2021, 34, 108835.	2.9	61
4	Trem2 restrains the enhancement of tau accumulation and neurodegeneration by \hat{l}^2 -amyloid pathology. Neuron, 2021, 109, 1283-1301.e6.	3.8	137
5	TREM2-independent oligodendrocyte, astrocyte, and TÂcell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Reports, 2021, 37, 110158.	2.9	33
6	Genome-Wide Analysis of Differential Gene Expression and Splicing in Excitatory Neurons and Interneuron Subtypes. Journal of Neuroscience, 2020, 40, 958-973.	1.7	51
7	PCDH7 interacts with GluN1 and regulates dendritic spine morphology and synaptic function. Scientific Reports, 2020, 10, 10951.	1.6	17
8	Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the AÎ ² 42:AÎ ² 40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Journal of Neuroscience, 2020, 40, 1956-1974.	1.7	114
9	GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models. Cell Reports, 2020, 30, 381-396.e4.	2.9	51
10	Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nature Structural and Molecular Biology, 2020, 27, 210-220.	3.6	61
11	Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell Reports, 2019, 28, 2111-2123.e6.	2.9	271
12	Microglia in Brain Development, Homeostasis, and Neurodegeneration. Annual Review of Genetics, 2019, 53, 263-288.	3.2	121
13	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
14	PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. Journal of Neuroscience, 2019, 39, 4636-4656.	1.7	26
15	Morgan Sheng. Nature Reviews Drug Discovery, 2018, 17, 88-89.	21.5	2
16	Microglia in Alzheimer's disease. Journal of Cell Biology, 2018, 217, 459-472.	2.3	1,188
17	Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron, 2018, 100, 1322-1336.e7.	3.8	330
18	USP8 Deubiquitinates SHANK3 to Control Synapse Density and SHANK3 Activity-Dependent Protein Levels. Journal of Neuroscience, 2018, 38, 5289-5301.	1.7	41

#	Article	IF	Citations
19	TREM2, Microglia, and Neurodegenerative Diseases. Trends in Molecular Medicine, 2017, 23, 512-533.	3.5	327
20	A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 2017, 49, 1511-1516.	9.4	944
21	Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. Journal of Experimental Medicine, 2017, 214, 2611-2628.	4.2	101
22	Characterization of Social Behaviors in caspase-3 deficient mice. Scientific Reports, 2016, 6, 18335.	1.6	43
23	Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine, 2016, 100, 210-222.	1.3	232
24	Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury. Journal of Neuroscience, 2016, 36, 9962-9975.	1.7	79
25	TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron, 2016, 91, 328-340.	3.8	643
26	Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron, 2016, 89, 983-999.	3.8	138
27	Caspase-3 Deficiency Results in Disrupted Synaptic Homeostasis and Impaired Attention Control. Journal of Neuroscience, 2015, 35, 2118-2132.	1.7	32
28	A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks. PLoS ONE, 2014, 9, e113916.	1.1	86
29	Local Pruning of Dendrites and Spines by Caspase-3-Dependent and Proteasome-Limited Mechanisms. Journal of Neuroscience, 2014, 34, 1672-1688.	1.7	190
30	Long-term depression: a cell biological view. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130138.	1.8	33
31	Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4. Journal of Neuroscience, 2014, 34, 15327-15339.	1.7	28
32	Activity-Induced Nr4a1 Regulates Spine Density and Distribution Pattern of Excitatory Synapses in Pyramidal Neurons. Neuron, 2014, 83, 431-443.	3.8	94
33	The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 2014, 510, 370-375.	13.7	660
34	Phosphorylation of Threonine-19 of PSD-95 by GSK-3Â is Required for PSD-95 Mobilization and Long-Term Depression. Journal of Neuroscience, 2013, 33, 12122-12135.	1.7	121
35	NMDA receptors in nervous system diseases. Neuropharmacology, 2013, 74, 69-75.	2.0	228
36	Strength in numbers. Nature, 2013, 493, 482-483.	13.7	9

#	Article	IF	Citations
37	Specific <i>Trans</i> -Synaptic Interaction with Inhibitory Interneuronal Neurexin Underlies Differential Ability of Neuroligins to Induce Functional Inhibitory Synapses. Journal of Neuroscience, 2013, 33, 3612-3623.	1.7	49
38	GluN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations, and Behavior. Neuropsychopharmacology, 2013, 38, 1221-1233.	2.8	56
39	GPR3 Stimulates AÎ ² Production via Interactions with APP and Î ² -Arrestin2. PLoS ONE, 2013, 8, e74680.	1.1	32
40	Synapses and Alzheimer's Disease. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005777-a005777.	2.3	340
41	GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nature Neuroscience, 2012, 15, 1655-1666.	7.1	119
42	Childhood Disorders of the Synapse: Challenges and Opportunities. Science Translational Medicine, 2012, 4, 152ps17.	5.8	0
43	Functional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17093-17098.	3.3	162
44	Caspases in synaptic plasticity. Molecular Brain, 2012, 5, 15.	1.3	72
45	Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature Protocols, 2012, 7, 1983-1995.	5.5	850
46	NMDA receptors and BAX are essential for $\hat{Al^2}$ impairment of LTP. Scientific Reports, 2012, 2, 225.	1.6	38
47	Synaptic structure and function. Current Opinion in Neurobiology, 2012, 22, 363-365.	2.0	5
48	Caspase-3 in the central nervous system: beyond apoptosis. Trends in Neurosciences, 2012, 35, 700-709.	4.2	195
49	Association of Shank 1A Scaffolding Protein with Cone Photoreceptor Terminals in the Mammalian Retina. PLoS ONE, 2012, 7, e43463.	1.1	10
50	PSD-95 Is Required to Sustain the Molecular Organization of the Postsynaptic Density. Journal of Neuroscience, 2011, 31, 6329-6338.	1.7	242
51	Leukocyte Common Antigen-Related Phosphatase Is a Functional Receptor for Chondroitin Sulfate Proteoglycan Axon Growth Inhibitors. Journal of Neuroscience, 2011, 31, 14051-14066.	1.7	268
52	The Postsynaptic Organization of Synapses. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005678-a005678.	2.3	455
53	Deconstruction for Reconstruction: The Role of Proteolysis in Neural Plasticity and Disease. Neuron, 2011, 69, 22-32.	3.8	256
54	Sociability and motor functions in Shank1 mutant mice. Brain Research, 2011, 1380, 120-137.	1.1	206

#	Article	IF	CITATIONS
55	Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nature Neuroscience, 2011, 14, 545-547.	7.1	273
56	Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior. PLoS ONE, 2011, 6, e20631.	1.1	196
57	Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nature Neuroscience, 2010, 13, 1216-1224.	7.1	93
58	Proline-Rich Tyrosine Kinase 2 Regulates Hippocampal Long-Term Depression. Journal of Neuroscience, 2010, 30, 11983-11993.	1.7	49
59	Distinct Roles of NR2A and NR2B Cytoplasmic Tails in Long-Term Potentiation. Journal of Neuroscience, 2010, 30, 2676-2685.	1.7	184
60	MINK and TNIK Differentially Act on Rap2-Mediated Signal Transduction to Regulate Neuronal Structure and AMPA Receptor Function. Journal of Neuroscience, 2010, 30, 14786-14794.	1.7	60
61	Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes. PLoS Biology, 2010, 8, e1000283.	2.6	86
62	Autophosphorylated CaMKIIα Acts as a Scaffold to Recruit Proteasomes to Dendritic Spines. Cell, 2010, 140, 567-578.	13.5	249
63	Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization. Cell, 2010, 141, 859-871.	13.5	466
64	Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132. Neuron, 2010, 65, 373-384.	3.8	657
65	Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132. Neuron, 2010, 68, 161.	3.8	4
66	Degradation of Postsynaptic Scaffold GKAP and Regulation of Dendritic Spine Morphology by the TRIM3 Ubiquitin Ligase in Rat Hippocampal Neurons. PLoS ONE, 2010, 5, e9842.	1.1	90
67	Identification and Characterization of Neuronal Mitogen-activated Protein Kinase Substrates Using a Specific Phosphomotif Antibody. Molecular and Cellular Proteomics, 2009, 8, 681-695.	2.5	35
68	Regulated RalBP1 Binding to RalA and PSD-95 Controls AMPA Receptor Endocytosis and LTD. PLoS Biology, 2009, 7, e1000187.	2.6	57
69	The postsynaptic density. Current Biology, 2009, 19, R723-R724.	1.8	27
70	Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nature Neuroscience, 2009, 12, 428-437.	7.1	204
71	A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-l±. Molecular Brain, 2009, 2, 18.	1.3	62
72	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2008, 57, 326-327.	3.8	1

#	Article	IF	Citations
73	Critical Role of CDK5 and Polo-like Kinase 2 in Homeostatic Synaptic Plasticity during Elevated Activity. Neuron, 2008, 58, 571-583.	3.8	208
74	Metabotropic Glutamate Receptor-Mediated LTD Involves Two Interacting Ca2+ Sensors, NCS-1 and PICK1. Neuron, 2008, 60, 1095-1111.	3.8	100
75	Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1. Journal of Neuroscience, 2008, 28, 1697-1708.	1.7	321
76	Activity-Induced Polo-Like Kinase 2 Is Required for Homeostatic Plasticity of Hippocampal Neurons during Epileptiform Activity. Journal of Neuroscience, 2008, 28, 6583-6591.	1.7	93
77	Regulation of Postsynaptic RapGAP SPAR by Polo-like Kinase 2 and the SCFÎ ² -TRCP Ubiquitin Ligase in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 29424-29432.	1.6	53
78	Constitutively Active Rap2 Transgenic Mice Display Fewer Dendritic Spines, Reduced Extracellular Signal-Regulated Kinase Signaling, Enhanced Long-Term Depression, and Impaired Spatial Learning and Fear Extinction. Journal of Neuroscience, 2008, 28, 8178-8188.	1.7	81
79	Synapse Loss, Synaptic Plasticity and the Postsynaptic Density. , 2008, , 51-62.		O
80	Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2991-2996.	3.3	77
81	Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation. Neuron, 2007, 54, 461-477.	3.8	313
82	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2007, 56, 488-502.	3.8	235
83	The Postsynaptic Architecture of Excitatory Synapses: A More Quantitative View. Annual Review of Biochemistry, 2007, 76, 823-847.	5.0	836
84	Liprin $\hat{l}\pm 1$ Degradation by Calcium/Calmodulin-Dependent Protein Kinase II Regulates LAR Receptor Tyrosine Phosphatase Distribution and Dendrite Development. Developmental Cell, 2007, 12, 587-602.	3.1	87
85	Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin. Nature Neuroscience, 2007, 10, 186-195.	7.1	252
86	Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. Journal of Neurochemistry, 2007, 100, 118-131.	2.1	75
87	Role of Septin Cytoskeleton in Spine Morphogenesis and Dendrite Development in Neurons. Current Biology, 2007, 17, 1752-1758.	1.8	255
88	Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins. Biological Chemistry, 2006, 387, 179-87.	1.2	42
89	Selective Labeling of Extracellular Proteins Containing Polyhistidine Sequences by a Fluoresceinã° Nitrilotriacetic Acid Conjugate. Journal of the American Chemical Society, 2006, 128, 418-419.	6.6	98
90	Midrange Affinity Fluorescent Zn(II) Sensors of the Zinpyr Family:Â Syntheses, Characterization, and Biological Imaging Applications. Inorganic Chemistry, 2006, 45, 9748-9757.	1.9	66

#	Article	IF	Citations
91	Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization. Journal of the American Chemical Society, 2006, 128, 15517-15528.	6.6	232
92	A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function. Neuron, 2006, 49, 175-182.	3.8	158
93	The Growing Role of mTOR in Neuronal Development and Plasticity. Molecular Neurobiology, 2006, 34, 205-220.	1.9	232
94	Generation of lentiviral transgenic rats expressing Glutamate Receptor Interacting Protein 1 (GRIP1) in brain, spinal cord and testis. Journal of Neuroscience Methods, 2006, 152, 1-9.	1.3	15
95	Molecular mechanisms of dendritic spine morphogenesis. Current Opinion in Neurobiology, 2006, 16, 95-101.	2.0	560
96	Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum. Molecular and Cellular Proteomics, 2006, 5, 1158-1170.	2.5	440
97	GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nature Neuroscience, 2005, 8, 906-915.	7.1	199
98	Polo-like kinases in the nervous system. Oncogene, 2005, 24, 292-298.	2.6	78
99	Structure and different conformational states of native AMPA receptor complexes. Nature, 2005, 433, 545-549.	13.7	247
100	Bax/Bak-Dependent Release of DDP/TIMM8a Promotes Drp1-Mediated Mitochondrial Fission and Mitoptosis during Programmed Cell Death. Current Biology, 2005, 15, 2112-2118.	1.8	217
101	The 8-kDa Dynein Light Chain Binds to p53-binding Protein 1 and Mediates DNA Damage-induced p53 Nuclear Accumulation. Journal of Biological Chemistry, 2005, 280, 8172-8179.	1.6	99
102	Control of Dendritic Arborization by the Phosphoinositide-3'-Kinase-Akt-Mammalian Target of Rapamycin Pathway. Journal of Neuroscience, 2005, 25, 11300-11312.	1.7	537
103	Mass of the postsynaptic density and enumeration of three key molecules. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11551-11556.	3.3	200
104	LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nature Neuroscience, 2005, 8, 458-467.	7.1	249
105	NEUROSCIENCE: Making Synapses: A Balancing Act. Science, 2005, 307, 1207-1208.	6.0	23
106	QZ1 and QZ2:Â Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(II). Journal of the American Chemical Society, 2005, 127, 16812-16823.	6.6	251
107	NSF interaction is important for direct insertion of GluR2 at synaptic sites. Molecular and Cellular Neurosciences, 2005, 28, 650-660.	1.0	41
108	Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking. Neuron, 2005, 46, 745-760.	3.8	438

#	Article	IF	Citations
109	Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation. Neuron, 2005, 46, 905-916.	3.8	181
110	Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation. Neuron, 2005, 47, 321.	3.8	0
111	A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1129-1134.	3.3	222
112	Actin/Â-Actinin-Dependent Transport of AMPA Receptors in Dendritic Spines: Role of the PDZ-LIM Protein RIL. Journal of Neuroscience, 2004, 24, 8584-8594.	1.7	101
113	Cyclin-Dependent Kinase 5 Phosphorylates the N-Terminal Domain of the Postsynaptic Density Protein PSD-95 in Neurons. Journal of Neuroscience, 2004, 24, 865-876.	1.7	208
114	Intra- and Intermolecular Domain Interactions of the C-terminal GTPase Effector Domain of the Multimeric Dynamin-like GTPase Drp1. Journal of Biological Chemistry, 2004, 279, 35967-35974.	1.6	175
115	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	3.5	267
116	PDZ domain proteins of synapses. Nature Reviews Neuroscience, 2004, 5, 771-781.	4.9	1,382
117	Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science, 2004, 304, 1021-1024.	6.0	975
118	Bright Fluorescent Chemosensor Platforms for Imaging Endogenous Pools of Neuronal Zinc. Chemistry and Biology, 2004, 11, 203-210.	6.2	142
119	Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry. Journal of Biological Chemistry, 2004, 279, 21003-21011.	1.6	417
120	ZP8, a Neuronal Zinc Sensor with Improved Dynamic Range; Imaging Zinc in Hippocampal Slices with Two-Photon Microscopy. Inorganic Chemistry, 2004, 43, 6774-6779.	1.9	117
121	The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses. Cell, 2004, 119, 873-887.	13.5	1,297
122	Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons. Neuron, 2004, 43, 221-236.	3.8	241
123	Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron, 2004, 43, 437.	3.8	1
124	Quaternary Structure, Protein Dynamics, and Synaptic Function of SAP97 Controlled by L27 Domain Interactions. Neuron, 2004, 44, 453-467.	3.8	225
125	The dynamic turnover and functional roles of \hat{l}_{\pm} -actinin in dendritic spines. Neuropharmacology, 2004, 47, 734-745.	2.0	82
126	Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron, 2004, 42, 113-128.	3.8	142

#	Article	IF	Citations
127	Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature, 2003, 424, 677-681.	13.7	285
128	Synapses unplugged. Nature, 2003, 423, 931-932.	13.7	8
129	The return of the exocyst. Nature Cell Biology, 2003, 5, 493-495.	4.6	6
130	Some assembly required: the development of neuronal synapses. Nature Reviews Molecular Cell Biology, 2003, 4, 833-841.	16.1	168
131	Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. Journal of Molecular Biology, 2003, 327, 203-214.	2.0	128
132	Interaction of the deafness–dystonia protein DDP/TIMM8a with the signal transduction adaptor molecule STAM1. Biochemical and Biophysical Research Communications, 2003, 305, 345-352.	1.0	15
133	AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neuroscience Research, 2003, 46, 127-134.	1.0	69
134	15 Years of Neuron Cell Biology. Neuron, 2003, 40, 193-197.	3.8	3
135	Targeted Protein Degradation and Synapse Remodeling by an Inducible Protein Kinase. Science, 2003, 302, 1368-1373.	6.0	282
136	Crystal Structure of GRIP1 PDZ6-Peptide Complex Reveals the Structural Basis for Class II PDZ Target Recognition and PDZ Domain-mediated Multimerization. Journal of Biological Chemistry, 2003, 278, 8501-8507.	1.6	78
137	Association of the Kinesin Motor KIF1A with the Multimodular Protein Liprin-α. Journal of Biological Chemistry, 2003, 278, 11393-11401.	1.6	184
138	The Shank Family of Postsynaptic Density Proteins Interacts with and Promotes Synaptic Accumulation of the \hat{I}^2 PIX Guanine Nucleotide Exchange Factor for Rac1 and Cdc42. Journal of Biological Chemistry, 2003, 278, 19220-19229.	1.6	152
139	Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1334-1339.	3.3	96
140	Activity-Dependent Redistribution and Essential Role of Cortactin in Dendritic Spine Morphogenesis. Journal of Neuroscience, 2003, 23, 11759-11769.	1.7	242
141	Interaction between Liprin- $\hat{l}\pm$ and GIT1 Is Required for AMPA Receptor Targeting. Journal of Neuroscience, 2003, 23, 1667-1677.	1.7	146
142	Lipid Rafts in the Maintenance of Synapses, Dendritic Spines, and Surface AMPA Receptor Stability. Journal of Neuroscience, 2003, 23, 3262-3271.	1.7	527
143	Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a. Journal of Neuroscience, 2003, 23, 6327-6337.	1.7	232
144	PDZ Domains: Structural Modules for Protein Complex Assembly. Journal of Biological Chemistry, 2002, 277, 5699-5702.	1.6	615

#	Article	IF	CITATIONS
145	Postsynaptic Signaling and Plasticity Mechanisms. Science, 2002, 298, 776-780.	6.0	642
146	Direct interaction of Frizzled-1, -2, -4, and -7 with PDZ domains of PSD-95. FEBS Letters, 2002, 521, 185-189.	1.3	52
147	Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting. Neuron, 2002, 34, 39-52.	3.8	254
148	Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD. Neuron, 2002, 36, 661-674.	3.8	390
149	Gephyrin Interacts with Dynein Light Chains 1 and 2, Components of Motor Protein Complexes. Journal of Neuroscience, 2002, 22, 5393-5402.	1.7	176
150	Postsynaptic calcium signaling microdomains in neurons. Frontiers in Bioscience - Landmark, 2002, 7, d872-885.	3.0	21
151	Glutamate receptors on the move. Nature, 2002, 417, 601-602.	13.7	13
152	NMDA receptor targeting. , 2002, , 156-170.		0
153	Sharpin, a Novel Postsynaptic Density Protein That Directly Interacts with the Shank Family of Proteins. Molecular and Cellular Neurosciences, 2001, 17, 385-397.	1.0	145
154	Tbr1 Regulates Differentiation of the Preplate and Layer 6. Neuron, 2001, 29, 353-366.	3.8	829
155	Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer. Neuron, 2001, 31, 115-130.	3.8	630
156	Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP. Neuron, 2001, 31, 289-303.	3.8	353
157	Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology, 2001, 41, 680-692.	2.0	59
158	AMPA Receptor Trafficking and the Control of Synaptic Transmission. Cell, 2001, 105, 825-828.	13.5	188
159	Bipartite Interaction between Neurofibromatosis Type I Protein (Neurofibromin) and Syndecan Transmembrane Heparan Sulfate Proteoglycans. Journal of Neuroscience, 2001, 21, 3764-3770.	1.7	76
160	Differential Cellular and Subcellular Localization of AMPA Receptor-Binding Protein and Glutamate Receptor-Interacting Protein. Journal of Neuroscience, 2001, 21, 495-503.	1.7	45
161	Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity. Journal of Neurochemistry, 2001, 77, 1553-1560.	2.1	54
162	Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neuroscience, 2001, 4, 917-926.	7.1	595

#	Article	IF	Citations
163	Dentritic spines : structure, dynamics and regulation. Nature Reviews Neuroscience, 2001, 2, 880-888.	4.9	822
164	Antibodies in haystacks: how selection strategy influences the outcome of selection from molecular diversity libraries. Journal of Immunological Methods, 2001, 253, 233-242.	0.6	64
165	The 8-kDa Dynein Light Chain Binds to Its Targets via a Conserved (K/R)XTQT Motif. Journal of Biological Chemistry, 2001, 276, 14059-14066.	1.6	155
166	PDZ Domains and the Organization of Supramolecular Complexes. Annual Review of Neuroscience, 2001, 24, 1-29.	5.0	1,167
167	Growth of the NMDA receptor industrial complex. Nature Neuroscience, 2000, 3, 633-635.	7.1	46
168	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.	7.1	523
169	Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature, 2000, 404, 298-302.	13.7	339
170	Neurobiology. Current Opinion in Neurobiology, 2000, 10, 275-286.	2.0	0
171	Development of neuron–neuron synapses. Current Opinion in Neurobiology, 2000, 10, 125-131.	2.0	101
172	Neuronal Inwardly Rectifying K ⁺ Channels Differentially Couple to PDZ Proteins of the PSD-95/SAP90 Family. Journal of Neuroscience, 2000, 20, 156-162.	1.7	111
173	Developmentally Regulated NMDA Receptor-Dependent Dephosphorylation of cAMP Response Element-Binding Protein (CREB) in Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 3529-3536.	1.7	185
174	An Intramolecular Interaction between Src Homology 3 Domain and Guanylate Kinase-Like Domain Required for Channel Clustering by Postsynaptic Density-95/SAP90. Journal of Neuroscience, 2000, 20, 3580-3587.	1.7	122
175	Interaction of the Postsynaptic Density-95/Guanylate Kinase Domain-Associated Protein Complex with a Light Chain of Myosin-V and Dynein. Journal of Neuroscience, 2000, 20, 4524-4534.	1.7	245
176	PSD-95 and SAP97 Exhibit Distinct Mechanisms for Regulating K+ Channel Surface Expression and Clustering. Journal of Cell Biology, 2000, 148, 147-157.	2.3	165
177	CYRL, a Novel Cytokine Receptor-like Protein Expressed in Testis, Lung, and Spleen. Biochemical and Biophysical Research Communications, 2000, 267, 697-702.	1.0	1
178	Association of Dystrophin-Related Protein 2 (DRP2) with Postsynaptic Densities in Rat Brain. Molecular and Cellular Neurosciences, 2000, 16, 674-685.	1.0	13
179	α-Actinin-2 in rat striatum: localization and interaction with NMDA glutamate receptor subunits. Molecular Brain Research, 2000, 79, 77-87.	2.5	53
180	Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization. Neuron, 2000, 25, 649-662.	3.8	631

#	Article	IF	Citations
181	Ligand-Gated Ion Channel Interactions with Cytoskeletal and Signaling Proteins. Annual Review of Physiology, 2000, 62, 755-778.	5.6	336
182	Regulated Expression and Subcellular Localization of Syndecan Heparan Sulfate Proteoglycans and the Syndecan-Binding Protein CASK/LIN-2 during Rat Brain Development. Journal of Neuroscience, 1999, 19, 7415-7425.	1.7	196
183	Association of AMPA Receptors with a Subset of Glutamate Receptor-Interacting Protein <i>In Vivo</i> Journal of Neuroscience, 1999, 19, 6528-6537.	1.7	161
184	Characterization of the Shank Family of Synaptic Proteins. Journal of Biological Chemistry, 1999, 274, 29510-29518.	1.6	270
185	The fyn art of N-methyl-D-aspartate receptor phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 335-337.	3.3	37
186	Requirement of N-terminal Cysteines of PSD-95 for PSD-95 Multimerization and Ternary Complex Formation, but Not for Binding to Potassium Channel Kv1.4. Journal of Biological Chemistry, 1999, 274, 532-536.	1.6	79
187	AMPA receptor–PDZ interactions in facilitation of spinal sensory synapses. Nature Neuroscience, 1999, 2, 972-977.	7.1	180
188	Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nature Neuroscience, 1999, 2, 1063-1069.	7.1	102
189	Glutamate Receptor Anchoring Proteins and the Molecular Organization of Excitatory Synapses. Annals of the New York Academy of Sciences, 1999, 868, 483-493.	1.8	99
190	Protein targeting and calcium signaling microdomains in neuronal cells. Cell Calcium, 1999, 26, 181-192.	1.1	34
191	Neurobiology. Current Opinion in Neurobiology, 1999, 9, 501-510.	2.0	0
192	Neurobiology. Current Opinion in Neurobiology, 1999, 9, 645-655.	2.0	0
193	Synaptogenesis: The MAP location of GABA receptors. Current Biology, 1999, 9, R261-R263.	1.8	13
194	Regulation of NMDA Receptors by an Associated Phosphatase-Kinase Signaling Complex. Science, 1999, 285, 93-96.	6.0	483
195	Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin. Neuron, 1999, 23, 569-582.	3.8	934
196	Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins. Neuron, 1999, 23, 583-592.	3.8	992
197	[20] Analysis of ion channel associated proteins. Methods in Enzymology, 1999, 294, 371-384.	0.4	12
198	Direct Interaction of CASK/LIN-2 and Syndecan Heparan Sulfate Proteoglycan and Their Overlapping Distribution in Neuronal Synapses. Journal of Cell Biology, 1998, 142, 139-151.	2.3	325

#	Article	IF	Citations
199	NSF and AMPA Receptors Get Physical. Neuron, 1998, 21, 267-270.	3.8	52
200	Eph Receptors, Ephrins, and PDZs Gather in Neuronal Synapses. Neuron, 1998, 21, 1227-1229.	3.8	22
201	CRIPT, a Novel Postsynaptic Protein that Binds to the Third PDZ Domain of PSD-95/SAP90. Neuron, 1998, 20, 693-707.	3.8	280
202	Biochemical and immunocytochemical characterization of GRIP, a putative AMPA receptor anchoring protein, in rat brain. Neuropharmacology, 1998, 37, 1335-1344.	2.0	68
203	Plasma Membrane Ca2+ ATPase Isoform 4b Binds to Membrane-associated Guanylate Kinase (MAGUK) Proteins via Their PDZ (PSD-95/Dlg/ZO-1) Domains. Journal of Biological Chemistry, 1998, 273, 1591-1595.	1.6	138
204	[7] Identification of ion channel-associated proteins using the yeast two-hybrid system. Methods in Enzymology, 1998, 293, 104-122.	0.4	28
205	Chapter 9 Anchoring of glutamate receptors at the synapse. Progress in Brain Research, 1998, 116, 123-131.	0.9	24
206	Differential Regional Expression and Ultrastructural Localization of α-Actinin-2, a Putative NMDA Receptor-Anchoring Protein, in Rat Brain. Journal of Neuroscience, 1998, 18, 1383-1392.	1.7	164
207	Heterogeneity in the Molecular Composition of Excitatory Postsynaptic Sites during Development of Hippocampal Neurons in Culture. Journal of Neuroscience, 1998, 18, 1217-1229.	1.7	372
208	Yotiao, a Novel Protein of Neuromuscular Junction and Brain That Interacts with Specific Splice Variants of NMDA Receptor Subunit NR1. Journal of Neuroscience, 1998, 18, 2017-2027.	1.7	286
209	GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules. Journal of Cell Biology, 1997, 136, 669-678.	2.3	488
210	Disulfide-Linked Head-to-Head Multimerization in the Mechanism of Ion Channel Clustering by PSD-95. Neuron, 1997, 18, 803-814.	3.8	199
211	Synaptic Clustering of the Cell Adhesion Molecule Fasciclin II by Discs-Large and its Role in the Regulation of Presynaptic Structure. Neuron, 1997, 19, 787-799.	3.8	199
212	Characterization of Guanylate Kinase-Associated Protein, a Postsynaptic Density Protein at Excitatory Synapses That Interacts Directly with Postsynaptic Density-95/Synapse-Associated Protein 90. Journal of Neuroscience, 1997, 17, 5687-5696.	1.7	111
213	Essential Role for <i>dlg</i> in Synaptic Clustering of Shaker K ⁺ Channels <i>In Vivo</i> Journal of Neuroscience, 1997, 17, 152-159.	1.7	255
214	Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature, 1997, 385, 439-442.	13.7	567
215	Glutamate receptors put in their place. Nature, 1997, 386, 221-223.	13.7	81
216	Ion channel targeting in neurons. BioEssays, 1997, 19, 847-853.	1.2	143

#	Article	IF	Citations
217	Differential K + Channel Clustering Activity of PSD-95 and SAP97, Two Related Membrane-associated Putative Guanylate Kinases. Neuropharmacology, 1996, 35, 993-1000.	2.0	141
218	Crystal Structures of a Complexed and Peptide-Free Membrane Protein–Binding Domain: Molecular Basis of Peptide Recognition by PDZ. Cell, 1996, 85, 1067-1076.	13.5	1,097
219	Ion channel associated proteins. Current Opinion in Neurobiology, 1996, 6, 602-608.	2.0	110
220	PDZs and Receptor/Channel Clustering: Rounding Up the Latest Suspects. Neuron, 1996, 17, 575-578.	3.8	336
221	Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins. Neuron, 1996, 17, 103-113.	3.8	541
222	Chapter 8 The molecular organization of voltage-dependent K+ channels in vivo. Progress in Brain Research, 1995, 105, 87-93.	0.9	17
223	Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature, 1995, 378, 85-88.	13.7	961
224	Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. Journal of Neuroscience, 1994, 14, 2408-2417.	1.7	170
225	Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 1994, 368, 144-147.	13.7	1,236
226	Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron, 1994, 13, 325-338.	3.8	457
227	Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8383-8387.	3.3	333
228	Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature, 1993, 365, 72-75.	13.7	367
229	Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron, 1992, 9, 271-284.	3.8	456
230	Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron, 1992, 8, 1055-1067.	3.8	201
231	CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science, 1991, 252, 1427-1430.	6.0	1,470
232	The inner core of the serum response element mediates both the rapid induction and subsequent repression of c-fos transcription following serum stimulation Genes and Development, 1990, 4, 255-268.	2.7	159
233	The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 1990, 4, 477-485.	3.8	2,271
234	Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron, 1990, 4, 571-582.	3.8	1,029

#	Article	IF	CITATIONS
235	Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction Genes and Development, 1989, 3, 304-313.	2.7	485
236	Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science, 1989, 245, 1234-1236.	6.0	102
237	Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. , 0, .		1