Avneesh Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6559303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycolipid antigen induces long-term natural killer T cell anergy in mice. Journal of Clinical Investigation, 2005, 115, 2572-2583.	8.2	386
2	Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 2016, 7, 11138.	12.8	351
3	The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10913-10918.	7.1	306
4	Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. New England Journal of Medicine, 2022, 387, 35-44.	27.0	270
5	Quantitative and Qualitative Differences in the In Vivo Response of NKT Cells to Distinct α- and β-Anomeric Glycolipids. Journal of Immunology, 2004, 173, 3693-3706.	0.8	136
6	Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1106-1114.	0.8	111
7	Immunoregulatory Role of CD1d in the Hydrocarbon Oil-Induced Model of Lupus Nephritis. Journal of Immunology, 2003, 171, 2142-2153.	0.8	93
8	The natural killer T?cell ligand ?-galactosylceramide prevents or promotes pristane-induced lupus in mice. European Journal of Immunology, 2005, 35, 1143-1154.	2.9	81
9	Role of antiâ€CD40 antibodyâ€mediated costimulation blockade on nonâ€Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pigâ€toâ€baboon model. Xenotransplantation, 2014, 21, 35-45.	2.8	77
10	Immunotherapy with ligands of natural killer T cells. Trends in Molecular Medicine, 2002, 8, 225-231.	6.7	69
11	Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation, 2017, 101, 1551-1558.	1.0	59
12	Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation, 2019, 26, e12465.	2.8	43
13	Regulatory T cells enhance mesenchymal stem cell survival andÂproliferation following autologous cotransplantation in ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1131-1137.	0.8	28
14	Circulating cell-free DNA as a biomarker of tissue injury: Assessment in a cardiac xenotransplantation model. Journal of Heart and Lung Transplantation, 2018, 37, 967-975.	0.6	25
15	Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia. Experimental Cell Research, 2014, 323, 56-65.	2.6	23
16	Exâ€vivo expanded baboon CD4 ⁺ CD25 ^{Hi} Treg cells suppress baboon antiâ€pig T and B cell immune response. Xenotransplantation, 2012, 19, 102-111.	2.8	21
17	<scp>CD</scp> 4+ <scp>CD</scp> 25 ^{Hi} FoxP3+ regulatory T cells in longâ€ŧerm cardiac xenotransplantation. Xenotransplantation, 2018, 25, e12379.	2.8	17
18	Early Experience With Preclinical Perioperative Cardiac Xenograft Dysfunction in a Single Program. Annals of Thoracic Surgery, 2020, 109, 1357-1361.	1.3	16

Avneesh Singh

#	Article	IF	CITATIONS
19	Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia. Stem Cell Research, 2010, 4, 117-128.	0.7	12
20	Xenotransplantation: A Step Closer to Clinical Reality?. Transplantation, 2019, 103, 453-454.	1.0	7
21	Intra-Abdominal Heterotopic Cardiac Xenotransplantation: Pearls and Pitfalls. Frontiers in Cardiovascular Medicine, 2019, 6, 95.	2.4	3