Gerhard Christofori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998, 392, 190-193.	27.8	1,559
2	EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 2009, 28, 15-33.	5.9	1,521
3	Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 2004, 4, 118-132.	28.4	1,436
4	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
5	New signals from the invasive front. Nature, 2006, 441, 444-450.	27.8	900
6	Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008, 454, 656-660.	27.8	731
7	The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in Biochemical Sciences, 1999, 24, 73-76.	7.5	670
8	Angiopoietins in angiogenesis. Cancer Letters, 2013, 328, 18-26.	7.2	523
9	Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 2006, 9, 261-272.	16.8	520
10	The angiogenic switch in carcinogenesis. Seminars in Cancer Biology, 2009, 19, 329-337.	9.6	438
11	EMT as the ultimate survival mechanism of cancer cells. Seminars in Cancer Biology, 2012, 22, 194-207.	9.6	421
12	Sox4 Is a Master Regulator of Epithelial-Mesenchymal Transition by Controlling Ezh2 Expression and Epigenetic Reprogramming. Cancer Cell, 2013, 23, 768-783.	16.8	415
13	Mechanisms of Motility in Metastasizing Cells. Molecular Cancer Research, 2010, 8, 629-642.	3.4	409
14	Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe?. Current Opinion in Cell Biology, 2016, 43, 7-13.	5.4	406
15	A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature, 1994, 369, 414-418.	27.8	385
16	Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO Journal, 2006, 25, 3534-3545.	7.8	327
17	Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology, 2012, 22, 234-249.	9.6	296
18	N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biology, 2001, 3, 650-657.	10.3	276

#	Article	IF	CITATIONS
19	Mammalian Sprouty-1 and -2 Are Membrane-Anchored Phosphoprotein Inhibitors of Growth Factor Signaling in Endothelial Cells. Journal of Cell Biology, 2001, 152, 1087-1098.	5.2	257
20	Mouse models of breast cancer metastasis. Breast Cancer Research, 2006, 8, 212.	5.0	252
21	NEW EMBO MEMBER'S REVIEW: Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO Journal, 2003, 22, 2318-2323.	7.8	226
22	Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clinical and Experimental Metastasis, 2007, 24, 587-597.	3.3	220
23	Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis, 2008, 11, 53-62.	7.2	208
24	Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell, 2019, 35, 17-32.e6.	16.8	205
25	YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Molecular Medicine, 2021, 13, e14351.	6.9	204
26	Cadherins and the tumour progression: is it all in a switch?. Cancer Letters, 2002, 176, 123-128.	7.2	182
27	Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochimica Et Biophysica Acta: Reviews on Cancer, 2001, 1552, 39-45.	7.4	177
28	Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 2021, 125, 164-175.	6.4	177
29	The relevance of EMT in breast cancer metastasis: Correlation or causality?. FEBS Letters, 2015, 589, 1577-1587.	2.8	172
30	VEGF-Mediated Angiogenesis Links EMT-Induced Cancer Stemness to Tumor Initiation. Cancer Research, 2014, 74, 1566-1575.	0.9	170
31	NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO Journal, 2008, 27, 2603-2615.	7.8	167
32	Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. Journal of Clinical Investigation, 2013, 123, 1732-1740.	8.2	166
33	Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy. Cell Reports, 2016, 15, 1161-1174.	6.4	163
34	Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 2021, 56, 3203-3221.e11.	7.0	160
35	Multitasking in Tumor Progression: Signaling Functions of Cell Adhesion Molecules. Annals of the New York Academy of Sciences, 2004, 1014, 58-66.	3.8	136
36	Klf4 Is a Transcriptional Regulator of Genes Critical for EMT, Including Jnk1 (Mapk8). PLoS ONE, 2013, 8, e57329.	2.5	130

GERHARD CHRISTOFORI

#	Article	IF	CITATIONS
37	The Tumor-Suppressor Function of E-Cadherin. American Journal of Human Genetics, 1998, 63, 1588-1593.	6.2	129
38	Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β tumor cells. Nature Medicine, 1999, 5, 286-291.	30.7	124
39	Deregulation of both imprinted and expressed alleles of the insulin–like growth factor 2 gene during β–cell tumorigenesis. Nature Genetics, 1995, 10, 196-201.	21.4	123
40	Distinct Roles of Vascular Endothelial Growth Factor-D in Lymphangiogenesis and Metastasis. American Journal of Pathology, 2007, 170, 1348-1361.	3.8	119
41	Molecular mechanisms of tumor angiogenesis and tumor progression. , 2000, 50, 63-70.		117
42	Rebuilding cancer metastasis in the mouse. Molecular Oncology, 2013, 7, 283-296.	4.6	115
43	Tead2 expression levels control Yap/Taz subcellular distribution, zyxin expression, and epithelial-mesenchymal transition. Journal of Cell Science, 2014, 127, 1523-36.	2.0	113
44	Myeloid Cells Contribute to Tumor Lymphangiogenesis. PLoS ONE, 2009, 4, e7067.	2.5	108
45	Corrupt policemen: inflammatory cells promote tumor angiogenesis. Current Opinion in Oncology, 2009, 21, 60-70.	2.4	97
46	Angiopoietin-1 and -2 Exert Antagonistic Functions in Tumor Angiogenesis, yet Both Induce Lymphangiogenesis. Cancer Research, 2011, 71, 5717-5727.	0.9	95
47	Split personalities: the agonistic antagonist Sprouty. Nature Cell Biology, 2003, 5, 377-379.	10.3	85
48	Loss of Neural Cell Adhesion Molecule Induces Tumor Metastasis by Up-regulating Lymphangiogenesis. Cancer Research, 2004, 64, 8630-8638.	0.9	80
49	Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. Journal of Cell Science, 2007, 120, 4388-4394.	2.0	79
50	Concepts of metastasis in flux: The stromal progression model. Seminars in Cancer Biology, 2012, 22, 174-186.	9.6	75
51	<scp>PI</scp> 3K signalling is required for a <scp>TGF</scp> <i>β</i> â€induced epithelial–mesenchymalâ€like transition (<scp>EMT</scp> â€like) in human melanoma cells. Experimental Dermatology, 2015, 24, 22-28.	2.9	67
52	A Hierarchical Regulatory Landscape during the Multiple Stages of EMT. Developmental Cell, 2019, 48, 539-553.e6.	7.0	67
53	A proâ€inflammatory signature mediates FGF2â€induced angiogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 2083-2108	3.6	66
54	Molecular mechanisms of lymphangiogenesis in development and cancer. International Journal of Developmental Biology, 2011, 55, 483-494.	0.6	66

GERHARD CHRISTOFORI

#	Article	IF	CITATIONS
55	Py2T Murine Breast Cancer Cells, a Versatile Model of TGFβ-Induced EMT In Vitro and In Vivo. PLoS ONE, 2012, 7, e48651.	2.5	65
56	The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis, 2018, 7, 73.	4.9	63
57	A kinome-wide high-content siRNA screen identifies MEK5–ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene, 2018, 37, 4197-4213.	5.9	58
58	Transcription factor Dlx2 protects from TGFβ-induced cell-cycle arrest and apoptosis. EMBO Journal, 2011, 30, 4489-4499.	7.8	56
59	Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Research, 2002, 62, 603-8.	0.9	54
60	LIMâ€homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGFâ€B signaling. Molecular Oncology, 2014, 8, 401-416.	4.6	53
61	miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis. Nature Communications, 2017, 8, 1168.	12.8	50
62	Placental Growth Factor-1 Attenuates Vascular Endothelial Growth Factor-A–Dependent Tumor Angiogenesis during β Cell Carcinogenesis. Cancer Research, 2007, 67, 10840-10848.	0.9	48
63	Suppressive Effects of Vascular Endothelial Growth Factor-B on Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Tumorigenesis. PLoS ONE, 2010, 5, e14109.	2.5	45
64	Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Molecular Cancer Therapeutics, 2009, 8, 55-63.	4.1	42
65	LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 2019, 10, 5755.	12.8	36
66	Sprouty proteins: antagonists of endothelial cell signaling and more. Thrombosis and Haemostasis, 2003, 90, 586-590.	3.4	35
67	Division of labour. Nature, 2007, 446, 735-736.	27.8	34
68	USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis, 2021, 10, 52.	4.9	33
69	Proangiogenic Factor PIGF Programs CD11b+ Myelomonocytes in Breast Cancer during Differentiation of Their Hematopoietic Progenitors. Cancer Research, 2011, 71, 3781-3791.	0.9	32
70	Targeting Cancer Cell Metastasis by Converting Cancer Cells into Fat. Cancer Research, 2019, 79, 5471-5475.	0.9	29
71	TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition. Biology Direct, 2017, 12, 8.	4.6	28
72	Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front. American Journal of Pathology, 2018, 188, 1276-1288.	3.8	28

#	Article	IF	CITATIONS
73	Nintedanib Is a Highly Effective Therapeutic for Neuroendocrine Carcinoma of the Pancreas (PNET) in the Rip1Tag2 Transgenic Mouse Model. Clinical Cancer Research, 2015, 21, 4856-4867.	7.0	25
74	Snail1 links transcriptional control with epigenetic regulation. EMBO Journal, 2010, 29, 1787-1789.	7.8	23
75	Histone deacetylases, Mbd3/NuRD, and Tet2 hydroxylase are crucial regulators of epithelial–mesenchymal plasticity and tumor metastasis. Oncogene, 2020, 39, 1498-1513.	5.9	23
76	A Functional Interaction between Sprouty Proteins and Caveolin-1. Journal of Biological Chemistry, 2006, 281, 29201-29212.	3.4	21
77	A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor. Oncotarget, 2016, 7, 25983-26002.	1.8	20
78	Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration. Breast Cancer Research, 2018, 20, 118.	5.0	19
79	Multi-color clonal tracking reveals intra-stage proliferative heterogeneity during mammary tumor progression. Oncogene, 2021, 40, 12-27.	5.9	17
80	Parsing β-catenin's cell adhesion and Wnt signaling functions in malignant mammary tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
81	PyMT-1099, a versatile murine cell model for EMT in breast cancer. Scientific Reports, 2018, 8, 12123.	3.3	15
82	A dual role of Irf1 in maintaining epithelial identity but also enabling EMT and metastasis formation of breast cancer cells. Oncogene, 2020, 39, 4728-4740.	5.9	15
83	Paralemmin-1 is expressed in lymphatic endothelial cells and modulates cell migration, cell maturation and tumor lymphangiogenesis. Angiogenesis, 2013, 16, 795-807.	7.2	14
84	The interactions of Bcl9/Bcl9L with \hat{l}^2 -catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene, 2021, 40, 6195-6209.	5.9	14
85	Sprouty2 expression controls endothelial monolayer integrity and quiescence. Angiogenesis, 2013, 16, 455-468.	7.2	13
86	Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer, 2019, 19, 312.	2.6	13
87	Metastatic Colon Cancer Cells Negotiate the Intravasation Notch. Cancer Cell, 2011, 19, 6-8.	16.8	12
88	Junctional adhesion molecule B interferes with angiogenic VEGF/VEGFR2 signaling. FASEB Journal, 2015, 29, 3411-3425.	0.5	12
89	The cross-talk between the Hippo signaling pathway and autophagy:implications on physiology and cancer. Cell Cycle, 2020, 19, 2563-2572.	2.6	11
90	A Pygopus 2-Histone Interaction Is Critical for Cancer Cell Dedifferentiation and Progression in Malignant Breast Cancer. Cancer Research, 2020, 80, 3631-3648.	0.9	11

#	Article	IF	CITATIONS
91	An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis, 2015, 18, 327-345.	7.2	10
92	Novel forms of acidic fibroblast growth factor-1 are constitutively exported by beta tumor cell lines independent from conventional secretion and apoptosis. Angiogenesis, 1997, 1, 55-70.	7.2	9
93	The long non-coding RNA ET-20 mediates EMT by impairing desmosomes in breast cancer cells. Journal of Cell Science, 2021, 134, .	2.0	9
94	Hierarchy of TGFβ/SMAD, Hippo/YAP/TAZ, and Wnt/β-catenin signaling in melanoma phenotype switching. Life Science Alliance, 2022, 5, e202101010.	2.8	7
95	The implications of angiogenesis on tumor invasiveness. , 1998, 2, 21-23.		5
96	Inferring signalling dynamics by integrating interventional with observational data. Bioinformatics, 2019, 35, i577-i585.	4.1	5
97	A Transgenic MMTV-Flippase Mouse Line for Molecular Engineering in Mammary Cland and Breast Cancer Mouse Models. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 39-45.	2.7	5
98	The Rip1Tag2 Transgenic Mouse Model. Methods in Molecular Biology, 2016, 1464, 151-161.	0.9	3
99	Moderate antiangiogenic activity by local, transgenic expression of endostatin in Rip1Tag2 transgenic mice. Journal of Leukocyte Biology, 2006, 80, 669-676.	3.3	2
100	LATS1-Beclin1 mediates a non-canonical connection between the Hippo pathway and autophagy. Molecular and Cellular Oncology, 2020, 7, 1757378.	0.7	2
101	Tracking and characterization of partial and full epithelial-mesenchymal transition cells in a mouse model of metastatic breast cancer. STAR Protocols, 2022, 3, 101438	1.2	0