Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening and identification of Lassa virus endonuclease-targeting inhibitors from a fragment-based drug discovery library. Antiviral Research, 2022, 197, 105230.	4.1	4
2	Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses, 2022, 14, 353.	3.3	11
3	Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Research, 2022, 204, 105365.	4.1	7
4	Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virologica Sinica, 2021, 36, 273-280.	3.0	9
5	Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response. Virologica Sinica, 2021, 36, 774-783.	3.0	12
6	Screening of Botanical Drugs against Lassa Virus Entry. Journal of Virology, 2021, 95, .	3.4	17
7	RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	4
8	Mechanism through Which Retrocyclin Targets Flavivirus Multiplication. Journal of Virology, 2021, 95, e0056021.	3.4	6
9	Screening and Identification of Lujo Virus Entry Inhibitors From an Food and Drug Administration-Approved Drugs Library. Frontiers in Microbiology, 2021, 12, 793519.	3.5	5
10	Screening of Natural Extracts for Inhibitors against Japanese Encephalitis Virus Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	31
11	Development of horse neutralizing immunoglobulin and immunoglobulin fragments against JunÃ n virus. Antiviral Research, 2020, 174, 104666.	4.1	14
12	Inhibition of Na+/K+ ATPase blocks Zika virus infection in mice. Communications Biology, 2020, 3, 380.	4.4	15
13	Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2. Protein and Cell, 2019, 10, 137-142.	11.0	14
14	Novel neutralizing monoclonal antibodies against Junin virus. Antiviral Research, 2018, 156, 21-28.	4.1	15
15	Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. Journal of Virology, 2018, 92, .	3.4	48
16	Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Research, 2017, 141, 140-149.	4.1	51
17	Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection. Journal of Virology, 2017, 91, .	3.4	47
18	Screening of FDA-Approved Drugs for Inhibitors of Japanese Encephalitis Virus Infection. Journal of Virology, 2017, 91, .	3.4	102

WEI WANG

#	Article	IF	CITATIONS
19	Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus. Journal of Virology, 2016, 90, 10259-10270.	3.4	15
20	The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology, 2016, 498, 116-127.	2.4	44
21	Structure-function relationship of the mammarenavirus envelope glycoprotein. Virologica Sinica, 2016, 31, 380-394.	3.0	20
22	Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antiviral Research, 2014, 104, 7-14.	4.1	38
23	Japanese Encephalitis Virus Activates Autophagy as a Viral Immune Evasion Strategy. PLoS ONE, 2013, 8, e52909.	2.5	70
24	Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nature Immunology, 2005, 6, 995-1001.	14.5	235
25	Î, Defensins Protect Cells from Infection by Herpes Simplex Virus by Inhibiting Viral Adhesion and Entry. Journal of Virology, 2004, 78, 5147-5156.	3.4	241
26	Retrocyclin, an Antiretroviral Î,-Defensin, Is a Lectin. Journal of Immunology, 2003, 170, 4708-4716.	0.8	187