Derek P Narendra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557227/publications.pdf

Version: 2024-02-01

41 papers

23,347 citations

346980 22 h-index 355658 38 g-index

47 all docs

47 docs citations

47 times ranked

34916 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology, 2008, 183, 795-803.	2.3	3,315
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
4	Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 2011, 12, 9-14.	16.1	2,638
5	PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biology, 2010, 8, e1000298.	2.6	2,299
6	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
7	Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. Journal of Cell Biology, 2010, 191, 1367-1380.	2.3	1,161
8	Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. Journal of Cell Biology, 2010, 191, 933-942.	2.3	1,078
9	Parkin and PINK1 mitigate STING-induced inflammation. Nature, 2018, 561, 258-262.	13.7	905
10	p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 2010, 6, 1090-1106.	4.3	663
11	Targeting Mitochondrial Dysfunction: Role for PINK1 and Parkin in Mitochondrial Quality Control. Antioxidants and Redox Signaling, 2011, 14, 1929-1938.	2.5	330
12	Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11835-11840.	3.3	286
13	Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011338-a011338.	2.3	273
14	Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 2021, 46, 329-343.	3.7	234
15	Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 2009, 5, 706-708.	4.3	209
16	PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. Journal of Cell Biology, 2013, 200, 163-172.	2.3	209
17	When Patients Lack Capacity: The Roles That Patients with Terminal Diagnoses Would Choose for Their Physicians and Loved Ones in Making Medical Decisions. Journal of Pain and Symptom Management, 2005, 30, 342-353.	0.6	76
18	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	2.2	57

#	Article	IF	Citations
19	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	5.8	44
20	Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae phenocopying patient mutations. Human Molecular Genetics, 2020, 29, 1547-1567.	1.4	42
21	CHCHD2 accumulates in distressed mitochondria and facilitates oligomerization of CHCHD10. Human Molecular Genetics, 2018, 27, 3881-3900.	1.4	38
22	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	2.8	29
23	Mt-Keima detects PINK1-PRKN mitophagy <i>in vivo</i> with greater sensitivity than mito-QC. Autophagy, 2021, 17, 3753-3762.	4.3	28
24	Heterozygous <i>PRKN</i> mutations are common but do not increase the risk of Parkinson's disease. Brain, 2022, 145, 2077-2091.	3.7	26
25	OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. Journal of Clinical Investigation, 2022, 132, .	3.9	24
26	PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Human Molecular Genetics, 2013, 22, 2572-2589.	1.4	23
27	Trouble in the cell's powerhouse. Nature, 2012, 483, 418-419.	13.7	22
28	Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover. Journal of Cell Biology, 2020, 219, .	2.3	18
29	Peripheral synucleinopathy in a DJ1 patient with Parkinson disease, cataracts, and hearing loss. Neurology, 2019, 92, 1113-1115.	1.5	14
30	<scp>αâ€Synuclein</scp> Deposition in Sympathetic Nerve Fibers in Genetic Forms of Parkinson's Disease. Movement Disorders, 2021, 36, 2346-2357.	2.2	11
31	Managing risky assets – mitophagy <i>in vivo</i> . Journal of Cell Science, 2021, 134, .	1.2	11
32	Metabolic Analysis at the Nanoscale with Multiâ€Isotope Imaging Mass Spectrometry (MIMS). Current Protocols in Cell Biology, 2020, 88, e111.	2.3	6
33	Discovery of bactericides as an acute mitochondrial membrane damage inducer. Molecular Biology of the Cell, 2021, 32, ar32.	0.9	6
34	Detection of mitophagy in mammalian cells, mice, and yeast. Methods in Cell Biology, 2020, 155, 557-579.	0.5	4
35	Comment on "mt-Keima detects PINK1-PRKN mitophagy <i>in vivo</i> with greater sensitivity than mito-QC― Autophagy, 2021, 17, 4484-4485.	4.3	4
36	An anomalous developmental venous anomaly. Neurology, 2014, 83, 1033-1034.	1.5	3

#	Article	IF	CITATIONS
37	PARKIN/PINK1 Pathway for the Selective Isolation and Degradation of Impaired Mitochondria. , 2016, , 159-182.		3
38	Teaching Neuro <i>Images</i> : Brain mass with hilar adenopathy. Neurology, 2014, 82, e161-2.	1.5	2
39	A Woman in Her 40s With Headache and New-Onset Seizures. JAMA Neurology, 2017, 74, 476.	4.5	O
40	Author response: Peripheral synucleinopathy in a DJ1 patient with Parkinson disease, cataracts, and hearing loss. Neurology, 2020, 94, 944.1-944.	1.5	0
41	Sorting out Parkinson's disease: one cell at a time. Brain, 2022, , .	3.7	O