
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65572/publications.pdf Version: 2024-02-01



DONG WANG

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Type I AIE photosensitizers: Mechanism and application. View, 2022, 3, 20200121.                                                                                                                                                                        | 2.7  | 72        |
| 2  | <i>In Situ</i> Generation of <i>N</i> -Heteroaromatic Polymers: Metal-Free Multicomponent<br>Polymerization for Photopatterning, Morphological Imaging, and Cr(VI) Sensing. CCS Chemistry, 2022,<br>4, 2308-2320.                                       | 4.6  | 9         |
| 3  | Endowing AIE with Extraordinary Potential: A New Au(I)â€Containing AIEgen for Bimodal<br>Bioimagingâ€Guided Multimodal Synergistic Cancer Therapy. Advanced Functional Materials, 2022, 32,<br>2108199.                                                 | 7.8  | 9         |
| 4  | Brainâ€Targeted Aggregationâ€Inducedâ€Emission Nanoparticles with Nearâ€Infrared Imaging at 1550Ânm<br>Boosts Orthotopic Glioblastoma Theranostics. Advanced Materials, 2022, 34, e2106082.                                                             | 11.1 | 75        |
| 5  | Seeing the unseen: AIE luminogens for super-resolution imaging. Coordination Chemistry Reviews, 2022, 451, 214279.                                                                                                                                      | 9.5  | 48        |
| 6  | How do molecular interactions affect fluorescence behavior of AlEgens in solution and aggregate states?. Science China Chemistry, 2022, 65, 135-144.                                                                                                    | 4.2  | 31        |
| 7  | Altering Chain Flexibility of Aliphatic Polyesters for Yellowâ€Green Clusteroluminescence in 38 %<br>Quantum Yield. Angewandte Chemie - International Edition, 2022, 61, .                                                                              | 7.2  | 83        |
| 8  | Altering Chain Flexibility of Aliphatic Polyesters for Yellowâ€Green Clusteroluminescence in 38 %<br>Quantum Yield. Angewandte Chemie, 2022, 134, .                                                                                                     | 1.6  | 7         |
| 9  | Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials, 2022, 280, 121255.                                                                                                                                | 5.7  | 67        |
| 10 | Metalâ€Based Aggregationâ€Induced Emission Theranostic Systems. ChemMedChem, 2022, 17, .                                                                                                                                                                | 1.6  | 12        |
| 11 | Syntheses, properties, and applications of CO2-based functional polymers. Cell Reports Physical Science, 2022, 3, 100719.                                                                                                                               | 2.8  | 39        |
| 12 | Mitochondriaâ€Targeting Phototheranostics by Aggregationâ€Induced NIRâ€II Emission Luminogens:<br>Modulating Intramolecular Motion by Electron Acceptor Engineering for Multiâ€Modal Synergistic<br>Therapy. Advanced Functional Materials, 2022, 32, . | 7.8  | 51        |
| 13 | A Hierarchical Structure of Flower-Like Zinc Oxide and Poly(Vinyl Alcohol- <i>co</i> -Ethylene)<br>Nanofiber Hybrid Membranes for High-Performance Air Filters. ACS Omega, 2022, 7, 3030-3036.                                                          | 1.6  | 9         |
| 14 | Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.                             | 6.4  | 42        |
| 15 | Tuning non-radiative decay channels <i>via</i> symmetric/asymmetric substituent effects on phenazine<br>derivatives and their phototherapy switch between dynamic and thermal processes. Materials<br>Chemistry Frontiers, 2022, 6, 316-324.            | 3.2  | 3         |
| 16 | Autonomous Visualization of Damage in Polymers by Metalâ€Free Polymerizations of Microencapsulated<br>Activated Alkynes. Advanced Science, 2022, 9, e2105395.                                                                                           | 5.6  | 8         |
| 17 | Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for<br>Biological Application**. Angewandte Chemie - International Edition, 2022, 61, .                                                                         | 7.2  | 31        |
| 18 | The role of amide (n,Ï€â^—) transitions in polypeptide clusteroluminescence. Cell Reports Physical Science,<br>2022, 3, 100716.                                                                                                                         | 2.8  | 29        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | One-step light-up metabolic probes for <i>in situ</i> discrimination and killing of intracellular bacteria. Materials Chemistry Frontiers, 2022, 6, 450-458.                                                                           | 3.2  | 8         |
| 20 | Fused Heterocyclic Polymers with Aggregation-Induced Emission: Synthesis and Applications. ACS Applied Polymer Materials, 2022, 4, 3120-3130.                                                                                          | 2.0  | 15        |
| 21 | Bringing Inherent Charges into Aggregation-Induced Emission Research. Accounts of Chemical<br>Research, 2022, 55, 197-208.                                                                                                             | 7.6  | 40        |
| 22 | NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 2022, 12, 46.                                                                                                                                  | 2.3  | 15        |
| 23 | Polymerizations of Activated Alkynes. Progress in Polymer Science, 2022, 126, 101503.                                                                                                                                                  | 11.8 | 25        |
| 24 | Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chemical Science, 2022, 13, 3129-3139. | 3.7  | 58        |
| 25 | Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia<br>for Cancer Therapy. Advanced Science, 2022, 9, e2104885.                                                                         | 5.6  | 34        |
| 26 | Oneâ€Pot Synthesis of Customized Metal–Phenolicâ€Networkâ€Coated AIE Dots for In Vivo Bioimaging.<br>Advanced Science, 2022, 9, e2104997.                                                                                              | 5.6  | 20        |
| 27 | Deep-Red Aggregation-Induced Emission Luminogen Based on Dithiofuvalene-Fused Benzothiadiazole<br>for Lipid Droplet-Specific Imaging. , 2022, 4, 159-164.                                                                              |      | 28        |
| 28 | Facile synthesis of hierarchical SnSe nanosheets–hydrogel evaporators for sustainable<br>solar-powered desalination. Journal of Materials Chemistry A, 2022, 10, 10672-10681.                                                          | 5.2  | 12        |
| 29 | The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical Society Reviews, 2022, 51, 1983-2030.                                                                                              | 18.7 | 168       |
| 30 | In Situ Electrospinning of Aggregationâ€Induced Emission Nanofibrous Dressing for Wound Healing.<br>Small Methods, 2022, 6, e2101247.                                                                                                  | 4.6  | 57        |
| 31 | Aggregation-Induced Emission Luminogen-Based Dual-Mode Enzyme-Linked Immunosorbent Assay for<br>Ultrasensitive Detection of Cancer Biomarkers in a Broad Concentration Range. ACS Sensors, 2022, 7,<br>766-774.                        | 4.0  | 13        |
| 32 | Aggregation-Induced Emission Luminogens for Cell Death Research. ACS Bio & Med Chem Au, 2022, 2, 236-257.                                                                                                                              | 1.7  | 14        |
| 33 | NIR-II Absorbing Charge Transfer Complexes for Synergistic Photothermal–Chemodynamic<br>Antimicrobial Therapy and Wounds Healing. , 2022, 4, 692-700.                                                                                  |      | 16        |
| 34 | Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon<br>Photosensitization. Angewandte Chemie - International Edition, 2022, 61, .                                                                | 7.2  | 26        |
| 35 | Surfactantâ€Inspired Coassembly Strategy to Integrate Aggregationâ€Induced Emission Photosensitizer<br>with Organosilica Nanoparticles for Efficient Theranostics. Advanced Functional Materials, 2022, 32, .                          | 7.8  | 23        |
| 36 | Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer<br>Phototherapy <i>via</i> Type I PDT and PTT. ACS Nano, 2022, 16, 4162-4174.                                                            | 7.3  | 121       |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deep-Brain Three-Photon Imaging Enabled by Aggregation-Induced Emission Luminogens with<br>Near-Infrared-III Excitation. ACS Nano, 2022, 16, 6712-6724.                                                                         | 7.3 | 40        |
| 38 | Effective Therapy of Drugâ€Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing<br>Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide. Small, 2022, 18, e2200743.                       | 5.2 | 27        |
| 39 | Multimodal Imagingâ€Guided Photothermal Immunotherapy Based on a Versatile NIRâ€II<br>Aggregationâ€Induced Emission Luminogen. Angewandte Chemie, 2022, 134, .                                                                  | 1.6 | 7         |
| 40 | Intra- and Intermolecular Synergistic Engineering of Aggregation-Induced Emission Luminogens to<br>Boost Three-Photon Absorption for Through-Skull Brain Imaging. ACS Nano, 2022, 16, 6444-6454.                                | 7.3 | 22        |
| 41 | Multimodal Imagingâ€Guided Photothermal Immunotherapy Based on a Versatile NIRâ€II<br>Aggregationâ€Induced Emission Luminogen. Angewandte Chemie - International Edition, 2022, 61, .                                           | 7.2 | 78        |
| 42 | Aggregationâ€induced emission luminogens for augmented photosynthesis. Exploration, 2022, 2, .                                                                                                                                  | 5.4 | 19        |
| 43 | Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. European<br>Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2560-2583.                                                        | 3.3 | 7         |
| 44 | A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. Science China Chemistry, 2022, 65, 870-876.                                                                          | 4.2 | 12        |
| 45 | Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump<br>inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy.<br>Biomaterials, 2022, 283, 121462. | 5.7 | 75        |
| 46 | Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.                                     | 5.7 | 48        |
| 47 | Aggregationâ€Induced Emission Boosting the Study of Polymer Science. Macromolecular Rapid<br>Communications, 2022, 43, e2200080.                                                                                                | 2.0 | 13        |
| 48 | Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for<br>ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. Nano Today, 2022, 44, 101477.                                    | 6.2 | 24        |
| 49 | Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics.<br>Coordination Chemistry Reviews, 2022, 462, 214508.                                                                                   | 9.5 | 10        |
| 50 | Precise Molecular Engineering of Type I Photosensitizers with Nearâ€Infrared Aggregationâ€Induced<br>Emission for Imageâ€Guided Photodynamic Killing of Multidrugâ€Resistant Bacteria. Advanced Science,<br>2022, 9, e2104079.  | 5.6 | 55        |
| 51 | A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chemical Science, 2022, 13, 5929-5937.                                                                                 | 3.7 | 40        |
| 52 | Photo-Enhanced Chemotherapy Performance in Bladder Cancer Treatment via Albumin Coated AIE<br>Aggregates. ACS Nano, 2022, 16, 7535-7546.                                                                                        | 7.3 | 37        |
| 53 | A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Research, 2022, 15, 6705-6712.                                                   | 5.8 | 7         |
| 54 | Type-I AIE photosensitizer triggered cascade catalysis system for tumor targeted therapy and postoperative recurrence suppression. Chemical Engineering Journal, 2022, 446, 136381.                                             | 6.6 | 17        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aggregation-induced emission polymers. , 2022, , 45-86.                                                                                                                                                       |     | 1         |
| 56 | Activated Internal <scp>Alkyneâ€Based</scp> Polymerization <sup>â€</sup> . Chinese Journal of Chemistry, 2022, 40, 2001-2013.                                                                                 | 2.6 | 9         |
| 57 | Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic<br>Systems. Angewandte Chemie - International Edition, 2022, 61, .                                                  | 7.2 | 88        |
| 58 | Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic<br>Systems. Angewandte Chemie, 2022, 134, .                                                                         | 1.6 | 9         |
| 59 | Aggregation-Induced Emission Nanoparticles for Single Near-Infrared Light-Triggered Photodynamic and Photothermal Antibacterial Therapy. ACS Nano, 2022, 16, 7961-7970.                                       | 7.3 | 61        |
| 60 | AlEgen-Based Bionic Nanozymes for the Interventional Photodynamic Therapy-Based Treatment of Orthotopic Colon Cancer. ACS Applied Materials & amp; Interfaces, 2022, 14, 26394-26403.                         | 4.0 | 18        |
| 61 | Aggregation-induced emission: An emerging concept in brain science. Biomaterials, 2022, 286, 121581.                                                                                                          | 5.7 | 20        |
| 62 | Visualization and monitoring of dynamic damaging–healing processes of polymers by using<br>AlEgen-loaded multifunctional microcapsules. Journal of Materials Chemistry A, 2022, 10, 15438-15448.              | 5.2 | 8         |
| 63 | Diversity-Oriented Synthesis of Functional Polymers with Multisubstituted Small Heterocycles by Facile Stereoselective Multicomponent Polymerizations. Macromolecules, 2022, 55, 4389-4401.                   | 2.2 | 4         |
| 64 | AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. Biosensors, 2022, 12, 348.                                                          | 2.3 | 24        |
| 65 | Threeâ€Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and<br>Aggregationâ€Induced Emission Photosensitizer for Potent Cancer Theranostics. Small Methods, 2022,<br>6, .    | 4.6 | 11        |
| 66 | "One Stone, Four Birds―Ion Engineering to Fabricate Versatile Core–Shell Organosilica Nanoparticles<br>for Intelligent Nanotheranostics. ACS Nano, 2022, 16, 9785-9798.                                       | 7.3 | 19        |
| 67 | A potent luminogen with NIR-IIb excitable AIE features for ultradeep brain vascular and hemodynamic three-photon imaging. Biomaterials, 2022, 287, 121612.                                                    | 5.7 | 15        |
| 68 | Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.  | 2.7 | 11        |
| 69 | Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules, 2022, 27, 3914.                                                                                                        | 1.7 | 8         |
| 70 | Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nature Communications, 2022, 13, .                                                             | 5.8 | 50        |
| 71 | Cascade C–H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for<br>Intracellular pH Mapping and Cancer Cell Killing. Journal of the American Chemical Society, 2022, 144,<br>11788-11801. | 6.6 | 16        |
| 72 | Bacterial targeted AIE photosensitizers synergistically promote chemotherapy for the treatment of inflammatory cancer. Chemical Engineering Journal, 2022, 447, 137579.                                       | 6.6 | 17        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Boric Acidâ€Activated Roomâ€Temperature Phosphorescence and Thermally Activated Delayed<br>Fluorescence for Efficient Solidâ€State Photoluminescence Materials. Advanced Optical Materials,<br>2022, 10, .                 | 3.6 | 17        |
| 74 | Self-Assembled Metallacage with Second Near-Infrared Aggregation-Induced Emission for Enhanced Multimodal Theranostics. Journal of the American Chemical Society, 2022, 144, 12825-12833.                                  | 6.6 | 84        |
| 75 | Biomimetic Nanoplatform Loading Type I Aggregation-Induced Emission Photosensitizer and Glutamine<br>Blockade to Regulate Nutrient Partitioning for Enhancing Antitumor Immunotherapy. ACS Nano, 2022,<br>16, 10742-10753. | 7.3 | 26        |
| 76 | Lipid Droplet-Specific Red Aggregation-Induced Emission Luminogens: Fast Light-Up of Gram-Positive<br>Pathogens for Identification of Bacteria. , 2022, 4, 1523-1530.                                                      |     | 10        |
| 77 | AlEgens in Solar Energy Utilization: Advances and Opportunities. Langmuir, 2022, 38, 8719-8732.                                                                                                                            | 1.6 | 6         |
| 78 | Aliphatic Polyesters with White-Light Clusteroluminescence. Journal of the American Chemical<br>Society, 2022, 144, 15286-15294.                                                                                           | 6.6 | 67        |
| 79 | A novel drug susceptibility testing AIEgen with spatiotemporal resolved progress-reporting characteristic for therapy of drug-resistant tumor. Materials Today, 2022, 61, 117-128.                                         | 8.3 | 7         |
| 80 | Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission.<br>Angewandte Chemie, 2021, 133, 15856-15876.                                                                                      | 1.6 | 9         |
| 81 | Innovative Synthetic Procedures for Luminogens Showing Aggregationâ€Induced Emission. Angewandte<br>Chemie - International Edition, 2021, 60, 15724-15742.                                                                 | 7.2 | 72        |
| 82 | Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. National Science Review, 2021, 8, nwaa135.                                                                     | 4.6 | 36        |
| 83 | Structural and process controls of AIEgens for NIR-II theranostics. Chemical Science, 2021, 12, 3427-3436.                                                                                                                 | 3.7 | 169       |
| 84 | NIRâ€II AlEgens: A Win–Win Integration towards Bioapplications. Angewandte Chemie - International<br>Edition, 2021, 60, 7476-7487.                                                                                         | 7.2 | 253       |
| 85 | NIRâ€II AIEgens: A Win–Win Integration towards Bioapplications. Angewandte Chemie, 2021, 133, 7552-7563.                                                                                                                   | 1.6 | 49        |
| 86 | Mechanochromic Fluorescent Polymers Enabled by AIE Processes. Macromolecular Rapid<br>Communications, 2021, 42, e2000311.                                                                                                  | 2.0 | 49        |
| 87 | Inorganic–Organic Nanocomposites Based on Aggregationâ€Induced Emission Luminogens. Advanced<br>Functional Materials, 2021, 31, 2006952.                                                                                   | 7.8 | 31        |
| 88 | One‣tep Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers.<br>Macromolecular Rapid Communications, 2021, 42, e2000471.                                                                      | 2.0 | 20        |
| 89 | pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta, 2021, 221, 121621.                                                                            | 2.9 | 15        |
| 90 | Zwitterionic AlEgens: Rational Molecular Design for NIRâ€I Fluorescence Imagingâ€Guided Synergistic<br>Phototherapy. Advanced Functional Materials, 2021, 31, 2007026.                                                     | 7.8 | 87        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | <scp>Aggregationâ€Induced</scp> Emission: A Rising Star in Chemistry and Materials Science. Chinese<br>Journal of Chemistry, 2021, 39, 677-689.                                                                              | 2.6 | 69        |
| 92  | Mechanistic connotations of restriction of intramolecular motions (RIM). National Science Review, 2021, 8, nwaa260.                                                                                                          | 4.6 | 119       |
| 93  | Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AIEgen. Chemical Science, 2021, 12, 709-717.                                                           | 3.7 | 23        |
| 94  | AlEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.                                                                                                                                  | 5.7 | 86        |
| 95  | Fluorescent sensing of nucleus density assists in identifying tumor cells using an AIE luminogen.<br>Chemical Engineering Journal, 2021, 410, 128183.                                                                        | 6.6 | 7         |
| 96  | AIE-based luminescence probes for metal ion detection. Coordination Chemistry Reviews, 2021, 429, 213693.                                                                                                                    | 9.5 | 157       |
| 97  | Wash-free detection and bioimaging by AlEgens. Materials Chemistry Frontiers, 2021, 5, 723-743.                                                                                                                              | 3.2 | 25        |
| 98  | Recent advances in cation sensing using aggregation-induced emission. Materials Chemistry Frontiers, 2021, 5, 659-708.                                                                                                       | 3.2 | 99        |
| 99  | A near-infrared AIE probe for super-resolution imaging and nuclear lipid droplet dynamic study.<br>Materials Chemistry Frontiers, 2021, 5, 3043-3049.                                                                        | 3.2 | 37        |
| 100 | Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer<br>Construction. Molecules, 2021, 26, 268.                                                                                          | 1.7 | 47        |
| 101 | A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate<br>ligand for highly efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2021, 9,<br>8930-8938. | 2.7 | 8         |
| 102 | Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission. Chemical Science, 2021, 12, 5495-5504.                                                                                                        | 3.7 | 31        |
| 103 | Recent Advances of AlEgens for Targeted Imaging of Subcellular Organelles. Chemical Research in Chinese Universities, 2021, 37, 52-65.                                                                                       | 1.3 | 12        |
| 104 | An easily available ratiometric AIE probe for nitroxyl visualization <i>in vitro</i> and <i>in vivo</i> .<br>Materials Chemistry Frontiers, 2021, 5, 1817-1823.                                                              | 3.2 | 15        |
| 105 | Rapid membrane-specific AIEgen featuring with wash-free imaging and sensitive light-excited killing of cells, bacteria, and fungi. Materials Chemistry Frontiers, 2021, 5, 2724-2729.                                        | 3.2 | 8         |
| 106 | A DNA tetrahedron-loaded natural photosensitizer with aggregation-induced emission<br>characteristics for boosting fluorescence imaging-guided photodynamic therapy. Materials Chemistry<br>Frontiers, 2021, 5, 5410-5417.   | 3.2 | 10        |
| 107 | A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced<br>Emission and Counterion Displacement. Chemical Research in Chinese Universities, 2021, 37, 166-170.                         | 1.3 | 5         |
| 108 | Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Topics in Current Chemistry, 2021, 379, 7.                                                                                               | 3.0 | 26        |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Recent Advances of Aggregation-induced Emission Materials in Phototheranostics. Chinese Journal of<br>Luminescence, 2021, 42, 361-378.                                                                                                       | 0.2  | 1         |
| 110 | A biocompatible dual-AIEgen system without spectral overlap for quantitation of microbial viability and monitoring of biofilm formation. Materials Horizons, 2021, 8, 1816-1824.                                                             | 6.4  | 7         |
| 111 | Switching energy dissipation pathway: <i>in situ</i> proton-induced transformation of AIE-active self-assemblies to boost photodynamic therapy. Biomaterials Science, 2021, 9, 4301-4307.                                                    | 2.6  | 6         |
| 112 | Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AlEgen with nonaromatic rotors. Materials Chemistry Frontiers, 2021, 5, 1853-1862.                                                                       | 3.2  | 22        |
| 113 | Hydrogen peroxide-responsive AIE probe for imaging-guided organelle targeting and photodynamic cancer cell ablation. Materials Chemistry Frontiers, 2021, 5, 3489-3496.                                                                      | 3.2  | 28        |
| 114 | Aggregate Science: Much to Explore in the Meso World. Matter, 2021, 4, 338-349.                                                                                                                                                              | 5.0  | 74        |
| 115 | Clusteroluminescence from Cluster Excitons in Small Heterocyclics Free of Aromatic Rings. Advanced Science, 2021, 8, 2004299.                                                                                                                | 5.6  | 49        |
| 116 | Pillar[5]areneâ€Modified Gold Nanorods as Nanocarriers for Multiâ€Modal Imagingâ€Guided Synergistic<br>Photodynamicâ€Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2009924.                                                 | 7.8  | 64        |
| 117 | Efficient Killing of Multidrugâ€Resistant Internalized Bacteria by AlEgens In Vivo. Advanced Science, 2021,<br>8, 2001750.                                                                                                                   | 5.6  | 49        |
| 118 | Direct Visualization of Chiral Amplification of Chiral Aggregation Induced Emission Molecules in Nematic Liquid Crystals. ACS Nano, 2021, 15, 4956-4966.                                                                                     | 7.3  | 71        |
| 119 | Hypoxia-activated probe for NIR fluorescence and photoacoustic dual-mode tumor imaging. IScience, 2021, 24, 102261.                                                                                                                          | 1.9  | 23        |
| 120 | Cost-effective resource utilization for waste biomass: A simple preparation method of photo-thermal biochar cakes (BCs) toward dye wastewater treatment with solar energy. Environmental Research, 2021, 194, 110720.                        | 3.7  | 39        |
| 121 | Upregulating Aggregationâ€Inducedâ€Emission Nanoparticles with Blood–Tumorâ€Barrier Permeability for<br>Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses.<br>Advanced Materials, 2021, 33, e2008802. | 11.1 | 54        |
| 122 | Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€I<br>Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie, 2021, 133, 11864-11868.                                                          | 1.6  | 16        |
| 123 | Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€I<br>Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie - International Edition, 2021, 60, 11758-11762.                                   | 7.2  | 91        |
| 124 | CO <sub>2</sub> -Involved and Isocyanide-Based Three-Component Polymerization toward Functional<br>Heterocyclic Polymers with Self-Assembly and Sensing Properties. Macromolecules, 2021, 54, 4112-4119.                                     | 2.2  | 9         |
| 125 | Photoresponsive Polymers with Aggregation-Induced Emission. ACS Applied Polymer Materials, 2021, 3, 2290-2309.                                                                                                                               | 2.0  | 40        |
| 126 | Improving Imageâ€Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and<br>Photodynamic Therapies Based on a Multifunctional NIR AIEgen. Advanced Materials, 2021, 33, e2101158.                                     | 11.1 | 125       |

DONG WANG

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS Nano, 2021, 15, 7735-7743.                                                                           | 7.3  | 95        |
| 128 | Single injection and multiple treatments: An injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. Nano Today, 2021, 37, 101091.                                            | 6.2  | 56        |
| 129 | Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal<br>Imaging-Guided Synergistic Therapy. ACS Nano, 2021, 15, 7328-7339.                                                             | 7.3  | 79        |
| 130 | More is less: Creation of pathogenic microbe-related theranostic oriented AlEgens. Biomaterials, 2021, 271, 120725.                                                                                                        | 5.7  | 23        |
| 131 | Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer<br>Efficacy by Suppressing Thioredoxin Reductase Activity. ACS Nano, 2021, 15, 9176-9185.                                        | 7.3  | 41        |
| 132 | Good Steel Used in the Blade: Wellâ€Tailored Typeâ€I Photosensitizers with Aggregationâ€Induced Emission<br>Characteristics for Precise Nuclear Targeting Photodynamic Therapy. Advanced Science, 2021, 8,<br>e2100524.    | 5.6  | 94        |
| 133 | Aggregationâ€Induced Emission Luminogens Sensitized Quasiâ€2D Hybrid Perovskites with Unique<br>Photoluminescence and High Stability for Fabricating White Lightâ€Emitting Diodes. Advanced Science,<br>2021, 8, e2100811. | 5.6  | 16        |
| 134 | Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infraredâ€II<br>Fluorescence Imaging and Near Infraredâ€I Photothermal Therapy. Advanced Functional Materials, 2021,<br>31, 2102213.      | 7.8  | 47        |
| 135 | Cationic Tricyclic AlEgens for Concomitant Bacterial Discrimination and Inhibition. Advanced Healthcare Materials, 2021, 10, 2100136.                                                                                      | 3.9  | 8         |
| 136 | Conjugated Polymers with Aggregationâ€Induced Emission Characteristics for Fluorescence Imaging and Photodynamic Therapy. ChemMedChem, 2021, 16, 2330-2338.                                                                | 1.6  | 20        |
| 137 | Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models. Biomaterials, 2021, 272, 120755.                                                | 5.7  | 35        |
| 138 | Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes.<br>Journal of the American Chemical Society, 2021, 143, 9468-9477.                                                         | 6.6  | 52        |
| 139 | How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AlEgens with<br>Isolated Phenyl Rings. Journal of the American Chemical Society, 2021, 143, 9565-9574.                                      | 6.6  | 97        |
| 140 | Stimuliâ€Responsive AIEgens. Advanced Materials, 2021, 33, e2008071.                                                                                                                                                       | 11.1 | 178       |
| 141 | Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS Nano, 2021, 15, 12129-12139.                                         | 7.3  | 46        |
| 142 | AlEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosensors and Bioelectronics, 2021, 182, 113188.                                | 5.3  | 109       |
| 143 | Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic<br>Biopatterning. Angewandte Chemie, 2021, 133, 19371-19380.                                                                 | 1.6  | 2         |
| 144 | Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost<br>Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors. ACS Nano, 2021, 15,<br>10689-10699.       | 7.3  | 50        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic<br>Biopatterning. Angewandte Chemie - International Edition, 2021, 60, 19222-19231.                                                                      | 7.2  | 29        |
| 146 | Graphene Oxide Based Fluorescent DNA Aptasensor for Liver Cancer Diagnosis and Therapy. Advanced<br>Functional Materials, 2021, 31, 2102645.                                                                                                           | 7.8  | 12        |
| 147 | Bright Bacterium for Hypoxiaâ€Tolerant Photodynamic Therapy Against Orthotopic Colon Tumors by an<br>Interventional Method. Advanced Science, 2021, 8, e2004769.                                                                                       | 5.6  | 64        |
| 148 | Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin<br>Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.                                                                                         | 7.3  | 27        |
| 149 | Tailoring Noncovalent Interactions to Activate Persistent Roomâ€Temperature Phosphorescence from<br>Doped Polyacrylonitrile Films. Advanced Functional Materials, 2021, 31, 2101656.                                                                   | 7.8  | 83        |
| 150 | One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for<br>fluorescence-photoacoustic imaging-guided synergistic cancer therapy. Biomaterials, 2021, 274, 120892.                                             | 5.7  | 55        |
| 151 | A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing.<br>Journal of the American Chemical Society, 2021, 143, 14147-14157.                                                                                 | 6.6  | 84        |
| 152 | New Phenothiazine Derivatives That Exhibit Photoinduced Roomâ€Temperature Phosphorescence.<br>Advanced Functional Materials, 2021, 31, 2101719.                                                                                                        | 7.8  | 84        |
| 153 | Aggregationâ€Induced Emissionâ€Active Gels: Fabrications, Functions, and Applications. Advanced<br>Materials, 2021, 33, e2100021.                                                                                                                      | 11.1 | 105       |
| 154 | How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?.<br>Journal of the American Chemical Society, 2021, 143, 11820-11827.                                                                                      | 6.6  | 26        |
| 155 | Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam<br>Generation. Advanced Materials, 2021, 33, e2102258.                                                                                                 | 11.1 | 79        |
| 156 | Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward<br>Self-Antiviral Personal Protective Equipment. ACS Nano, 2021, 15, 13857-13870.                                                                          | 7.3  | 38        |
| 157 | Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive<br>Monitoring of Transplant Immune Response. ACS Nano, 2021, 15, 11908-11928.                                                                            | 7.3  | 14        |
| 158 | A Biomimetic Aggregationâ€Induced Emission Photosensitizer with Antigenâ€Presenting and Hitchhiking<br>Function for Lipid Droplet Targeted Photodynamic Immunotherapy. Advanced Materials, 2021, 33,<br>e2102322.                                      | 11.1 | 83        |
| 159 | A Nanotheranostic System Combining Lysosomal Cell Death and Nuclear Apoptosis Functions for<br>Synergistic Cancer Therapy and Addressing Drug Resistance. Advanced Functional Materials, 2021, 31,<br>2106091.                                         | 7.8  | 19        |
| 160 | Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system:<br>A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic<br>therapy. Biomaterials, 2021, 275, 120934. | 5.7  | 41        |
| 161 | Aggregationâ€Induced Emission Materials that Aid in Pharmaceutical Research. Advanced Healthcare<br>Materials, 2021, 10, e2101067.                                                                                                                     | 3.9  | 13        |
| 162 | Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. Chemical Engineering Journal, 2021, 417, 127890.                                                                                       | 6.6  | 12        |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for Highâ€Performance<br>AlE Luminogen in Multimodal Phototheranostics. Small, 2021, 17, e2102044.                                                                                 | 5.2  | 28        |
| 164 | Recent Advances in Aggregationâ€Induced Emission Materials and Their Biomedical and Healthcare<br>Applications. Advanced Healthcare Materials, 2021, 10, e2101055.                                                                                             | 3.9  | 36        |
| 165 | Single-fluorogen polymers with color-tunable aggregation-induced emission. Matter, 2021, 4, 2587-2589.                                                                                                                                                         | 5.0  | 7         |
| 166 | Tripleâ€Jump Photodynamic Theranostics: MnO <sub>2</sub> Combined Upconversion Nanoplatforms<br>Involving a Typeâ€I Photosensitizer with Aggregationâ€Induced Emission Characteristics for Potent<br>Cancer Treatment. Advanced Materials, 2021, 33, e2103748. | 11.1 | 87        |
| 167 | Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging. Matter, 2021, 4, 3286-3300.                                                                                                                        | 5.0  | 12        |
| 168 | Lignosulfonate/diblock copolymer polyion complexes with aggregation-enhanced and pH-switchable<br>fluorescence for information storage and encryption. International Journal of Biological<br>Macromolecules, 2021, 187, 722-731.                              | 3.6  | 6         |
| 169 | AlEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials, 2021, 276, 121007.                                                                                                   | 5.7  | 53        |
| 170 | TEPP-46-Based AIE Fluorescent Probe for Detection and Bioimaging of PKM2 in Living Cells. Analytical Chemistry, 2021, 93, 12682-12689.                                                                                                                         | 3.2  | 15        |
| 171 | The AlEâ€Active Dualâ€Cationic Molecular Engineering: Synergistic Effect of Dark Toxicity and Phototoxicity for Anticancer Therapy. Advanced Functional Materials, 2021, 31, 2106988.                                                                          | 7.8  | 32        |
| 172 | Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information. Advanced Materials, 2021, 33, e2105418.                                                                                                                                | 11.1 | 74        |
| 173 | A fluorescent probe with dual acrylate sites for discrimination of different concentration ranges of cysteine in living cells. Analytica Chimica Acta, 2021, 1176, 338763.                                                                                     | 2.6  | 13        |
| 174 | Sideâ€Chain Engineering of Aggregationâ€Induced Emission Molecules for Boosting Cancer<br>Phototheranostics. Advanced Functional Materials, 2021, 31, 2107545.                                                                                                 | 7.8  | 37        |
| 175 | Donor engineering on flavonoid-based probes to enhance the fluorescence brightness in water:<br>Design, characterization, photophysical properties, and application for cysteine detection. Sensors<br>and Actuators B: Chemical, 2021, 345, 130367.           | 4.0  | 21        |
| 176 | Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms.<br>Nanoscale, 2021, 13, 13610-13616.                                                                                                                              | 2.8  | 15        |
| 177 | Recent advances of AIE light-up probes for photodynamic therapy. Chemical Science, 2021, 12, 6488-6506.                                                                                                                                                        | 3.7  | 224       |
| 178 | Sensitive and specific detection of peroxynitrite and <i>in vivo</i> imaging of inflammation by a<br>"simple―AlE bioprobe. Materials Chemistry Frontiers, 2021, 5, 1830-1835.                                                                                  | 3.2  | 19        |
| 179 | Organometallic AIEgens for biological theranostics. Materials Chemistry Frontiers, 2021, 5, 3281-3297.                                                                                                                                                         | 3.2  | 18        |
| 180 | Benzoperylene-grafted and Cu2+ chelated polymeric nanoparticles for GSH depletion and chemodynamic therapy. Materials Chemistry Frontiers, 2021, 5, 2442-2451.                                                                                                 | 3.2  | 3         |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | A Novel Fluorescence Tool for Monitoring Agricultural Industry Chain Based on AlEgens. Chemical<br>Research in Chinese Universities, 2021, 37, 38-51.                                                                         | 1.3  | 6         |
| 182 | An aggregation-induced emission platform for efficient Golgi apparatus and endoplasmic reticulum specific imaging. Chemical Science, 2021, 12, 13949-13957.                                                                   | 3.7  | 12        |
| 183 | Photoactivatable Biomedical Materials Based on Luminogens with Aggregationâ€Induced Emission (AIE)<br>Characteristics. Advanced Healthcare Materials, 2021, 10, e2101177.                                                     | 3.9  | 28        |
| 184 | In Situ Generation of Heterocyclic Polymers by Tripleâ€Bond Based Polymerizations. Macromolecular<br>Rapid Communications, 2021, 42, e2100524.                                                                                | 2.0  | 1         |
| 185 | Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent<br>clusteroluminescence towards multicolor cell imaging and molecular ruler. Science China<br>Chemistry, 2021, 64, 1990-1998.               | 4.2  | 25        |
| 186 | Trojan Horseâ€Like Nanoâ€AIE Aggregates Based on Homologous Targeting Strategy and Their<br>Photodynamic Therapy in Anticancer Application. Advanced Science, 2021, 8, e2102561.                                              | 5.6  | 46        |
| 187 | Facile Multicomponent Polymerizations toward Multifunctional Heterochain Polymers with $\hat{I}_{\pm}, \hat{I}^2$ -Unsaturated Amidines. Macromolecules, 2021, 54, 9906-9918.                                                 | 2.2  | 3         |
| 188 | Aggregation-induced emission (AIE): emerging technology based on aggregate science. Pure and Applied Chemistry, 2021, 93, 1383-1402.                                                                                          | 0.9  | 9         |
| 189 | Donor/ï€â€Bridge Manipulation for Constructing a Stable NIRâ€II Aggregationâ€Induced Emission Luminogen<br>with Balanced Phototheranostic Performance**. Angewandte Chemie, 2021, 133, 26973-26980.                           | 1.6  | 17        |
| 190 | A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for<br>Cancer Therapy. Advanced Materials, 2021, 33, e2105999.                                                                  | 11.1 | 61        |
| 191 | Aggregationâ€Induced Emissionâ€Active Poly(phenyleneethynylene)s for Fluorescence and Raman<br>Dualâ€Modal Imaging and Drugâ€Resistant Bacteria Killing. Advanced Healthcare Materials, 2021, 10,<br>e2101167.                | 3.9  | 18        |
| 192 | Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€II Aggregationâ€Induced Emission Luminogen<br>with Balanced Phototheranostic Performance**. Angewandte Chemie - International Edition, 2021, 60,<br>26769-26776. | 7.2  | 96        |
| 193 | Vision redemption: Self-reporting AlEgens for combined treatment of bacterial keratitis. Biomaterials, 2021, 279, 121227.                                                                                                     | 5.7  | 15        |
| 194 | AlEgen for cancer discrimination. Materials Science and Engineering Reports, 2021, 146, 100649.                                                                                                                               | 14.8 | 23        |
| 195 | Aggregate Materials beyond AlEgens. Accounts of Materials Research, 2021, 2, 1251-1260.                                                                                                                                       | 5.9  | 35        |
| 196 | 9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for<br>Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano, 2021, 15, 20042-20055.                         | 7.3  | 61        |
| 197 | High-Performance Near-Infrared Aggregation-Induced Emission Luminogen with Mitophagy Regulating<br>Capability for Multimodal Cancer Theranostics. ACS Nano, 2021, 15, 20453-20465.                                            | 7.3  | 47        |
| 198 | Biologically excretable AIE nanoparticles wear tumor cell-derived "exosome caps―for efficient NIR-II<br>fluorescence imaging-guided photothermal therapy. Nano Today, 2021, 41, 101333.                                       | 6.2  | 19        |

DONG WANG

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics.<br>Applied Physics Reviews, 2021, 8, .                                                                                                          | 5.5  | 12        |
| 200 | Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.                                                                                                                           | 8.3  | 407       |
| 201 | AIE-based cancer theranostics. Coordination Chemistry Reviews, 2020, 402, 213076.                                                                                                                                                             | 9.5  | 127       |
| 202 | Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active<br>Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie -<br>International Edition, 2020, 59, 9470-9477. | 7.2  | 153       |
| 203 | Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active<br>Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie,<br>2020, 132, 9557-9564.                        | 1.6  | 22        |
| 204 | Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. Science China Chemistry, 2020, 63, 282-289.                                                 | 4.2  | 16        |
| 205 | Efficient Perovskite Solar Cells with a Novel Aggregationâ€Induced Emission Molecule as<br>Holeâ€Transport Material. Solar Rrl, 2020, 4, 1900189.                                                                                             | 3.1  | 14        |
| 206 | Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics.<br>Biomaterials, 2020, 230, 119582.         | 5.7  | 91        |
| 207 | AIE polymers: Synthesis and applications. Progress in Polymer Science, 2020, 100, 101176.                                                                                                                                                     | 11.8 | 205       |
| 208 | Structural Modification Orientated Multifunctional AIE Fluorescence Probes: Organelles Imaging and Effective Photosensitizer for Photodynamic Therapy. Advanced Optical Materials, 2020, 8, 1901433.                                          | 3.6  | 31        |
| 209 | Tuning aggregation-induced emission nanoparticle properties under thin film formation. Materials<br>Chemistry Frontiers, 2020, 4, 537-545.                                                                                                    | 3.2  | 21        |
| 210 | Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. Chemical Science, 2020, 11, 997-1005.                                                                                                  | 3.7  | 46        |
| 211 | Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chemical Society Reviews, 2020, 49, 21-31.                                                                                    | 18.7 | 313       |
| 212 | Polymerization-induced emission. Materials Horizons, 2020, 7, 987-998.                                                                                                                                                                        | 6.4  | 104       |
| 213 | Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials, 2020, 232, 119749.                                                                                                     | 5.7  | 80        |
| 214 | Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for<br>Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Applied Materials &<br>Interfaces, 2020, 12, 6814-6826.                     | 4.0  | 40        |
| 215 | A Facile Strategy To Prepare Smart Coatings with Autonomous Self-Healing and Self-Reporting Functions. ACS Applied Materials & Interfaces, 2020, 12, 4870-4877.                                                                               | 4.0  | 61        |
| 216 | Constitutional Isomerization Enables Bright NIRâ€II AlEgen for Brainâ€Inflammation Imaging. Advanced<br>Functional Materials, 2020, 30, 1908125.                                                                                              | 7.8  | 175       |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Structure-tuned and thermodynamically controlled mechanochromic self-recovery of AIE-active<br>Au( <scp>i</scp> ) complexes. Journal of Materials Chemistry C, 2020, 8, 894-899.                                                   | 2.7  | 52        |
| 218 | Manipulating Solid-State Intramolecular Motion toward Controlled Fluorescence Patterns. ACS<br>Nano, 2020, 14, 2090-2098.                                                                                                          | 7.3  | 57        |
| 219 | Economic Sulfur Conversion to Functional Polythioamides through Catalyst-Free Multicomponent<br>Polymerizations of Sulfur, Acids, and Amines. Journal of the American Chemical Society, 2020, 142,<br>978-986.                     | 6.6  | 121       |
| 220 | Exploration of High Efficiency AlEâ€Active Deep/Nearâ€Infrared Red Emitters in OLEDs with Highâ€Radiance.<br>Advanced Optical Materials, 2020, 8, 1901520.                                                                         | 3.6  | 72        |
| 221 | Photomechanical Luminescence from Throughâ€Space Conjugated AlEgens. Angewandte Chemie, 2020,<br>132, 8913-8917.                                                                                                                   | 1.6  | 12        |
| 222 | Self-assembly of AlEgens. Coordination Chemistry Reviews, 2020, 406, 213142.                                                                                                                                                       | 9.5  | 109       |
| 223 | AIE luminogens as fluorescent bioprobes. TrAC - Trends in Analytical Chemistry, 2020, 123, 115769.                                                                                                                                 | 5.8  | 133       |
| 224 | Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for<br>Constructing Optical Nanoagents. Angewandte Chemie - International Edition, 2020, 59, 10122-10128.                         | 7.2  | 47        |
| 225 | Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided<br>Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano, 2020, 14, 854-866.                                              | 7.3  | 161       |
| 226 | Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature<br>Sensing in Living Cells. Journal of the American Chemical Society, 2020, 142, 512-519.                                              | 6.6  | 102       |
| 227 | Photomechanical Luminescence from Throughâ€Space Conjugated AlEgens. Angewandte Chemie -<br>International Edition, 2020, 59, 8828-8832.                                                                                            | 7.2  | 67        |
| 228 | Highly efficient phototheranostics of macrophage-engulfed Gram-positive bacteria using a NIR<br>luminogen with aggregation-induced emission characteristics. Biomaterials, 2020, 261, 120340.                                      | 5.7  | 39        |
| 229 | Controllable and Diversiform Topological Morphologies of Selfâ€Assembling Supraâ€Amphiphiles with<br>Aggregationâ€Induced Emission Characteristics for Mimicking Lightâ€Harvesting Antenna. Advanced<br>Science, 2020, 7, 2001909. | 5.6  | 35        |
| 230 | Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for<br>Bioimaging beyond 1500 Nanometer. ACS Nano, 2020, 14, 14228-14239.                                                               | 7.3  | 78        |
| 231 | An Allâ€Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between<br>Radiative and Nonradiative Decays for Multimodal Imagingâ€Guided Synergistic Therapy. Advanced<br>Materials, 2020, 32, e2003210. | 11.1 | 259       |
| 232 | Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second<br>Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AlEgens). , 2020, 2, 1033-1040.                                  |      | 60        |
| 233 | Photoactivatable dihydroalkaloids for cancer cell imaging and chemotherapy with high spatiotemporal resolution. Materials Horizons, 2020, 7, 2696-2701.                                                                            | 6.4  | 24        |
| 234 | Functional Scaffolds from AIE Building Blocks. Matter, 2020, 3, 1862-1892.                                                                                                                                                         | 5.0  | 45        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian<br>Cancer. ACS Nano, 2020, 14, 14698-14714.                                                                               | 7.3  | 46        |
| 236 | Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound<br>Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.                                                                 | 7.3  | 72        |
| 237 | Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to<br>Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie - International Edition, 2020, 59,<br>20371-20375. | 7.2  | 72        |
| 238 | From Molecular Achirality to Mesoscopic Helicity: Toward the Development of Circularly Polarized Luminescenceâ€Emitting Liquid Crystal Displays. Small Structures, 2020, 1, 2000014.                                    | 6.9  | 9         |
| 239 | Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to<br>Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie, 2020, 132, 20551-20555.                           | 1.6  | 6         |
| 240 | Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene<br>Mask. ACS Nano, 2020, 14, 12045-12053.                                                                                | 7.3  | 191       |
| 241 | Exosomeâ€Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission**.<br>Angewandte Chemie, 2020, 132, 21694-21698.                                                                           | 1.6  | 5         |
| 242 | Exosomeâ€Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission**.<br>Angewandte Chemie - International Edition, 2020, 59, 21510-21514.                                                    | 7.2  | 23        |
| 243 | Multifaceted functionalities constructed from pyrazine-based AlEgen system. Coordination Chemistry Reviews, 2020, 422, 213472.                                                                                          | 9.5  | 39        |
| 244 | Molecular Motions in AlEgen Crystals: Turning on Photoluminescence by Force-Induced Filament<br>Sliding. Journal of the American Chemical Society, 2020, 142, 14608-14618.                                              | 6.6  | 62        |
| 245 | Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.                                                                                                                               | 11.1 | 254       |
| 246 | Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer<br>Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society, 2020, 142,<br>15146-15156.   | 6.6  | 177       |
| 247 | Aggregationâ€Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly<br>Efficient Multimodal Theranostics. Advanced Materials, 2020, 32, e2003382.                                             | 11.1 | 110       |
| 248 | Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chemical Science, 2020, 11, 8438-8447.                                                                     | 3.7  | 32        |
| 249 | Molecular Engineering to Boost AIEâ€Active Free Radical Photogenerators and Enable Highâ€Performance<br>Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 2020, 30, 2002057.                           | 7.8  | 208       |
| 250 | A ratiometric fluorescent probe based on AIEgen for detecting HClO in living cells. Chemical Communications, 2020, 56, 14613-14616.                                                                                     | 2.2  | 38        |
| 251 | AlEgen-Based Polymer Nanocomposites for Imaging-Guided Photothermal Therapy. ACS Applied Polymer<br>Materials, 2020, 2, 4306-4318.                                                                                      | 2.0  | 32        |
| 252 | Facile fabrication of self-shrinkable AIE supramolecular gels based on benzophenone salicylaldehyde<br>hydrazine derivatives. Journal of Materials Chemistry C, 2020, 8, 13705-13711.                                   | 2.7  | 9         |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AIEgen and Calixarene. Journal of the American Chemical Society, 2020, 142, 15966-15974.                                                   | 6.6  | 102       |
| 254 | Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials, 2020, 5, 869-885.                                                                                                                          | 23.3 | 786       |
| 255 | Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for<br>Near-Infrared-II Fluorescence-Guided Glioma Theranostics. ACS Nano, 2020, 14, 11452-11462.                                    | 7.3  | 156       |
| 256 | Nanomaterials with Supramolecular Assembly Based on AIE Luminogens for Theranostic Applications.<br>Advanced Materials, 2020, 32, e2004208.                                                                                    | 11.1 | 143       |
| 257 | Tumorâ€Exocytosed Exosome/Aggregationâ€Induced Emission Luminogen Hybrid Nanovesicles Facilitate<br>Efficient Tumor Penetration and Photodynamic Therapy. Angewandte Chemie - International Edition,<br>2020, 59, 13836-13843. | 7.2  | 114       |
| 258 | ACQâ€ŧoâ€AlE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€₽hoton NIR<br>Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 12822-12826.                                               | 7.2  | 131       |
| 259 | Tumorâ€Exocytosed Exosome/Aggregationâ€Induced Emission Luminogen Hybrid Nanovesicles Facilitate<br>Efficient Tumor Penetration and Photodynamic Therapy. Angewandte Chemie, 2020, 132, 13940-13947.                           | 1.6  | 23        |
| 260 | Tuning Push–Pull Electronic Effects of AlEgens to Boost the Theranostic Efficacy for Colon Cancer.<br>Journal of the American Chemical Society, 2020, 142, 11442-11450.                                                        | 6.6  | 63        |
| 261 | Multifunctional Supramolecular Assemblies with Aggregation-Induced Emission (AIE) for Cell Line<br>Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination. ACS Nano, 2020, 14,<br>7552-7563.            | 7.3  | 59        |
| 262 | Doping AIE Photothermal Molecule into All-Fiber Aerogel with Self-Pumping Water Function for<br>Efficiency Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 26033-26040.                                  | 4.0  | 85        |
| 263 | Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. ACS Nano, 2020, 14, 8046-8058.                                                    | 7.3  | 35        |
| 264 | AIE Bioconjugates for Biomedical Applications. Advanced Optical Materials, 2020, 8, 2000162.                                                                                                                                   | 3.6  | 62        |
| 265 | Platinum-AIEgen coordination complex for imaging-guided annihilation of cisplatin-resistant cancer cells. Chemical Communications, 2020, 56, 7785-7788.                                                                        | 2.2  | 13        |
| 266 | Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and<br>Targeted Therapy to Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 29641-29649.                                    | 4.0  | 5         |
| 267 | Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today, 2020, 34, 100893.                                                                                                                         | 6.2  | 53        |
| 268 | Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State<br>Energy. ACS Nano, 2020, 14, 4265-4275.                                                                                         | 7.3  | 53        |
| 269 | Achievement of Highâ€Performance Nondoped Blue OLEDs Based on AlEgens via Construction of<br>Effective Highâ€Lying Chargeâ€Transfer State. Advanced Optical Materials, 2020, 8, 1902195.                                       | 3.6  | 29        |
| 270 | Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nature Communications, 2020, 11, 1255.                                                                    | 5.8  | 283       |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | A flexible topo-optical sensing technology with ultra-high contrast. Nature Communications, 2020, 11, 1448.                                                                                        | 5.8  | 14        |
| 272 | Suzuki-Miyaura Coupling Enabled by Aryl to Vinyl 1,4-Palladium Migration. IScience, 2020, 23, 100966.                                                                                              | 1.9  | 26        |
| 273 | "Living―luminogens: light driven ACQ-to-AlE transformation accompanied with solid-state actuation.<br>Materials Horizons, 2020, 7, 1566-1572.                                                      | 6.4  | 71        |
| 274 | AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive<br>Reviews in Food Science and Food Safety, 2020, 19, 2297-2329.                               | 5.9  | 39        |
| 275 | Siteâ€Selective, Multistep Functionalizations of CO <sub>2</sub> â€Based Hyperbranched Poly(alkynoate)s<br>toward Functional Polymetric Materials. Advanced Science, 2020, 7, 2000465.             | 5.6  | 24        |
| 276 | Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chemical Science, 2020, 11, 3405-3417.              | 3.7  | 182       |
| 277 | An AlEâ€Active Conjugated Polymer with High ROSâ€Generation Ability and Biocompatibility for Efficient<br>Photodynamic Therapy of Bacterial Infections. Angewandte Chemie, 2020, 132, 10038-10042. | 1.6  | 4         |
| 278 | Aggregation-induced emission luminogen for specific identification of malignant tumour in vivo.<br>Science China Chemistry, 2020, 63, 393-397.                                                     | 4.2  | 9         |
| 279 | Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132,<br>9972-9993.                                                                                          | 1.6  | 96        |
| 280 | Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced<br>Photodynamic Therapy. Angewandte Chemie, 2020, 132, 9697-9703.                                 | 1.6  | 22        |
| 281 | Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced<br>Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 9610-9616.          | 7.2  | 146       |
| 282 | Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International<br>Edition, 2020, 59, 9888-9907.                                                               | 7.2  | 821       |
| 283 | Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied<br>Materials & Interfaces, 2020, 12, 8040-8049.                                                  | 4.0  | 50        |
| 284 | Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.                                                          | 18.7 | 498       |
| 285 | One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. Materials Chemistry Frontiers, 2020, 4, 957-964.                   | 3.2  | 15        |
| 286 | Bright red aggregation-induced emission nanoparticles for multifunctional applications in cancer therapy. Chemical Science, 2020, 11, 2369-2374.                                                   | 3.7  | 40        |
| 287 | Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE<br>Bioconjugates. Journal of the American Chemical Society, 2020, 142, 3959-3969.                       | 6.6  | 143       |
| 288 | Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.                                                       | 5.7  | 48        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Identification and Singleâ€Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrionâ€Specific<br>AlE Bioprobe. Advanced Science, 2020, 7, 1902760.                                                               | 5.6  | 30        |
| 290 | Red AlEâ€Active Fluorescent Probes with Tunable Organelleâ€&pecific Targeting. Advanced Functional<br>Materials, 2020, 30, 1909268.                                                                                        | 7.8  | 85        |
| 291 | Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation<br>by rationally designed mitochondria-specific near-infrared AlEgens. Chemical Science, 2020, 11,<br>2494-2503.         | 3.7  | 131       |
| 292 | Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AlEgens. Advanced Materials, 2020, 32, e1906493.                                                                     | 11.1 | 160       |
| 293 | Facile Synthesis of Efficient Luminogens with AIE Features for Threeâ€Photon Fluorescence Imaging of the Brain through the Intact Skull. Advanced Materials, 2020, 32, e2000364.                                           | 11.1 | 103       |
| 294 | Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AlEgens. Chemical Science, 2020, 11, 7676-7684.                                                                             | 3.7  | 45        |
| 295 | Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials, 2020, 248, 120036.                                                                       | 5.7  | 71        |
| 296 | Killing G(+) or G(â^') Bacteria? The Important Role of Molecular Charge in AlEâ€Active Photosensitizers.<br>Small Methods, 2020, 4, 2000046.                                                                               | 4.6  | 114       |
| 297 | pH-Responsive Au( <scp>i</scp> )-disulfide nanoparticles with tunable aggregation-induced emission for monitoring intragastric acidity. Chemical Science, 2020, 11, 6472-6478.                                             | 3.7  | 21        |
| 298 | Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chemical Reviews, 2020, 120, 4534-4577.                                                                                         | 23.0 | 158       |
| 299 | AlEâ€Based Theranostic Probe for Sequential Imaging and Killing of Bacteria and Cancer Cells. Advanced Optical Materials, 2020, 8, 1902191.                                                                                | 3.6  | 31        |
| 300 | Dynamic Visible Monitoring of Heterogeneous Local Strain Response through an Organic<br>Mechanoresponsive AIE Luminogen. ACS Applied Materials & Interfaces, 2020, 12, 22129-22136.                                        | 4.0  | 16        |
| 301 | Multicationic AlEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 1623-1633.                                                                | 3.2  | 20        |
| 302 | One stone, three birds: one AIEgen with three colors for fast differentiation of three pathogens.<br>Chemical Science, 2020, 11, 4730-4740.                                                                                | 3.7  | 59        |
| 303 | Aggregationâ€enhanced theranostics: AIE sparkles in biomedical field. Aggregate, 2020, 1, 80-106.                                                                                                                          | 5.2  | 312       |
| 304 | An AlEâ€Active Conjugated Polymer with High ROSâ€Generation Ability and Biocompatibility for Efficient<br>Photodynamic Therapy of Bacterial Infections. Angewandte Chemie - International Edition, 2020, 59,<br>9952-9956. | 7.2  | 183       |
| 305 | Multifunctional Au <sup>I</sup> â€based AlEgens: Manipulating Molecular Structures and Boosting<br>Specific Cancer Cell Imaging and Theranostics. Angewandte Chemie - International Edition, 2020, 59,<br>7097-7105.       | 7.2  | 49        |
| 306 | Aggregationâ€Induced Emission: More Is Different. Angewandte Chemie - International Edition, 2020, 59,<br>9788-9789.                                                                                                       | 7.2  | 49        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Microlasers from AIEâ€Active BODIPY Derivative. Small, 2020, 16, e1907074.                                                                                                                                                                           | 5.2  | 23        |
| 308 | Development of AIEgen–montmorillonite nanocomposite powders for computer-assisted visualization of latent fingermarks. Materials Chemistry Frontiers, 2020, 4, 2131-2136.                                                                            | 3.2  | 24        |
| 309 | Functional Polyselenoureas for Selective Gold Recovery Prepared from Catalyst-Free Multicomponent Polymerizations of Elemental Selenium. CCS Chemistry, 2020, 2, 191-202.                                                                            | 4.6  | 21        |
| 310 | Centimeter-Deep NIR-II Fluorescence Imaging with Nontoxic AIE Probes in Nonhuman Primates.<br>Research, 2020, 2020, 4074593.                                                                                                                         | 2.8  | 33        |
| 311 | Aggregation-Induced Emission Luminogens for Activity-Based Sensing. Accounts of Chemical Research, 2019, 52, 2559-2570.                                                                                                                              | 7.6  | 343       |
| 312 | Sparks fly when AIE meets with polymers. Materials Chemistry Frontiers, 2019, 3, 2207-2220.                                                                                                                                                          | 3.2  | 68        |
| 313 | A Functioning Macroscopic "Rubik's Cube―Assembled via Controllable Dynamic Covalent Interactions.<br>Advanced Materials, 2019, 31, e1902365.                                                                                                         | 11.1 | 84        |
| 314 | Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple<br>Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the<br>American Chemical Society, 2019, 141, 15111-15120. | 6.6  | 155       |
| 315 | Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly<br>Generated from CO <sub>2</sub> and Alkyne-Based Three-Component Polymerization. Macromolecules,<br>2019, 52, 5546-5554.                           | 2.2  | 33        |
| 316 | Charge control of fluorescent probes to selectively target the cell membrane or mitochondria: theoretical prediction and experimental validation. Materials Horizons, 2019, 6, 2016-2023.                                                            | 6.4  | 48        |
| 317 | An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging.<br>Analytical Chemistry, 2019, 91, 9388-9392.                                                                                                         | 3.2  | 100       |
| 318 | Fluorescence Turn-On Visualization of Microscopic Processes for Self-Healing Gels by AlEgens and Anticounterfeiting Application. Chemistry of Materials, 2019, 31, 5683-5690.                                                                        | 3.2  | 52        |
| 319 | Tailoring the Molecular Properties with Isomerism Effect of AIEgens. Advanced Functional Materials, 2019, 29, 1903834.                                                                                                                               | 7.8  | 31        |
| 320 | AlEgens in cell-based multiplex fluorescence imaging. Science China Chemistry, 2019, 62, 1312-1332.                                                                                                                                                  | 4.2  | 39        |
| 321 | <i>In vitro</i> anticancer activity of AlEgens. Biomaterials Science, 2019, 7, 3855-3865.                                                                                                                                                            | 2.6  | 10        |
| 322 | Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom ontaining AIE<br>Systems. Angewandte Chemie - International Edition, 2019, 58, 14911-14914.                                                                          | 7.2  | 130       |
| 323 | Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Science China<br>Chemistry, 2019, 62, 1090-1098.                                                                                                                      | 4.2  | 269       |
| 324 | Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials, 2019, 218, 119330.                                                       | 5.7  | 118       |

| #   | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process.<br>Nature Communications, 2019, 10, 2952.                                                                                                                                                   | 5.8  | 125       |
| 326 | Aggregationâ€Induced Nonlinear Optical Effects of AlEgen Nanocrystals for Ultradeep In Vivo<br>Bioimaging. Advanced Materials, 2019, 31, e1904799.                                                                                                                                            | 11.1 | 126       |
| 327 | Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. Chinese Journal of Chemistry, 2019, 37, 1264-1270.                                                                                                           | 2.6  | 14        |
| 328 | Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.                                                                                                                                                                                | 2.2  | 40        |
| 329 | Stereotactic Photodynamic Therapy Using a Twoâ€Photon AlE Photosensitizer. Small, 2019, 15, e1905080.                                                                                                                                                                                         | 5.2  | 35        |
| 330 | Three-Component Regio- and Stereoselective Polymerizations toward Functional Chalcogen-Rich Polymers with AIE-Activities. Journal of the American Chemical Society, 2019, 141, 14712-14719.                                                                                                   | 6.6  | 47        |
| 331 | Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging. Journal of Innovative Optical Health Sciences, 2019, 12, 1940005.                                                                                                                  | 0.5  | 13        |
| 332 | Molecular Motion in the Solid State. , 2019, 1, 425-431.                                                                                                                                                                                                                                      |      | 71        |
| 333 | Polarized resonance synchronous spectroscopy as a powerful tool for studying the kinetics and optical properties of aggregation-induced emission. Journal of Materials Chemistry C, 2019, 7, 12086-12094.                                                                                     | 2.7  | 11        |
| 334 | Palladium-catalyzed polyannulation of pyrazoles and diynes toward multifunctional poly(indazole)s<br>under monomer non-stoichiometric conditions. Polymer Chemistry, 2019, 10, 5296-5303.                                                                                                     | 1.9  | 10        |
| 335 | Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS<br>Nano, 2019, 13, 11283-11293.                                                                                                                                                            | 7.3  | 199       |
| 336 | Evaluation of Structure–Function Relationships of Aggregation-Induced Emission Luminogens for<br>Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of<br>Gram-Positive Bacteria. Journal of the American Chemical Society, 2019, 141, 16781-16789. | 6.6  | 295       |
| 337 | Lysosome-Targeting Red-Emitting Aggregation-Induced Emission Probe with Large Stokes Shift for<br>Light-Up <i>in Situ</i> Visualization of β- <i>N</i> -Acetylhexosaminidase. Analytical Chemistry, 2019, 91,<br>12611-12614.                                                                 | 3.2  | 42        |
| 338 | Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via<br>Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials &<br>Interfaces, 2019, 11, 38023-38030.                                                            | 4.0  | 52        |
| 339 | Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission<br>Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.                                                                                                | 7.3  | 45        |
| 340 | Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer<br>Surgery. CheM, 2019, 5, 2657-2677.                                                                                                                                                              | 5.8  | 100       |
| 341 | Aggregation-induced emission: fundamental understanding and future developments. Materials<br>Horizons, 2019, 6, 428-433.                                                                                                                                                                     | 6.4  | 564       |
| 342 | Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Materials Horizons, 2019, 6, 405-411.                                                                                                                                 | 6.4  | 41        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie, 2019, 131, 4584-4588.                                                                                                               | 1.6 | 14        |
| 344 | Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie -<br>International Edition, 2019, 58, 4536-4540.                                                                                     | 7.2 | 87        |
| 345 | Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission<br>Nanoparticles. Analytical Chemistry, 2019, 91, 3467-3474.                                                                      | 3.2 | 62        |
| 346 | AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance. Advanced Science, 2019, 6, 1802050.                                                                        | 5.6 | 87        |
| 347 | Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of<br>Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.                                           | 3.2 | 46        |
| 348 | A New Strategy toward "Simple―Waterâ€Soluble AIE Probes for Hypoxia Detection. Advanced Functional<br>Materials, 2019, 29, 1903278.                                                                                                  | 7.8 | 58        |
| 349 | <i>In Situ</i> Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. Journal of the American Chemical Society, 2019, 141, 11259-11268.                                              | 6.6 | 78        |
| 350 | Aggregation-induced emission (AIE)-active polymers for explosive detection. Polymer Chemistry, 2019, 10, 3822-3840.                                                                                                                  | 1.9 | 120       |
| 351 | Assembly of 1 <i>H</i> -isoindole derivatives by selective carbon–nitrogen triple bond activation:<br>access to aggregation-induced emission fluorophores for lipid droplet imaging. Chemical Science,<br>2019, 10, 7076-7081.       | 3.7 | 23        |
| 352 | Visualization of Biogenic Amines and In Vivo Ratiometric Mapping of Intestinal pH by AlEâ€Active<br>Polyheterocycles Synthesized by Metalâ€Free Multicomponent Polymerizations. Advanced Functional<br>Materials, 2019, 29, 1902240. | 7.8 | 75        |
| 353 | Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and<br>Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 20715-20724.                                              | 4.0 | 94        |
| 354 | Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AlEgen. ACS Applied Bio<br>Materials, 2019, 2, 3120-3127.                                                                                                      | 2.3 | 26        |
| 355 | AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 2019, 9, 3223-3248.                                                                                                                              | 4.6 | 116       |
| 356 | A Dualâ€Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous<br>Anticancer Efficacy Monitoring. Advanced Functional Materials, 2019, 29, 1902673.                                                      | 7.8 | 89        |
| 357 | Alkyne–Azide Click Polymerization Catalyzed by Magnetically Recyclable<br>Fe <sub>3</sub> O <sub>4</sub> /SiO <sub>2</sub> /Cu <sub>2</sub> O Nanoparticles. Macromolecular<br>Chemistry and Physics, 2019, 220, 1900064.            | 1.1 | 5         |
| 358 | Recyclable Cu nanoparticle catalyzed azide-alkyne click polymerization. Science China Chemistry, 2019,<br>62, 1017-1022.                                                                                                             | 4.2 | 10        |
| 359 | Design and Synthesis of Luminescent Liquid Crystalline Polymers with "Jacketing―Effect and<br>Luminescent Patterning Applications. Macromolecules, 2019, 52, 3668-3679.                                                              | 2.2 | 33        |
| 360 | Enlightening Freeze–Thaw Process of Physically Cross-Linked Poly(vinyl alcohol) Hydrogels by<br>Aggregation-Induced Emission Fluorogens. ACS Applied Polymer Materials, 2019, 1, 1390-1398.                                          | 2.0 | 36        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | A highly efficient and AIE-active theranostic agent from natural herbs. Materials Chemistry Frontiers, 2019, 3, 1454-1461.                                                                                                  | 3.2 | 82        |
| 362 | Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.                                                                                        | 3.2 | 64        |
| 363 | Specific Targeting, Imaging, and Ablation of Tumor-Associated Macrophages by Theranostic<br>Mannose–AlEgen Conjugates. Analytical Chemistry, 2019, 91, 6836-6843.                                                           | 3.2 | 35        |
| 364 | Direct Construction of Acid-Responsive Poly(indolone)s through Multicomponent Tandem<br>Polymerizations. ACS Macro Letters, 2019, 8, 569-575.                                                                               | 2.3 | 30        |
| 365 | Redox-responsive fluorescent AIE bioconjugate with aggregation enhanced retention features for targeted imaging reinforcement and selective suppression of cancer cells. Materials Chemistry Frontiers, 2019, 3, 1335-1340. | 3.2 | 21        |
| 366 | Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens. ACS Nano, 2019, 13, 3618-3628.                                                               | 7.3 | 157       |
| 367 | Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System<br>from an AlEgen. Angewandte Chemie, 2019, 131, 5684-5688.                                                            | 1.6 | 46        |
| 368 | AIE Featured Inorganic–Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and<br>Real-Time Monitoring. Nano Letters, 2019, 19, 2272-2279.                                                                  | 4.5 | 58        |
| 369 | Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System<br>from an AlEgen. Angewandte Chemie - International Edition, 2019, 58, 5628-5632.                                     | 7.2 | 180       |
| 370 | In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. Journal of the American<br>Chemical Society, 2019, 141, 5612-5616.                                                                                | 6.6 | 196       |
| 371 | Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.                                                                   | 6.6 | 465       |
| 372 | Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials, 2019, 208, 72-82.                                                                                   | 5.7 | 82        |
| 373 | Recent Developments in the Synthesis of Nitrogen-Containing Heterocycles through C–H/N–H Bond<br>Functionalizations and Oxidative Cyclization. Synlett, 2019, 30, 1026-1036.                                                | 1.0 | 17        |
| 374 | Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chemical Science, 2019, 10, 3494-3501.                                                                                             | 3.7 | 112       |
| 375 | Recent Progress in AlE-active Polymers. Chinese Journal of Polymer Science (English Edition), 2019, 37, 289-301.                                                                                                            | 2.0 | 77        |
| 376 | Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and<br>Room-Light-Induced Special Reactive Oxygen Species Generation. ACS Applied Materials &<br>Interfaces, 2019, 11, 10567-10577. | 4.0 | 79        |
| 377 | Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.                                                   | 5.8 | 296       |
| 378 | Photoresponsive spiro-polymers generated in situ by C–H-activated polyspiroannulation. Nature<br>Communications, 2019, 10, 5483.                                                                                            | 5.8 | 46        |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics, 2019, 9, 246-264.                                                                               | 4.6 | 85        |
| 380 | SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AlEgens. Analytical Chemistry, 2019, 91, 2169-2176.                                                                                                         | 3.2 | 40        |
| 381 | Fluorogenic Detection and Characterization of Proteins by Aggregationâ€Induced Emission Methods.<br>Chemistry - A European Journal, 2019, 25, 5824-5847.                                                                                                             | 1.7 | 66        |
| 382 | Engineering Sensor Arrays Using Aggregationâ€induced Emission Luminogens for Pathogen<br>Identification. Advanced Functional Materials, 2019, 29, 1805986.                                                                                                           | 7.8 | 122       |
| 383 | Molecular Design, Circularly Polarized Luminescence, and Helical Selfâ€Assembly of Chiral<br>Aggregationâ€Induced Emission Molecules. Chemistry - an Asian Journal, 2019, 14, 674-688.                                                                               | 1.7 | 73        |
| 384 | Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole- <i>ran</i> -acridine)s with<br>Aggregation-Induced Emission and Delayed Fluorescence. ACS Applied Polymer Materials, 2019, 1,<br>221-229.                                                   | 2.0 | 33        |
| 385 | Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and<br>2-Hydroxybenzonitrile/2-Aminobenzonitrile toward Multifunctional<br>Iminocoumarin/Quinoline-Containing Poly( <i>N</i> -sulfonylimine)s. ACS Macro Letters, 2019, 8, 101-106.                      | 2.3 | 49        |
| 386 | Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling<br>and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.                                                                                       | 1.7 | 13        |
| 387 | Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano, 2019, 13, 839-846.                                                                                                    | 7.3 | 77        |
| 388 | The Marriage of Aggregationâ€Induced Emission with Polymer Science. Macromolecular Rapid<br>Communications, 2019, 40, e1800568.                                                                                                                                      | 2.0 | 82        |
| 389 | An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable<br>Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.                                                    | 7.2 | 73        |
| 390 | Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission<br>Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018,<br>28, 1800051.                                                   | 7.8 | 302       |
| 391 | Room Temperature One-Step Conversion from Elemental Sulfur to Functional Polythioureas through<br>Catalyst-Free Multicomponent Polymerizations. Journal of the American Chemical Society, 2018, 140,<br>6156-6163.                                                   | 6.6 | 191       |
| 392 | Red-emissive azabenzanthrone derivatives for photodynamic therapy irradiated with ultralow light power density and two-photon imaging. Chemical Science, 2018, 9, 5165-5171.                                                                                         | 3.7 | 57        |
| 393 | Fluorogenic Ag <sup>+</sup> –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver<br>Staining. Angewandte Chemie - International Edition, 2018, 57, 5750-5753.                                                                                    | 7.2 | 75        |
| 394 | Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily<br>Openable Small Heterocycles. Journal of the American Chemical Society, 2018, 140, 5588-5598.                                                                        | 6.6 | 116       |
| 395 | A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for<br>efficient detection of nitro-containing explosives and antibiotics in aqueous media. Journal of<br>Materials Chemistry C, 2018, 6, 2983-2988.                     | 2.7 | 133       |
| 396 | Efficient Red/Nearâ€Infrared Fluorophores Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiophene<br>1,1,5,5â€Tetraoxide for Targeted Photodynamic Therapy and In Vivo Twoâ€Photon Fluorescence Bioimaging.<br>Advanced Functional Materials, 2018, 28, 1706945. | 7.8 | 96        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Ultrabright red AlEgens for two-photon vascular imaging with high resolution and deep penetration.<br>Chemical Science, 2018, 9, 2705-2710.                                                                                                           | 3.7  | 98        |
| 398 | Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting<br>Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission.<br>Advanced Functional Materials, 2018, 28, 1705609. | 7.8  | 82        |
| 399 | Realâ€Time and Highâ€Resolution Bioimaging with Bright Aggregationâ€Induced Emission Dots in Shortâ€Wave<br>Infrared Region. Advanced Materials, 2018, 30, e1706856.                                                                                  | 11.1 | 341       |
| 400 | Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell<br>Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.                                                                                       | 3.2  | 70        |
| 401 | Direct Polymerization of Carbon Dioxide, Diynes, and Alkyl Dihalides under Mild Reaction Conditions.<br>Macromolecules, 2018, 51, 42-48.                                                                                                              | 2.2  | 52        |
| 402 | Multiple yet Controllable Photoswitching in a Single AlEgen System. Journal of the American Chemical Society, 2018, 140, 1966-1975.                                                                                                                   | 6.6  | 209       |
| 403 | Room temperature multicomponent polymerizations of alkynes, sulfonyl azides, and<br><i>N</i> -protected isatins toward oxindole-containing poly( <i>N</i> -acylsulfonamide)s. Polymer<br>Chemistry, 2018, 9, 1674-1683.                               | 1.9  | 21        |
| 404 | Nanosized nickel decorated sisal fibers with tailored aggregation structures for catalysis reduction of toxic aromatic compounds. Industrial Crops and Products, 2018, 119, 226-236.                                                                  | 2.5  | 4         |
| 405 | Efficient red AlEgens based on tetraphenylethene: synthesis, structure, photoluminescence and electroluminescence. Journal of Materials Chemistry C, 2018, 6, 5900-5907.                                                                              | 2.7  | 33        |
| 406 | <i>In situ</i> visualizable self-assembly, aggregation-induced emission and circularly polarized<br>luminescence of tetraphenylethene and alanine-based chiral polytriazole. Journal of Materials<br>Chemistry C, 2018, 6, 4807-4816.                 | 2.7  | 78        |
| 407 | Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate.<br>Biomacromolecules, 2018, 19, 2014-2022.                                                                                                          | 2.6  | 248       |
| 408 | Aggregation-Induced Emission Probe for Study of the Bactericidal Mechanism of Antimicrobial Peptides. ACS Applied Materials & amp; Interfaces, 2018, 10, 11436-11442.                                                                                 | 4.0  | 70        |
| 409 | Tetraphenylpyrazine-based luminogens with full-colour emission. Materials Chemistry Frontiers, 2018, 2, 1310-1316.                                                                                                                                    | 3.2  | 44        |
| 410 | An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable<br>Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.                                                            | 1.6  | 63        |
| 411 | Rational design of a water-soluble NIR AlEgen, and its application in ultrafast wash-free cellular<br>imaging and photodynamic cancer cell ablation. Chemical Science, 2018, 9, 3685-3693.                                                            | 3.7  | 343       |
| 412 | A simple mitochondrial targeting AlEgen for image-guided two-photon excited photodynamic therapy.<br>Journal of Materials Chemistry B, 2018, 6, 2557-2565.                                                                                            | 2.9  | 77        |
| 413 | White-Light Emission of a Binary Light-Harvesting Platform Based on an Amphiphilic Organic Cage.<br>Chemistry of Materials, 2018, 30, 1285-1290.                                                                                                      | 3.2  | 98        |
| 414 | Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Science China Chemistry, 2018, 61, 76-87.                                                                               | 4.2  | 51        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection<br>of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.                                 | 7.8  | 124       |
| 416 | Aggregation-Induced Emission Probe for Specific Turn-On Quantification of Soluble Transferrin<br>Receptor: An Important Disease Marker for Iron Deficiency Anemia and Kidney Diseases. Analytical<br>Chemistry, 2018, 90, 1154-1160. | 3.2  | 38        |
| 417 | Multifunctional AlEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and<br>Bacterial Imaging. Advanced Functional Materials, 2018, 28, 1704589.                                                              | 7.8  | 96        |
| 418 | Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. Journal of Materials Chemistry C, 2018, 6, 12849-12857.                                                                      | 2.7  | 57        |
| 419 | In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018,<br>9, 4961.                                                                                                                       | 5.8  | 70        |
| 420 | Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd<br>Effect. Angewandte Chemie, 2018, 130, 15409-15413.                                                                                   | 1.6  | 35        |
| 421 | Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AlEgen. Biomaterials, 2018, 187, 47-54.                                                          | 5.7  | 73        |
| 422 | Highly Emissive AlEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet<br>Imaging, Apoptosis Monitoring, and In Vivo Imaging. Chemistry of Materials, 2018, 30, 7892-7901.                              | 3.2  | 68        |
| 423 | Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd<br>Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.                                                            | 7.2  | 198       |
| 424 | Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission<br>Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS Nano, 2018, 12,<br>11282-11293.                       | 7.3  | 208       |
| 425 | Red/NIRâ€Emissive Benzo[ <i>d</i> ]imidazoleâ€Cored AlEgens: Facile Molecular Design for Wavelength<br>Extending and In Vivo Tumor Metabolic Imaging. Advanced Materials, 2018, 30, e1805220.                                        | 11.1 | 106       |
| 426 | Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio<br>Materials, 2018, 1, 1768-1786.                                                                                                  | 2.3  | 219       |
| 427 | Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room<br>Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. Synlett, 2018, 29,<br>2523-2528.                                 | 1.0  | 7         |
| 428 | Theranostics based on AlEgens. Theranostics, 2018, 8, 4925-4956.                                                                                                                                                                     | 4.6  | 143       |
| 429 | Dynamic Visualization of Stress/Strain Distribution and Fatigue Crack Propagation by an Organic<br>Mechanoresponsive AlE Luminogen. Advanced Materials, 2018, 30, e1803924.                                                          | 11.1 | 100       |
| 430 | Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect.<br>Chemical Society Reviews, 2018, 47, 7452-7476.                                                                                       | 18.7 | 368       |
| 431 | Functional Poly(dihalopentadiene)s: Stereoselective Synthesis, Aggregation-Enhanced Emission and Sensitive Detection of Explosives. Polymers, 2018, 10, 821.                                                                         | 2.0  | 8         |
| 432 | A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of<br>Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.                                                             | 7.8  | 105       |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. Materials Chemistry Frontiers, 2018, 2, 1498-1507.                                                                | 3.2  | 61        |
| 434 | Corannuleneâ€Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. Advanced Materials, 2018, 30, e1801065.                                                                    | 11.1 | 163       |
| 435 | Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.                                                                                                                                        | 3.7  | 167       |
| 436 | Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.                                                                                                             | 3.7  | 101       |
| 437 | Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at<br>Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.                                                              | 3.2  | 154       |
| 438 | Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens. Science China Chemistry, 2018, 61, 892-897.                                                             | 4.2  | 29        |
| 439 | Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.                                                       | 7.3  | 193       |
| 440 | Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nature<br>Communications, 2018, 9, 3044.                                                                                                      | 5.8  | 203       |
| 441 | Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single<br>Molecule. Angewandte Chemie - International Edition, 2018, 57, 12473-12477.                                                       | 7.2  | 171       |
| 442 | A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.                                                                                          | 5.8  | 339       |
| 443 | Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single<br>Molecule. Angewandte Chemie, 2018, 130, 12653-12657.                                                                              | 1.6  | 49        |
| 444 | Aggregationâ€Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare.<br>Advanced Healthcare Materials, 2018, 7, e1800477.                                                                                       | 3.9  | 127       |
| 445 | Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption,<br>Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12,<br>8145-8159.                       | 7.3  | 281       |
| 446 | Cakingâ€Inspired Cold Sintering of Plastic Supramolecular Films as Multifunctional Platforms.<br>Advanced Functional Materials, 2018, 28, 1803370.                                                                                        | 7.8  | 25        |
| 447 | A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe <sup>3+</sup> Ions<br>and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.                                             | 7.8  | 62        |
| 448 | Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by<br>Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.                                                     | 7.2  | 224       |
| 449 | Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nature Communications, 2018, 9, 1848.                                                                                              | 5.8  | 286       |
| 450 | A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging<br>and photodynamic killing of both cancer cells and Gram-positive bacteria. Journal of Materials<br>Chemistry B, 2018, 6, 3894-3903. | 2.9  | 60        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional<br>Aggregation-Induced Emission Luminogen. ACS Nano, 2018, 12, 9549-9557.                                                                    | 7.3  | 87        |
| 452 | Rational design of red AlEgens with a new core structure from non-emissive heteroaromatics.<br>Chemical Science, 2018, 9, 7829-7834.                                                                                                  | 3.7  | 50        |
| 453 | Highly Efficient Photosensitizers with Farâ€Red/Nearâ€Infrared Aggregationâ€Induced Emission for In Vitro<br>and In Vivo Cancer Theranostics. Advanced Materials, 2018, 30, e1802105.                                                 | 11.1 | 266       |
| 454 | AIE-based super-resolution imaging probes for β-amyloid plaques in mouse brains. Materials Chemistry Frontiers, 2018, 2, 1554-1562.                                                                                                   | 3.2  | 68        |
| 455 | Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space<br>Conjugated Hexaphenylbenzene. Nano Letters, 2018, 18, 4200-4205.                                                                         | 4.5  | 55        |
| 456 | A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.                                  | 2.8  | 86        |
| 457 | The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chemical Society<br>Reviews, 2017, 46, 816-854.                                                                                                    | 18.7 | 458       |
| 458 | Light-up probe based on AlEgens: dual signal turn-on for caspase cascade activation monitoring.<br>Chemical Science, 2017, 8, 2723-2728.                                                                                              | 3.7  | 89        |
| 459 | Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications.<br>Journal of Materials Chemistry B, 2017, 5, 1650-1657.                                                                            | 2.9  | 50        |
| 460 | Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.                                                                                                           | 1.9  | 152       |
| 461 | Achieving Highâ€Performance Nondoped OLEDs with Extremely Small Efficiency Rollâ€Off by Combining<br>Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence. Advanced Functional<br>Materials, 2017, 27, 1606458. | 7.8  | 386       |
| 462 | Mitochondrionâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics<br>Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. Advanced Materials,<br>2017, 29, 1606167.           | 11.1 | 222       |
| 463 | Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. Journal of Materials Chemistry C, 2017, 5, 4775-4779.                                                              | 2.7  | 141       |
| 464 | AlEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. Chemical Science, 2017, 8, 2191-2198.                                                               | 3.7  | 101       |
| 465 | Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics.<br>ACS Applied Materials & Interfaces, 2017, 9, 21706-21714.                                                                      | 4.0  | 39        |
| 466 | Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chemical Science, 2017, 8, 5440-5446.                                                                                                        | 3.7  | 344       |
| 467 | Functionality and versatility of aggregation-induced emission luminogens. Applied Physics Reviews, 2017, 4, .                                                                                                                         | 5.5  | 138       |
| 468 | Tunable Mechanoresponsive Selfâ€Assembly of an Amideâ€Linked Dyad with Dual Sensitivity of<br>Photochromism and Mechanochromism. Advanced Functional Materials, 2017, 27, 1701210.                                                    | 7.8  | 125       |

| #   | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 469 | One-Step Formulation of Targeted Aggregation-Induced Emission Dots for Image-Guided Photodynamic<br>Therapy of Cholangiocarcinoma. ACS Nano, 2017, 11, 3922-3932.                                                                                                             | 7.3  | 175       |
| 470 | Spontaneous Amino-yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific Poly(β-aminoacrylate)s. Journal of the American Chemical Society, 2017, 139, 5437-5443.                                                                                          | 6.6  | 177       |
| 471 | A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chemical Communications, 2017, 53, 4505-4508.                                                                   | 2.2  | 114       |
| 472 | Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching?. Materials<br>Chemistry Frontiers, 2017, 1, 1125-1129.                                                                                                                                        | 3.2  | 150       |
| 473 | AlE-active polymers for explosive detection. Chinese Journal of Polymer Science (English Edition), 2017, 35, 141-154.                                                                                                                                                         | 2.0  | 103       |
| 474 | Photoactivatable aggregation-induced emission probes for lipid droplets-specific live cell imaging.<br>Chemical Science, 2017, 8, 1763-1768.                                                                                                                                  | 3.7  | 128       |
| 475 | AlE-active theranostic system: selective staining and killing of cancer cells. Chemical Science, 2017, 8, 1822-1830.                                                                                                                                                          | 3.7  | 187       |
| 476 | Sticky nanopads made of crystallizable fluorescent polymers for rapid and sensitive detection of organic pollutants in water. Journal of Materials Chemistry A, 2017, 5, 2115-2122.                                                                                           | 5.2  | 23        |
| 477 | Ionization and Anionâ~'Ï€ <sup>+</sup> Interaction: A New Strategy for Structural Design of<br>Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139,<br>16974-16979.                                                                  | 6.6  | 201       |
| 478 | Ultrafast Delivery of Aggregation-Induced Emission Nanoparticles and Pure Organic Phosphorescent<br>Nanocrystals by Saponin Encapsulation. Journal of the American Chemical Society, 2017, 139,<br>14792-14799.                                                               | 6.6  | 114       |
| 479 | AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Longâ€Term Superâ€Resolution Bioimaging. Advanced Materials, 2017, 29, 1703643.                                                                                        | 11.1 | 140       |
| 480 | Facile Synthesis of Red/NIR AIE Luminogens with Simple Structures, Bright Emissions, and High<br>Photostabilities, and Their Applications for Specific Imaging of Lipid Droplets and Imageâ€Guided<br>Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1704039. | 7.8  | 182       |
| 481 | Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon<br>Fluorescence Imaging of Mouse. ACS Nano, 2017, 11, 10452-10461.                                                                                                               | 7.3  | 156       |
| 482 | Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sensors, 2017, 2, 1382-1399.                                                                                                                                                 | 4.0  | 521       |
| 483 | A Simple and Sensitive Method for an Important Physical Parameter: Reliable Measurement of Glass<br>Transition Temperature by AlEgens. Macromolecules, 2017, 50, 7620-7627.                                                                                                   | 2.2  | 50        |
| 484 | Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors.<br>Advanced Materials, 2017, 29, 1703900.                                                                                                                                        | 11.1 | 193       |
| 485 | Facile Polymerization of Water and Triple-Bond Based Monomers toward Functional Polyamides.<br>Macromolecules, 2017, 50, 8554-8561.                                                                                                                                           | 2.2  | 27        |
| 486 | Why Do Simple Molecules with "Isolated―Phenyl Rings Emit Visible Light?. Journal of the American<br>Chemical Society, 2017, 139, 16264-16272.                                                                                                                                 | 6.6  | 201       |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 487 | Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from<br>Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition,<br>2017, 56, 12971-12976.                    | 7.2  | 320       |
| 488 | 2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2-b]pyrrole (AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chemical Science, 2017, 8, 7258-7267.                        | 3.7  | 153       |
| 489 | New AIEgens with delayed fluorescence for fluorescence imaging and fluorescence lifetime imaging of living cells. Materials Chemistry Frontiers, 2017, 1, 2554-2558.                                                                  | 3.2  | 85        |
| 490 | AlEgens for biological process monitoring and disease theranostics. Biomaterials, 2017, 146, 115-135.                                                                                                                                 | 5.7  | 206       |
| 491 | High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by<br>Fluorescent AIE Probes. Macromolecules, 2017, 50, 5807-5815.                                                                         | 2.2  | 73        |
| 492 | AIE Luminogens for Bioimaging and Theranostics: From Organelles to Animals. CheM, 2017, 3, 56-91.                                                                                                                                     | 5.8  | 465       |
| 493 | Aggregation-induced emission probes for cancer theranostics. Drug Discovery Today, 2017, 22, 1288-1294.                                                                                                                               | 3.2  | 59        |
| 494 | A Highly Sensitive Bimodal Detection of Amine Vapours Based on Aggregation Induced Emission of 1,2â€Dihydroquinoxaline Derivatives. Chemistry - A European Journal, 2017, 23, 14911-14917.                                            | 1.7  | 78        |
| 495 | A red-emissive antibody–AlEgen conjugate for turn-on and wash-free imaging of specific cancer cells.<br>Chemical Science, 2017, 8, 7014-7024.                                                                                         | 3.7  | 79        |
| 496 | Room Temperature Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and<br>Iminophosphorane toward Heteroatom-Rich Multifunctional Poly(phosphorus amidine)s.<br>Macromolecules, 2017, 50, 6043-6053.                        | 2.2  | 48        |
| 497 | Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes,<br>Isonitriles, and Alkynes. ACS Macro Letters, 2017, 6, 1352-1356.                                                                  | 2.3  | 16        |
| 498 | Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy<br>Using a Probe of the Aggregation-Induced Emission Characteristic. Journal of the American Chemical<br>Society, 2017, 139, 17022-17030. | 6.6  | 111       |
| 499 | Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible<br>Phototheranostic Agent of Tumor in Living Mice. ACS Nano, 2017, 11, 7177-7188.                                                                | 7.3  | 212       |
| 500 | Dramatic Differences in Aggregation-Induced Emission and Supramolecular Polymerizability of<br>Tetraphenylethene-Based Stereoisomers. Journal of the American Chemical Society, 2017, 139,<br>10150-10156.                            | 6.6  | 170       |
| 501 | Nanocrystallization: A Unique Approach to Yield Bright Organic Nanocrystals for Biological<br>Applications. Advanced Materials, 2017, 29, 1604100.                                                                                    | 11.1 | 126       |
| 502 | AlEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg <sup>2+</sup> sensing. Chemical Science, 2017, 8, 2047-2055.                                                    | 3.7  | 187       |
| 503 | A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Materials Chemistry Frontiers, 2017, 1, 838-845.                                                            | 3.2  | 132       |
| 504 | Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities. Topics in Current<br>Chemistry Collections, 2017, , 33-71.                                                                                            | 0.2  | 2         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 505 | Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. Theranostics, 2016, 6, 1887-1898.                                                                                                          | 4.6  | 295       |
| 506 | Activatable Fluorescent Nanoprobe with Aggregationâ€Induced Emission Characteristics for Selective<br>In Vivo Imaging of Elevated Peroxynitrite Generation. Advanced Materials, 2016, 28, 7249-7256.                         | 11.1 | 177       |
| 507 | Siloleâ€Based Red Fluorescent Organic Dots for Bright Twoâ€Photon Fluorescence In vitro Cell and In<br>vivo Blood Vessel Imaging. Small, 2016, 12, 782-792.                                                                  | 5.2  | 74        |
| 508 | Polyarylcyanation of Diyne: A One-Pot Three-Component Convenient Route for <i>In Situ</i> Generation of Polymers with AIE Characteristics. Macromolecules, 2016, 49, 8888-8898.                                              | 2.2  | 32        |
| 509 | A near-infrared AlEgen for specific imaging of lipid droplets. Chemical Communications, 2016, 52, 5957-5960.                                                                                                                 | 2.2  | 93        |
| 510 | Specific Fluorescence Probes for Lipid Droplets Based on Simple AlEgens. ACS Applied Materials &<br>Interfaces, 2016, 8, 10193-10200.                                                                                        | 4.0  | 132       |
| 511 | Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Materials Horizons, 2016, 3, 283-293.                                                                      | 6.4  | 193       |
| 512 | Detection of UVA/UVC-induced damage of p53 fragment by rolling circle amplification with AIEgens.<br>Analyst, The, 2016, 141, 4394-4399.                                                                                     | 1.7  | 7         |
| 513 | Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chemical Science, 2016, 7, 5573-5580.                                                       | 3.7  | 67        |
| 514 | Poly(triphenyl ethene) and poly(tetraphenyl ethene): synthesis, aggregation-induced emission property<br>and application as paper sensors for effective nitro-compounds detection. Polymer Chemistry, 2016, 7,<br>6309-6317. | 1.9  | 50        |
| 515 | Multicomponent polymerization: development of a one-pot synthetic route to functional polymers<br>using diyne, N-sulfonyl azide and water/ethanol as reactants. Polymer Chemistry, 2016, 7, 5646-5654.                       | 1.9  | 27        |
| 516 | Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles. ACS Applied Materials & amp; Interfaces, 2016, 8, 27987-27995.                                                  | 4.0  | 45        |
| 517 | Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized<br>from "1 + 2―Polycoupling of Internal Alkynes and Arylboronic Acids. Macromolecules, 2016, 49,<br>5817-5830.              | 2.2  | 18        |
| 518 | Polyannulation of internal alkynes and O-acyloxime derivatives to synthesize functional poly(isoquinoline)s. Polymer Chemistry, 2016, 7, 5436-5444.                                                                          | 1.9  | 17        |
| 519 | Multicomponent Click Polymerization: A Facile Strategy toward Fused Heterocyclic Polymers.<br>Macromolecules, 2016, 49, 5475-5483.                                                                                           | 2.2  | 60        |
| 520 | Recent Advances in Alkyneâ€Based Multicomponent Polymerizations. Macromolecular Chemistry and Physics, 2016, 217, 213-224.                                                                                                   | 1.1  | 73        |
| 521 | Base-catalyzed hydrogen–deuterium exchange and dehalogenation reactions of 1,2,3-triazole derivatives. Tetrahedron, 2016, 72, 6375-6379.                                                                                     | 1.0  | 13        |
| 522 | Anionic conjugated polytriazole: direct preparation, aggregation-enhanced emission, and highly efficient Al <sup>3+</sup> sensing. Polymer Chemistry, 2016, 7, 5835-5839.                                                    | 1.9  | 34        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 523 | Click Synthesis, Aggregationâ€Induced Emission and Chirality, Circularly Polarized Luminescence, and<br>Helical Selfâ€Assembly of a Leucineâ€Containing Silole. Small, 2016, 12, 6593-6601.                                     | 5.2  | 50        |
| 524 | Monodisperse AlEâ€Active Conjugated Polymer Nanoparticles via Dispersion Polymerization Using<br>Geminal Crossâ€Coupling of 1,1â€Đibromoolefins. Small, 2016, 12, 6547-6552.                                                    | 5.2  | 26        |
| 525 | A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission<br>amphiphile: insight into the role of electrical charge in cancer cell division. Chemical<br>Communications, 2016, 52, 12466-12469. | 2.2  | 41        |
| 526 | Kinetic trapping – a strategy for directing the self-assembly of unique functional nanostructures.<br>Chemical Communications, 2016, 52, 11870-11884.                                                                           | 2.2  | 100       |
| 527 | An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose. Chemical Communications, 2016, 52, 10076-10079.                           | 2.2  | 113       |
| 528 | Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic–inorganic composites. Nature Communications, 2016, 7, 11811.                                                   | 5.8  | 101       |
| 529 | Gelation process visualized by aggregation-induced emission fluorogens. Nature Communications, 2016, 7, 12033.                                                                                                                  | 5.8  | 179       |
| 530 | A Mitochondrion‧pecific Photoactivatable Fluorescence Turnâ€On AIEâ€Based Bioprobe for Localization<br>Superâ€Resolution Microscope. Advanced Materials, 2016, 28, 5064-5071.                                                   | 11.1 | 166       |
| 531 | Design and Applications of an Efficient Amphiphilic "Click―Cu <sup>I</sup> Catalyst in Water. ACS<br>Catalysis, 2016, 6, 5424-5431.                                                                                             | 5.5  | 59        |
| 532 | Noncrystalline nickel phosphide decorated poly(vinyl alcohol-co-ethylene) nanofibrous membrane<br>for catalytic hydrogenation of p-nitrophenol. Applied Catalysis B: Environmental, 2016, 196, 223-231.                         | 10.8 | 48        |
| 533 | BCl <sub>3</sub> -mediated polycoupling of alkynes and aldehydes: a facile, metal-free multicomponent polymerization route to construct stereoregular functional polymers. Polymer Chemistry, 2016, 7, 4667-4674.               | 1.9  | 6         |
| 534 | Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission. ACS Sensors, 2016, 1, 179-184.                                                                                                            | 4.0  | 218       |
| 535 | Recent advances in AIE polymers. Polymer Journal, 2016, 48, 359-370.                                                                                                                                                            | 1.3  | 113       |
| 536 | Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne. Polymer Chemistry, 2016, 7, 2501-2510.                                                    | 1.9  | 28        |
| 537 | Peptide-Induced AlEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up<br>Probes. Analytical Chemistry, 2016, 88, 3872-3878.                                                                     | 3.2  | 97        |
| 538 | A photostable AIEgen for nucleolus and mitochondria imaging with organelle-specific emission.<br>Journal of Materials Chemistry B, 2016, 4, 2614-2619.                                                                          | 2.9  | 78        |
| 539 | Thermoresponsive AIE polymers with fine-tuned response temperature. Journal of Materials Chemistry C, 2016, 4, 2964-2970.                                                                                                       | 2.7  | 59        |
| 540 | A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells.<br>Nanoscale, 2016, 8, 12520-12523.                                                                                        | 2.8  | 42        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 541 | Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chemical Communications, 2016, 52, 2752-2755.                     | 2.2  | 90        |
| 542 | Palladium-catalyzed alkyne polyannulation of diphenols and unactivated internal diynes: a new synthetic route to functional heterocyclic polymers. Polymer Chemistry, 2016, 7, 330-338.                                         | 1.9  | 22        |
| 543 | Synthesis and Design of Aggregationâ€Induced Emission Surfactants: Direct Observation of Micelle<br>Transitions and Microemulsion Droplets. Angewandte Chemie - International Edition, 2015, 54,<br>15160-15164.                | 7.2  | 144       |
| 544 | Mitochondrion‧pecific Live ell Bioprobe Operated in a Fluorescence Turnâ€On Manner and a<br>Wellâ€Designed Photoactivatable Mechanism. Advanced Materials, 2015, 27, 7093-7100.                                                 | 11.1 | 89        |
| 545 | Lightâ€Up Probe for Targeted and Activatable Photodynamic Therapy with Realâ€Time In Situ Reporting of<br>Sensitizer Activation and Therapeutic Responses. Advanced Functional Materials, 2015, 25, 6586-6595.                  | 7.8  | 144       |
| 546 | Smart Probe for Tracing Cancer Therapy: Selective Cancer Cell Detection, Image-Guided Ablation, and Prediction of Therapeutic Response In Situ. Small, 2015, 11, 4682-4690.                                                     | 5.2  | 52        |
| 547 | A Near Infrared Light Triggered Hydrogenated Black TiO <sub>2</sub> for Cancer Photothermal<br>Therapy. Advanced Healthcare Materials, 2015, 4, 1526-1536.                                                                      | 3.9  | 326       |
| 548 | Cellular and Mitochondrial Dualâ€Targeted Organic Dots with Aggregationâ€Induced Emission<br>Characteristics for Imageâ€Guided Photodynamic Therapy. Advanced Healthcare Materials, 2015, 4,<br>2667-2676.                      | 3.9  | 74        |
| 549 | A Luminogen with Aggregationâ€Induced Emission Characteristics for Washâ€Free Bacterial Imaging,<br>Highâ€Throughput Antibiotics Screening and Bacterial Susceptibility Evaluation. Advanced Materials,<br>2015, 27, 4931-4937. | 11.1 | 111       |
| 550 | Unusual Aggregationâ€Induced Emission of a Coumarin Derivative as a Result of the Restriction of an<br>Intramolecular Twisting Motion. Angewandte Chemie - International Edition, 2015, 54, 14492-14497.                        | 7.2  | 207       |
| 551 | Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polymer Chemistry, 2015, 6, 4436-4446.                                       | 1.9  | 42        |
| 552 | The Golden Age of Transfer Hydrogenation. Chemical Reviews, 2015, 115, 6621-6686.                                                                                                                                               | 23.0 | 1,436     |
| 553 | A Tris(triazolate) Ligand for a Highly Active and Magnetically Recoverable Palladium Catalyst of<br>Selective Alcohol Oxidation Using Air at Atmospheric Pressure. Chemistry - A European Journal, 2015,<br>21, 6501-6510.      | 1.7  | 23        |
| 554 | Synthesis of 1,5-regioregular polytriazoles by efficient NMe <sub>4</sub> OH-mediated azide–alkyne<br>click polymerization. Polymer Chemistry, 2015, 6, 5545-5549.                                                              | 1.9  | 41        |
| 555 | Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to<br>Intramolecular Rotation. Journal of Nanoscience and Nanotechnology, 2015, 15, 1864-1868.                                          | 0.9  | 30        |
| 556 | Multicomponent Polycoupling of Internal Diynes, Aryl Diiodides, and Boronic Acids to Functional<br>Poly(tetraarylethene)s. Macromolecules, 2015, 48, 8098-8107.                                                                 | 2.2  | 33        |
| 557 | Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chemical Science, 2015, 6, 1932-1937.                                                                                                         | 3.7  | 259       |
| 558 | Poly[(maleic anhydride)- <i>alt</i> -(vinyl acetate)]: A Pure Oxygenic Nonconjugated Macromolecule<br>with Strong Light Emission and Solvatochromic Effect. Macromolecules, 2015, 48, 64-71.                                    | 2.2  | 242       |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 559 | Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor. Journal of Molecular Catalysis A, 2015, 400, 14-21. | 4.8  | 39        |
| 560 | Structural and Theoretical Insights into the AIE Attributes of Phosphindole Oxide: The Balance<br>Between Rigidity and Flexibility. Chemistry - A European Journal, 2015, 21, 4440-4449.                     | 1.7  | 98        |
| 561 | Specific light-up bioprobes based on AlEgen conjugates. Chemical Society Reviews, 2015, 44, 2798-2811.                                                                                                       | 18.7 | 674       |
| 562 | Aggregation-induced chirality, circularly polarized luminescence, and helical self-assembly of a leucine-containing AIE luminogen. Journal of Materials Chemistry C, 2015, 3, 2399-2404.                     | 2.7  | 114       |
| 563 | Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation. Nano Research, 2015, 8, 1563-1576.   | 5.8  | 38        |
| 564 | Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chemical Communications, 2015, 51, 13416-13419.               | 2.2  | 45        |
| 565 | Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. Macromolecules, 2015, 48, 4241-4249.                                    | 2.2  | 40        |
| 566 | A fluorescent probe with aggregation-induced emission characteristics for distinguishing homocysteine over cysteine and glutathione. Journal of Materials Chemistry C, 2015, 3, 8397-8402.                   | 2.7  | 63        |
| 567 | Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by<br>AlEgens. Analytical Chemistry, 2015, 87, 6822-6827.                                                   | 3.2  | 119       |
| 568 | Magnetic and Dendritic Catalysts. Accounts of Chemical Research, 2015, 48, 1871-1880.                                                                                                                        | 7.6  | 109       |
| 569 | Multicomponent Tandem Reactions and Polymerizations of Alkynes, Carbonyl Chlorides, and Thiols.<br>Macromolecules, 2015, 48, 1941-1951.                                                                      | 2.2  | 53        |
| 570 | AIE luminogens: emission brightened by aggregation. Materials Today, 2015, 18, 365-377.                                                                                                                      | 8.3  | 378       |
| 571 | Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters.<br>Chemical Science, 2015, 6, 4438-4444.                                                                    | 3.7  | 335       |
| 572 | Multifunctional Poly( <i>N</i> -sulfonylamidine)s Constructed by Cu-Catalyzed Three-Component<br>Polycouplings of Diynes, Disulfonyl Azide, and Amino Esters. Macromolecules, 2015, 48, 3180-3189.           | 2.2  | 42        |
| 573 | Light-Enhanced Bacterial Killing and Wash-Free Imaging Based on AIE Fluorogen. ACS Applied Materials<br>& Interfaces, 2015, 7, 7180-7188.                                                                    | 4.0  | 120       |
| 574 | Photostable AIE fluorogens for accurate and sensitive detection of S-phase DNA synthesis and cell proliferation. Journal of Materials Chemistry B, 2015, 3, 4993-4996.                                       | 2.9  | 29        |
| 575 | Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE<br>luminogens. Polymer Chemistry, 2015, 6, 3537-3542.                                                    | 1.9  | 64        |
| 576 | Catalysis Inside Dendrimers. Synthesis, 2015, 47, 2017-2031.                                                                                                                                                 | 1.2  | 31        |

DONG WANG

| #   | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 577 | Catalyst-Free, Atom-Economic, Multicomponent Polymerizations of Aromatic Diynes, Elemental Sulfur,<br>and Aliphatic Diamines toward Luminescent Polythioamides. Macromolecules, 2015, 48, 7747-7754.                                                                 | 2.2  | 145       |
| 578 | Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.                                                                                                                                                          | 23.0 | 6,279     |
| 579 | Click Metallodendrimers and Their Functions. Synlett, 2015, 26, 1437-1449.                                                                                                                                                                                           | 1.0  | 18        |
| 580 | A Multifunctional Probe with Aggregationâ€Induced Emission Characteristics for Selective<br>Fluorescence Imaging and Photodynamic Killing of Bacteria Over Mammalian Cells. Advanced<br>Healthcare Materials, 2015, 4, 659-663.                                      | 3.9  | 85        |
| 581 | Specific Lightâ€Up Bioprobe with Aggregationâ€Induced Emission and Activatable Photoactivity for the<br>Targeted and Imageâ€Guided Photodynamic Ablation of Cancer Cells. Angewandte Chemie - International<br>Edition, 2015, 54, 1780-1786.                         | 7.2  | 461       |
| 582 | A self-assembly induced emission system constructed by the host–guest interaction of AlE-active building blocks. Chemical Communications, 2015, 51, 1089-1091.                                                                                                       | 2.2  | 61        |
| 583 | Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers<br>Containing Palladium Nanoparticles on a Magnetic Support. ChemCatChem, 2015, 7, 303-308.                                                                                | 1.8  | 41        |
| 584 | Efficient and Magnetically Recoverable "Click―PEGylated γâ€Fe <sub>2</sub> O <sub>3</sub> –Pd<br>Nanoparticle Catalysts for Suzuki–Miyaura, Sonogashira, and Heck Reactions with Positive Dendritic<br>Effects. Chemistry - A European Journal, 2015, 21, 1508-1519. | 1.7  | 62        |
| 585 | Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews, 2015, 44, 4228-4238.                                                                                                                                           | 18.7 | 1,128     |
| 586 | Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced<br>Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials,<br>2014, 26, 1735-1739.                                          | 11.1 | 77        |
| 587 | Bright and Photostable Organic Fluorescent Dots with Aggregationâ€Induced Emission Characteristics<br>for Noninvasive Longâ€Term Cell Imaging. Advanced Functional Materials, 2014, 24, 635-643.                                                                     | 7.8  | 210       |
| 588 | A Highly Active and Magnetically Recoverable Tris(triazolyl)–Cu <sup>I</sup> Catalyst for<br>Alkyne–Azide Cycloaddition Reactions. Chemistry - A European Journal, 2014, 20, 4047-4054.                                                                              | 1.7  | 73        |
| 589 | Highly Fluorescent and Photostable Probe for Longâ€Term Bacterial Viability Assay Based on<br>Aggregationâ€Induced Emission. Advanced Healthcare Materials, 2014, 3, 88-96.                                                                                          | 3.9  | 105       |
| 590 | Two-Dimensional Metal–Organic Framework with Wide Channels and Responsive Turn-On<br>Fluorescence for the Chemical Sensing of Volatile Organic Compounds. Journal of the American<br>Chemical Society, 2014, 136, 7241-7244.                                         | 6.6  | 593       |
| 591 | Aggregation induced blue-shifted emission – the molecular picture from a QM/MM study. Physical<br>Chemistry Chemical Physics, 2014, 16, 5545-5552.                                                                                                                   | 1.3  | 162       |
| 592 | Self-Assembly of Ultralong Polyion Nanoladders Facilitated by Ionic Recognition and Molecular<br>Stiffness. Journal of the American Chemical Society, 2014, 136, 1942-1947.                                                                                          | 6.6  | 70        |
| 593 | â€~Green' synthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient<br>approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. Tetrahedron Letters, 2014,<br>55, 7026-7028.                                 | 0.7  | 23        |
| 594 | A tetraphenylethene-based caged compound: synthesis, properties and applications. Chemical Communications, 2014, 50, 8134-8136.                                                                                                                                      | 2.2  | 45        |

| #   | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 595 | A targeted theranostic platinum(iv) prodrug containing a luminogen with aggregation-induced<br>emission (AIE) characteristics for in situ monitoring of drug activation. Chemical Communications,<br>2014, 50, 3868.                                          | 2.2  | 94        |
| 596 | Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: temperature resolved terahertz spectra of tetraphenylethene. Materials Horizons, 2014, 1, 251-258.                        | 6.4  | 117       |
| 597 | Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chemical Communications, 2014, 50, 8757.                                                                              | 2.2  | 185       |
| 598 | Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B, 2014, 2, 4134-4141.                                                                                              | 2.9  | 58        |
| 599 | A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. Journal of<br>Materials Chemistry B, 2014, 2, 2013-2019.                                                                                                            | 2.9  | 110       |
| 600 | Molecular luminogens based on restriction of intramolecular motions through host–guest inclusion for cell imaging. Chemical Communications, 2014, 50, 1725-1727.                                                                                              | 2.2  | 129       |
| 601 | A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications, 2014, 50, 8312-8315.                                                                       | 2.2  | 100       |
| 602 | Aggregation Effects on the Optical Emission of 1,1,2,3,4,5-Hexaphenylsilole (HPS): A QM/MM Study.<br>Journal of Physical Chemistry A, 2014, 118, 9094-9104.                                                                                                   | 1.1  | 110       |
| 603 | A fluorescent light-up probe with "AlE + ESIPT―characteristics for specific detection of lysosomal esterase. Journal of Materials Chemistry B, 2014, 2, 3438-3442.                                                                                            | 2.9  | 185       |
| 604 | Targeted theranostic prodrugs based on an aggregation-induced emission (AIE) luminogen for real-time dual-drug tracking. Chemical Communications, 2014, 50, 11465-11468.                                                                                      | 2.2  | 83        |
| 605 | Copper-Catalyzed Polycoupling of Diynes, Primary Amines, and Aldehydes: A New One-Pot<br>Multicomponent Polymerization Tool to Functional Polymers. Macromolecules, 2014, 47, 4908-4919.                                                                      | 2.2  | 89        |
| 606 | Restriction of Intramolecular Motions: The General Mechanism behind Aggregationâ€Induced Emission.<br>Chemistry - A European Journal, 2014, 20, 15349-15353.                                                                                                  | 1.7  | 578       |
| 607 | A sensitivity tuneable tetraphenylethene-based fluorescent probe for directly indicating the concentration of hydrogen sulfide. Chemical Communications, 2014, 50, 8892-8895.                                                                                 | 2.2  | 79        |
| 608 | AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews, 2014, 43, 4494-4562.                                                                                                                                                 | 18.7 | 1,222     |
| 609 | Aggregationâ€Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 2014, 26, 5429-5479.                                                                                                                                           | 11.1 | 2,737     |
| 610 | Targeted Theranostic Platinum(IV) Prodrug with a Built-In Aggregation-Induced Emission Light-Up<br>Apoptosis Sensor for Noninvasive Early Evaluation of Its Therapeutic Responses in Situ. Journal of the<br>American Chemical Society, 2014, 136, 2546-2554. | 6.6  | 439       |
| 611 | A Ratiometric Fluorescent Probe Based on ESIPT and AIE Processes for Alkaline Phosphatase Activity<br>Assay and Visualization in Living Cells. ACS Applied Materials & Interfaces, 2014, 6, 17245-17254.                                                      | 4.0  | 281       |
| 612 | A dual functional AEE fluorogen as a mitochondrial-specific bioprobe and an effective photosensitizer for photodynamic therapy. Chemical Communications, 2014, 50, 14451-14454.                                                                               | 2.2  | 79        |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 613 | Fast-Growing Field of Magnetically Recyclable Nanocatalysts. Chemical Reviews, 2014, 114, 6949-6985.                                                                                                                                                             | 23.0 | 693       |
| 614 | Computational Evaluation of Optoelectronic Properties for Organic/Carbon Materials. Accounts of Chemical Research, 2014, 47, 3301-3309.                                                                                                                          | 7.6  | 71        |
| 615 | Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis. Molecules, 2014, 19, 4635-4653.                                                                                                                                                               | 1.7  | 27        |
| 616 | A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis,<br>stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. Journal of<br>Materials Chemistry C, 2013, 1, 4640.                              | 2.7  | 193       |
| 617 | A recyclable ruthenium(ii) complex supported on magnetic nanoparticles: a regioselective catalyst for<br>alkyne–azide cycloaddition. Chemical Communications, 2013, 49, 6956.                                                                                    | 2.2  | 60        |
| 618 | Ultrabright Organic Dots with Aggregationâ€Induced Emission Characteristics for Realâ€Time<br>Twoâ€Photon Intravital Vasculature Imaging. Advanced Materials, 2013, 25, 6083-6088.                                                                               | 11.1 | 255       |
| 619 | Room temperature phosphorescence from natural products: Crystallization matters. Science China<br>Chemistry, 2013, 56, 1178-1182.                                                                                                                                | 4.2  | 236       |
| 620 | Conjugated Polyelectrolytes with Aggregationâ€Enhanced Emission Characteristics: Synthesis and their<br>Biological Applications. Chemistry - an Asian Journal, 2013, 8, 2436-2445.                                                                               | 1.7  | 41        |
| 621 | Iron(III)â€Catalyzed Synthesis of 1,2,4â€Trisubstituted Imidazoles through the Reactions of Amidines and Aldehydes in Air. Advanced Synthesis and Catalysis, 2013, 355, 2798-2802.                                                                               | 2.1  | 36        |
| 622 | Iron(III)-catalyzed synthesis of multi-substituted imidazoles via [3+2] cycloaddition reaction of nitroolefins and N-aryl benzamidines. Tetrahedron, 2013, 69, 9417-9421.                                                                                        | 1.0  | 42        |
| 623 | A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking. Journal of the<br>American Chemical Society, 2013, 135, 62-65.                                                                                                                      | 6.6  | 695       |
| 624 | The Clicked Pyridylâ€Triazole Ligand: From Homogeneous to Robust, Recyclable Heterogeneous Mono―<br>and Polymetallic Palladium Catalysts for Efficient Suzuki–Miyaura, Sonogashira, and Heck Reactions.<br>Advanced Synthesis and Catalysis, 2013, 355, 129-142. | 2.1  | 66        |
| 625 | Discriminatory Detection of Cysteine and Homocysteine Based on Dialdehydeâ€Functionalized<br>Aggregationâ€Induced Emission Fluorophores. Chemistry - A European Journal, 2013, 19, 613-620.                                                                      | 1.7  | 88        |
| 626 | Oneâ€pot Fourâ€component Synthesis of N2â€Substituted 1,2,3â€Triazoles. Asian Journal of Organic Chemistry,<br>2013, 2, 212-215.                                                                                                                                 | 1.3  | 7         |
| 627 | Waterâ€Soluble Tetraphenylethene Derivatives as Fluorescent "Lightâ€Up―Probes for Nucleic Acid<br>Detection and Their Applications in Cell Imaging. Chemistry - an Asian Journal, 2013, 8, 1806-1812.                                                            | 1.7  | 65        |
| 628 | Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports, 2013, 3, 1150.                                                                                                     | 1.6  | 319       |
| 629 | Construction of Functional Macromolecules with Well-Defined Structures by Indium-Catalyzed<br>Three-Component Polycoupling of Alkynes, Aldehydes, and Amines. Macromolecules, 2013, 46, 3246-3256.                                                               | 2.2  | 97        |
| 630 | Bioprobes Based on AIE Fluorogens. Accounts of Chemical Research, 2013, 46, 2441-2453.                                                                                                                                                                           | 7.6  | 1,607     |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 631 | Dendritic catalysis—Basic concepts and recent trends. Coordination Chemistry Reviews, 2013, 257, 2317-2334.                                                                                                                                 | 9.5  | 118       |
| 632 | Full-Range Intracellular pH Sensing by an Aggregation-Induced Emission-Active Two-Channel<br>Ratiometric Fluorogen. Journal of the American Chemical Society, 2013, 135, 4926-4929.                                                         | 6.6  | 394       |
| 633 | TBHP/I2-Promoted Oxidative Coupling of Azoles with Benzyl Compounds via Cleavage of Nonactivated<br>C(sp3)-H Bonds under Solvent-Free Conditions. Synlett, 2013, 24, 1588-1594.                                                             | 1.0  | 5         |
| 634 | Iron(III)â€Catalyzed Direct <i>N</i> â€Alkylation of Azoles via Oxidative Transformation of sp <sup>3</sup><br>CH Bonds under Solventâ€Free Conditions. Chinese Journal of Chemistry, 2012, 30, 2285-2291.                                 | 2.6  | 18        |
| 635 | Tuning the electronic nature of aggregation-induced emission chromophores with enhanced electron-transporting properties. Journal of Materials Chemistry, 2012, 22, 5184.                                                                   | 6.7  | 34        |
| 636 | Specific Detection of Integrin α <sub>v</sub> β <sub>3</sub> by Light-Up Bioprobe with<br>Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society, 2012, 134,<br>9569-9572.                                  | 6.6  | 378       |
| 637 | Synthesis, solvatochromism, aggregation-induced emission and cell imaging of<br>tetraphenylethene-containing BODIPY derivatives with large Stokes shifts. Chemical Communications,<br>2012, 48, 10099.                                      | 2.2  | 204       |
| 638 | Quick and highly efficient copper-catalyzed cycloaddition of organic azides with terminal alkynes.<br>Organic and Biomolecular Chemistry, 2012, 10, 229-231.                                                                                | 1.5  | 49        |
| 639 | Locking the phenyl rings of tetraphenylethene step by step: understanding the mechanism of aggregation-induced emission. Chemical Communications, 2012, 48, 10675.                                                                          | 2.2  | 231       |
| 640 | Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with<br>Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society, 2012, 134,<br>17972-17981.                       | 6.6  | 545       |
| 641 | Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 23726.                                               | 6.7  | 761       |
| 642 | Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating<br>moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application.<br>Chemical Science, 2012, 3, 549-558. | 3.7  | 114       |
| 643 | Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. Journal of Materials Chemistry, 2012, 22, 7387.                                                    | 6.7  | 154       |
| 644 | An AlE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH<br>sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.                                                                 | 3.7  | 171       |
| 645 | Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission,<br>fluorescent photopatterning, optical limiting and explosive detection. Polymer Chemistry, 2012, 3, 1481.                                      | 1.9  | 117       |
| 646 | What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chemical Science, 2012, 3, 2737.                                                                  | 3.7  | 338       |
| 647 | Graphene Oxide as a Novel Nanoplatform for Enhancement of Aggregationâ€Induced Emission of Silole<br>Fluorophores. Advanced Materials, 2012, 24, 4191-4195.                                                                                 | 11.1 | 85        |
| 648 | Luminogenic polymers with aggregation-induced emission characteristics. Progress in Polymer Science, 2012, 37, 182-209.                                                                                                                     | 11.8 | 396       |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 649 | Biocompatible Nanoparticles with Aggregationâ€Induced Emission Characteristics as<br>Farâ€Red/Nearâ€Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Advanced<br>Functional Materials, 2012, 22, 771-779.                 | 7.8  | 599       |
| 650 | Specific Detection of <scp>d</scp> -Glucose by a Tetraphenylethene-Based Fluorescent Sensor. Journal of the American Chemical Society, 2011, 133, 660-663.                                                                                             | 6.6  | 551       |
| 651 | Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chemical Communications, 2011, 47, 8847.                                                                           | 2.2  | 175       |
| 652 | Aggregation-induced emission. Chemical Society Reviews, 2011, 40, 5361.                                                                                                                                                                                | 18.7 | 5,347     |
| 653 | Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.                                                                          | 3.7  | 216       |
| 654 | Covalent Immobilization of Aggregationâ€Induced Emission Luminogens in Silica Nanoparticles Through<br>Click Reaction. Small, 2011, 7, 1448-1455.                                                                                                      | 5.2  | 59        |
| 655 | One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles using terminal acetylenes, carbon monoxide, aryl iodides, and sodium azide. Tetrahedron Letters, 2011, 52, 980-982.                                                                        | 0.7  | 25        |
| 656 | Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. Journal of Materials Chemistry, 2010, 20, 1858.                                                                               | 6.7  | 785       |
| 657 | Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission,<br>Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives.<br>Macromolecules, 2010, 43, 4921-4936.                              | 2.2  | 216       |
| 658 | Label-free fluorescence detection of mercury(ii) and glutathione based on Hg2+-DNA complexes<br>stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst, The, 2010, 135,<br>3002.                                          | 1.7  | 90        |
| 659 | Stimulus responsive fluorescent hyperbranched polymers and their applications. Science China Chemistry, 2010, 53, 2409-2428.                                                                                                                           | 4.2  | 28        |
| 660 | Changing the Behavior of Chromophores from Aggregationâ€Caused Quenching to Aggregationâ€Induced<br>Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced Materials, 2010,<br>22, 2159-2163.                           | 11.1 | 834       |
| 661 | Fabrication of Fluorescent Silica Nanoparticles Hybridized with AIE Luminogens and Exploration of<br>Their Applications as Nanobiosensors in Intracellular Imaging. Chemistry - A European Journal, 2010, 16,<br>4266-4272.                            | 1.7  | 124       |
| 662 | Simple Biosensor with High Selectivity and Sensitivity: Thiolâ€5pecific Biomolecular Probing and<br>Intracellular Imaging by AIE Fluorogen on a TLC Plate through a Thiol–Ene Click Mechanism. Chemistry<br>- A European Journal, 2010, 16, 8433-8438. | 1.7  | 152       |
| 663 | Metal- and Base-Free Three-Component Reaction of Ynones, Sodium Azide, and Alkyl Halides: Highly<br>Regioselective Synthesis of 2,4,5-Trisubstituted 1,2,3-NH-Triazoles. Synlett, 2010, 2010, 1617-1622.                                               | 1.0  | 2         |
| 664 | An efficient approach to homocoupling of terminal alkynes: Solvent-free synthesis of 1,3-diynes using catalyticCu(ii) and base. Green Chemistry, 2010, 12, 45-48.                                                                                      | 4.6  | 112       |
| 665 | Quantitation, Visualization, and Monitoring of Conformational Transitions of Human Serum Albumin<br>by a Tetraphenylethene Derivative with Aggregation-Induced Emission Characteristics. Analytical<br>Chemistry, 2010, 82, 7035-7043.                 | 3.2  | 206       |
| 666 | Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. Journal of Physical Chemistry C, 2010, 114, 6090-6099.                                                                                                         | 1.5  | 765       |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 667 | Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry, 2010, 12, 2120.                                                                                                      | 4.6 | 136       |
| 668 | Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chemical Communications, 2010, 46, 2221.                                                                                  | 2.2 | 352       |
| 669 | Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009, , 4332.                                                                                                                                  | 2.2 | 3,438     |
| 670 | Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives.<br>Journal of Physical Chemistry C, 2009, 113, 15845-15853.                                                                                    | 1.5 | 856       |
| 671 | Facile One-Pot Synthesis of 4,5-Disubstituted 1,2,3-(NH)-Triazoles through Sonogashira<br>Coupling/1,3-Dipolar Cycloaddition of Acid Chlorides, Terminal Acetylenes, and Sodium Azide. Organic<br>Letters, 2009, 11, 3024-3027.               | 2.4 | 76        |
| 672 | A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chemical Communications, 2009, , 4974.                                                                         | 2.2 | 144       |
| 673 | Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chemical Communications, 2008, , 2989.                                                                                       | 2.2 | 126       |
| 674 | Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Applied Physics Letters, 2007, 91, .                                                       | 1.5 | 479       |
| 675 | Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chemical Communications, 2007, , 40-42.                                                         | 2.2 | 384       |
| 676 | Fluorescent "light-up―bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chemical Communications, 2006, , 3705-3707.                                                                       | 2.2 | 497       |
| 677 | Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive<br>Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. Journal of Physical<br>Chemistry B, 2005, 109, 10061-10066. | 1.2 | 349       |
| 678 | Silole nanocrystals as novel biolabels. Journal of Immunological Methods, 2004, 295, 111-118.                                                                                                                                                 | 0.6 | 63        |
| 679 | Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation. Macromolecules, 2003, 36, 1108-1117.                                                     | 2.2 | 241       |
| 680 | Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chemistry of Materials, 2003, 15, 1535-1546.                                                                | 3.2 | 1,082     |
| 681 | Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11, 2974-2978.                                                                                                                                                    | 6.7 | 590       |
| 682 | Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, ,<br>1740-1741.                                                                                                                          | 2.2 | 6,387     |
| 683 | Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for<br>Biological Application**. Angewandte Chemie, 0, , .                                                                                            | 1.6 | 5         |
| 684 | Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon<br>Photosensitization. Angewandte Chemie, 0, , .                                                                                                    | 1.6 | 1         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 685 | Tunable fluorescence emission for multi-color light-emitting diodes and voice-activated intelligent lighting applications. Journal of Materials Chemistry C, 0, , . | 2.7 | 3         |
| 686 | Facile Construction of Dendritic Amphiphiles with Aggregation-Induced Emission Characteristics for Supramolecular Self-Assembly. Macromolecules, 0, , .             | 2.2 | 5         |