Yu-Ming Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557130/publications.pdf

Version: 2024-02-01

52	1,395	21 h-index	36
papers	citations		g-index
52	52	52	2176
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	9.1	177
2	Wrinkled 2D Materials: A Versatile Platform for Lowâ€Threshold Stretchable Random Lasers. Advanced Materials, 2017, 29, 1703549.	21.0	85
3	Ultraâ€Thin Layered Ternary Single Crystals [Sn(S <i>_x</i> Se _{1â^'} <i>_x</i>)csub>2] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates. Advanced Functional Materials. 2016. 26. 3630-3638.	14.9	77
4	Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano, 2019, 13, 12540-12552.	14.6	69
5	A White Random Laser. Scientific Reports, 2018, 8, 2720.	3.3	65
6	Highly Sensitive, Visible Blind, Wearable, and Omnidirectional Near-Infrared Photodetectors. ACS Nano, 2018, 12, 9596-9607.	14.6	62
7	Transparent, Wearable, Broadband, and Highly Sensitive Upconversion Nanoparticles and Graphene-Based Hybrid Photodetectors. ACS Photonics, 2018, 5, 2336-2347.	6.6	59
8	Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metalâ€Organic Framework Broadband Wearable Photodetectors. Advanced Functional Materials, 2018, 28, 1804802.	14.9	59
9	A Highly-Efficient Single Segment White Random Laser. ACS Nano, 2018, 12, 11847-11859.	14.6	51
10	Dissolvable and Recyclable Random Lasers. ACS Nano, 2017, 11, 7600-7607.	14.6	41
11	Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Applied Physics Letters, 2016, 109, .	3.3	36
12	Multicolor Ultralowâ€Threshold Random Laser Assisted by Verticalâ€Graphene Network. Advanced Optical Materials, 2018, 6, 1800382.	7.3	35
13	Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action. ACS Photonics, 2018, 5, 718-727.	6.6	34
14	Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17393-17400.	8.0	34
15	Self-Powered, Self-Healed, and Shape-Adaptive Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9755-9765.	8.0	34
16	Highly Stretchable Labelâ€like Random Laser on Universal Substrates. Advanced Materials Technologies, 2016, 1, 1600068.	5.8	33
17	Magnetically Controllable Random Lasers. Advanced Materials Technologies, 2017, 2, 1700170.	5.8	32
18	Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018, 1, 152-159.	5.0	22

#	Article	lF	Citations
19	Transient and Flexible Photodetectors. ACS Applied Nano Materials, 2018, 1, 5092-5100.	5.0	22
20	Hybrid Optical/Electric Memristor for Light-Based Logic and Communication. ACS Applied Materials & Logic and State (1998), 11, 4649-4653.	8.0	22
21	Coherent FÃ \P rster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers. Science Advances, 2020, 6, .	10.3	21
22	Self-Sufficient and Highly Efficient Gold Sandwich Upconversion Nanocomposite Lasers for Stretchable and Bio-applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19840-19854.	8.0	21
23	Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions. ACS Nano, 2022, 16, 5743-5751.	14.6	21
24	Inkjetâ€Printed Random Lasers. Advanced Materials Technologies, 2018, 3, 1800214.	5 . 8	20
25	Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal–Organic Framework Materials. ACS Applied Materials & Interfaces, 2020, 12, 36485-36495.	8.0	20
26	All-marine based random lasers. Organic Electronics, 2018, 62, 209-215.	2.6	18
27	Multifunctional Random-Laser Smart Inks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49122-49129.	8.0	18
28	Sn-Doping Enhanced Ultrahigh Mobility In _{1–<i>x</i>} Sn _{<i>x</i>} Se Phototransistor. ACS Applied Materials & Interfaces, 2019, 11, 24269-24278.	8.0	17
29	Integration of Nanoscale and Macroscale Graphene Heterostructures for Flexible and Multilevel Nonvolatile Photoelectronic Memory. ACS Applied Nano Materials, 2020, 3, 608-616.	5.0	16
30	Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano, 2019, 13, 8977-8985.	14.6	14
31	Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High-Performance Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 26518-26527.	8.0	14
32	QD/2D Hybrid Nanoscrolls: A New Class of Materials for Highâ€Performance Polarized Photodetection and Ultralow Threshold Laser Action. Small, 2020, 16, e2003944.	10.0	14
33	Modulating Charge Separation with Hexagonal Boron Nitride Mediation in Vertical Van der Waals Heterostructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26213-26221.	8.0	14
34	Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17382-17388.	8.0	13
35	Ultra-high performance flexible piezopotential gated In _{1â^x} Sn _x Se phototransistor. Nanoscale, 2018, 10, 18642-18650.	5.6	13
36	Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures. Scientific Reports, 2017, 7, 10002.	3.3	12

#	Article	IF	CITATIONS
37	3D Printed Random Lasers. Advanced Materials Technologies, 2020, 5, 1900742.	5.8	12
38	All Organic Label-like Copper(II) lons Fluorescent Film Sensors with High Sensitivity and Stretchability. ACS Sensors, 2018, 3, 99-105.	7.8	11
39	Ultrahighly Photosensitive and Highly Stretchable Rippled Structure Photodetectors Based on Perovskite Nanocrystals and Graphene. ACS Applied Electronic Materials, 2019, 1, 1517-1526.	4.3	11
40	Generation of Silver Metal Nanocluster Random Lasing. ACS Photonics, 2021, 8, 3051-3060.	6.6	9
41	Highly Efficient Photodetection in Metal Nanocluster/Graphene Heterojunctions. ACS Photonics, 2021, 8, 2955-2965.	6.6	9
42	An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Applied Physics Letters, 2019, 114, .	3.3	7
43	Photoelectronic memory based on nitride multiple quantum wells and the hybrid of graphene nanoflakes and a-IGZO film. Optics Express, 2020, 28, 13542.	3.4	5
44	Ultralow Threshold Cavity-Free Laser Induced by Total Internal Reflection. ACS Omega, 2020, 5, 18551-18556.	3.5	4
45	Excess Random Laser Action in Memories for Hybrid Optical/Electric Logic. ACS Applied Electronic Materials, 2020, 2, 954-961.	4.3	4
46	Anderson Localization Enabled Spectrally Stable Deep-Ultraviolet Laser Based on Metallic Nanoparticle Decorated AlGaN Multiple Quantum Wells. ACS Nano, 2021, 15, 330-337.	14.6	4
47	A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS Applied Materials & Company: Interfaces, 2021, 13, 49224-49231.	8.0	3
48	Graphene–Insulator–Semiconductor Ultraviolet Light-Responsive Nitride LEDs for Multi-Applications. ACS Applied Electronic Materials, 2020, 2, 2104-2112.	4.3	1
49	Random Lasers: Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network (Advanced Optical Materials 16/2018). Advanced Optical Materials, 2018, 6, 1870063.	7.3	O
50	Highly Stretchable Label-like Random Laser on Universal Substrates. , 2017, , .		0
51	A White Random Laser: A First Step Towards Angle-free Laser Illumination. , 2018, , .		O
52	Printed Random Lasers. , 2020, , .		O