
## William Bechtel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655704/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Control mechanisms: Explaining the integration and versatility of biological organisms. Adaptive Behavior, 2022, 30, 389-407.                                                      | 1.9 | 10        |
| 2  | Organization needs organization: Understanding integrated control in living organisms. Studies in<br>History and Philosophy of Science Part A, 2022, 93, 96-106.                   | 1.2 | 5         |
| 3  | Figuring out what is happening: the discovery of two electrophysiological phenomena. History and<br>Philosophy of the Life Sciences, 2022, 44, 20.                                 | 1.1 | 2         |
| 4  | Grounding cognition: heterarchical control mechanisms in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190751.                     | 4.0 | 43        |
| 5  | Model Organisms for Studying Decision-Making: A Phylogenetically Expanded Perspective. Philosophy of Science, 2021, 88, 1055-1066.                                                 | 1.0 | 2         |
| 6  | Active biological mechanisms: transforming energy into motion in molecular motors. SynthÃ^se, 2021, 199, 12705-12729.                                                              | 1.1 | 9         |
| 7  | Mechanism, autonomy and biological explanation. Biology and Philosophy, 2021, 36, 1.                                                                                               | 1.4 | 24        |
| 8  | Rethinking Psychiatric Disorders in Terms of Heterarchical Networks of Control Mechanisms. , 2020, ,<br>24-46.                                                                     |     | 20        |
| 9  | Hierarchy and levels: analysing networks to study mechanisms in molecular biology. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190320. | 4.0 | 10        |
| 10 | Data Journeys Beyond Databases in Systems Biology: Cytoscape and NDEx. , 2020, , 121-143.                                                                                          |     | 3         |
| 11 | Living machines. , 2020, , 79-96.                                                                                                                                                  |     | 1         |
| 12 | Resituating cognitive mechanisms within heterarchical networks controlling physiology and behavior. Theory and Psychology, 2019, 29, 620-639.                                      | 1.2 | 9         |
| 13 | From parts to mechanisms: research heuristics for addressing heterogeneity in cancer genetics.<br>History and Philosophy of the Life Sciences, 2019, 41, 27.                       | 1.1 | 3         |
| 14 | Analysing Network Models to Make Discoveries about Biological Mechanisms. British Journal for the<br>Philosophy of Science, 2019, 70, 459-484.                                     | 2.3 | 22        |
| 15 | Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control. Minds and Machines, 2018, 28, 287-310.                                                          | 4.8 | 46        |
| 16 | Network analyses in systems biology: new strategies for dealing with biological complexity. SynthÃ^se,<br>2018, 195, 1751-1777.                                                    | 1.1 | 56        |
| 17 | Using Diagrams to Reason About Biological Mechanisms. Lecture Notes in Computer Science, 2018, ,<br>264-279.                                                                       | 1.3 | 3         |
| 18 | The Importance of Constraints and Control in Biological Mechanisms: Insights from Cancer Research.<br>Philosophy of Science, 2018, 85, 573-593.                                    | 1.0 | 17        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Explicating Top-Down Causation Using Networks and Dynamics. Philosophy of Science, 2017, 84, 253-274.                                                                                                                                     | 1.0 | 45        |
| 20 | Systems Biology: Negotiating Between Holism and Reductionism. History, Philosophy and Theory of the Life Sciences, 2017, , 25-36.                                                                                                         | 0.4 | 19        |
| 21 | Sketching Biological Phenomena and Mechanisms. Topics in Cognitive Science, 2017, 9, 970-985.                                                                                                                                             | 1.9 | 7         |
| 22 | Using the hierarchy of biological ontologies to identify mechanisms in flat networks. Biology and Philosophy, 2017, 32, 627-649.                                                                                                          | 1.4 | 9         |
| 23 | Diagrammatic Reasoning. , 2017, , 605-618.                                                                                                                                                                                                |     | 3         |
| 24 | Investigating neural representations: the tale of place cells. SynthÃ^se, 2016, 193, 1287-1321.                                                                                                                                           | 1.1 | 47        |
| 25 | Using computational models to discover and understand mechanisms. Studies in History and Philosophy of Science Part A, 2016, 56, 113-121.                                                                                                 | 1.2 | 10        |
| 26 | Mechanists Must be Holists Too! Perspectives from Circadian Biology. Journal of the History of Biology, 2016, 49, 705-731.                                                                                                                | 0.5 | 10        |
| 27 | Circadian Rhythms and Mood Disorders: Are the Phenomena and Mechanisms Causally Related?.<br>Frontiers in Psychiatry, 2015, 6, 118.                                                                                                       | 2.6 | 61        |
| 28 | Can mechanistic explanation be reconciled with scale-free constitution and dynamics?. Studies in<br>History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and<br>Biomedical Sciences, 2015, 53, 84-93. | 1.3 | 48        |
| 29 | Generalizing Mechanistic Explanations Using Graph-Theoretic Representations. History, Philosophy and Theory of the Life Sciences, 2015, , 199-225.                                                                                        | 0.4 | 12        |
| 30 | Design sans adaptation. European Journal for Philosophy of Science, 2015, 5, 15-29.                                                                                                                                                       | 1.1 | 21        |
| 31 | The Nonâ€Redundant Contributions of Marr's Three Levels of Analysis for Explaining<br>Informationâ€Processing Mechanisms. Topics in Cognitive Science, 2015, 7, 312-322.                                                                  | 1.9 | 43        |
| 32 | Diagrams as Tools for Scientific Reasoning. Review of Philosophy and Psychology, 2015, 6, 117-131.                                                                                                                                        | 1.8 | 20        |
| 33 | Scientists' use of diagrams in developing mechanistic explanations. Pragmatics and Cognition, 2014, 22, 224-243.                                                                                                                          | 0.4 | 14        |
| 34 | From molecules to behavior and the clinic: Integration in chronobiology. Studies in History and<br>Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences,<br>2013, 44, 493-502.            | 1.3 | 18        |
| 35 | Thinking Dynamically About Biological Mechanisms: Networks of Coupled Oscillators. Foundations of Science, 2013, 18, 707-723.                                                                                                             | 0.7 | 61        |
| 36 | Understanding Biological Mechanisms: Using Illustrations from Circadian Rhythm Research. History,<br>Philosophy and Theory of the Life Sciences, 2013, , 487-510.                                                                         | 0.4 | 7         |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abstraction and the Organization of Mechanisms. Philosophy of Science, 2013, 80, 241-261.                                                                                                  | 1.0 | 171       |
| 38 | Why Do Biologists Use So Many Diagrams?. Philosophy of Science, 2013, 80, 931-944.                                                                                                         | 1.0 | 37        |
| 39 | Addressing the Vitalist's Challenge to Mechanistic Science: Dynamic Mechanistic Explanation. History,<br>Philosophy and Theory of the Life Sciences, 2013, , 345-370.                      | 0.4 | 5         |
| 40 | From Molecules to Networks: Adoption of Systems Approaches in Circadian Rhythm Research. , 2013, , 211-223.                                                                                |     | 4         |
| 41 | The Endogenously Active Brain: The Need for an Alternative Cognitive Architecture. Philosophia Scientiae, 2013, , 3-30.                                                                    | 0.1 | 7         |
| 42 | Mechanism, Dynamic. , 2013, , 1204-1207.                                                                                                                                                   |     | 0         |
| 43 | Convergent Evolution. , 2013, , 500-500.                                                                                                                                                   |     | 0         |
| 44 | Mechanism, Conserved. , 2013, , 1201-1204.                                                                                                                                                 |     | 1         |
| 45 | Understanding endogenously active mechanisms: A scientific and philosophical challenge. European<br>Journal for Philosophy of Science, 2012, 2, 233-248.                                   | 1.1 | 24        |
| 46 | From Reactive to Endogenously Active Dynamical Conceptions of the Brain. Boston Studies in the Philosophy and History of Science, 2012, , 329-366.                                         | 0.9 | 7         |
| 47 | Dynamical Models: An Alternative or Complement to Mechanistic Explanations?. Topics in Cognitive Science, 2011, 3, 438-444.                                                                | 1.9 | 79        |
| 48 | Complex Biological Mechanisms. , 2011, , 257-285.                                                                                                                                          |     | 41        |
| 49 | Mechanism and Biological Explanation. Philosophy of Science, 2011, 78, 533-557.                                                                                                            | 1.0 | 157       |
| 50 | HIT on the Psychometric Approach. Psychological Inquiry, 2011, 22, 108-114.                                                                                                                | 0.9 | 4         |
| 51 | Relating Bayes to cognitive mechanisms. Behavioral and Brain Sciences, 2011, 34, 202-203.                                                                                                  | 0.7 | 2         |
| 52 | The Downs and Ups of Mechanistic Research: Circadian Rhythm Research as an Exemplar. Erkenntnis, 2010, 73, 313-328.                                                                        | 0.9 | 30        |
| 53 | Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 2010, 41, 321-333. | 1.2 | 196       |
| 54 | The cell: locus or object of inquiry?. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2010, 41, 172-182.     | 1.3 | 11        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | How Can Philosophy Be a True Cognitive Science Discipline?. Topics in Cognitive Science, 2010, 2, 357-366.                                                                            | 1.9 | 13        |
| 56 | Discovering Complexity. , 2010, , .                                                                                                                                                   |     | 369       |
| 57 | Looking down, around, and up: Mechanistic explanation in psychology. Philosophical Psychology, 2009, 22, 543-564.                                                                     | 0.9 | 101       |
| 58 | Constructing a Philosophy of Science of Cognitive Science. Topics in Cognitive Science, 2009, 1, 548-569.                                                                             | 1.9 | 46        |
| 59 | Generalization and Discovery by Assuming Conserved Mechanisms: Cross-Species Research on<br>Circadian Oscillators. Philosophy of Science, 2009, 76, 762-773.                          | 1.0 | 33        |
| 60 | Mechanisms in Cognitive Psychology: What Are the Operations?. Philosophy of Science, 2008, 75, 983-994.                                                                               | 1.0 | 42        |
| 61 | In Search of Mitochondrial Mechanisms: Interfield Excursions between Cell Biology and Biochemistry.<br>Journal of the History of Biology, 2007, 40, 1-33.                             | 0.5 | 14        |
| 62 | Top-down Causation Without Top-down Causes. Biology and Philosophy, 2007, 22, 547-563.                                                                                                | 1.4 | 298       |
| 63 | THE CHALLENGE OF CHARACTERIZING OPERATIONS IN THE MECHANISMS UNDERLYING BEHAVIOR. Journal of the Experimental Analysis of Behavior, 2005, 84, 313-325.                                | 1.1 | 30        |
| 64 | Explanation: a mechanist alternative. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2005, 36, 421-441. | 1.3 | 824       |
| 65 | Aligning Multiple Research Techniques in Cognitive Neuroscience: Why Is It Important?. Philosophy of Science, 2002, 69, S48-S58.                                                      | 1.0 | 37        |
| 66 | Decomposing the Mind-Brain: A Long-Term Pursuit. Brain and Mind, 2002, 3, 229-242.                                                                                                    | 0.6 | 59        |
| 67 | The Compatibility of Complex Systems and Reduction: A Case Analysis of Memory Research. Minds and Machines, 2001, 11, 483-502.                                                        | 4.8 | 35        |
| 68 | Multiple Realizability Revisited: Linking Cognitive and Neural States. Philosophy of Science, 1999, 66, 175-207.                                                                      | 1.0 | 315       |
| 69 | Representations and Cognitive Explanations: Assessing the Dynamicist's Challenge in Cognitive Science. Cognitive Science, 1998, 22, 295-318.                                          | 1.7 | 152       |
| 70 | Levels of description and explanation in cognitive science. Minds and Machines, 1994, 4, 1-25.                                                                                        | 4.8 | 173       |
| 71 | Natural deduction in connectionist systems. SynthÃ^se, 1994, 101, 433-463.                                                                                                            | 1.1 | 16        |
| 72 | Integrating sciences by creating new disciplines: The case of cell biology. Biology and Philosophy, 1993,<br>8, 277-299.                                                              | 1.4 | 52        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Multiple levels of inquiry in cognitive science. Psychological Research, 1990, 52, 271-281.                                                                                | 1.7 | 14        |
| 74 | Beyond the exclusively propositional era. SynthÈse, 1990, 82, 223-253.                                                                                                     | 1.1 | 8         |
| 75 | Connectionism and rules and representation systems: Are they compatible?. Philosophical Psychology, 1988, 1, 5-16.                                                         | 0.9 | 31        |
| 76 | Realism, Instrumentalism, and the Intentional Stance*. Cognitive Science, 1985, 9, 473-497.                                                                                | 1.7 | 62        |
| 77 | ATTRIBUTING RESPONSIBILITY TO COMPUTER SYSTEMS,*. Metaphilosophy, 1985, 16, 296-306.                                                                                       | 0.3 | 92        |
| 78 | Reconceptualizations and Interfield Connections: The Discovery of the Link between Vitamins and Coenzymes. Philosophy of Science, 1984, 51, 265-292.                       | 1.0 | 64        |
| 79 | The evolution of our understanding of the cell: A study in the dynamics of scientific progress.<br>Studies in History and Philosophy of Science Part A, 1984, 15, 309-356. | 1.2 | 42        |
| 80 | Two Common Errors in Explaining Biological and Psychological Phenomena. Philosophy of Science, 1982, 49, 549-574.                                                          | 1.0 | 14        |
| 81 | Identity, reduction, and conserved mechanisms: perspectives from circadian rhythm research. , 0, , 43-65.                                                                  |     | 7         |
| 82 | Mental Mechanisms. , 0, , .                                                                                                                                                |     | 53        |
| 83 | Discovering control mechanisms: The controllers of dynein. Philosophy of Science, 0, , 1-12.                                                                               | 1.0 | 0         |
| 84 | Reductionistic Explanations of Cognitive Information Processing: Bottoming Out in Neurochemistry.<br>Frontiers in Integrative Neuroscience, 0, 16, .                       | 2.1 | 2         |