
MarÃ-a J GÃ³mez-Escalonilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave irradiation: more than just a method for accelerating reactions. Contemporary Organic Synthesis, 1997, 4, 373-386.	1.5	216
2	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	13.7	194
3	Cycloadditions under Microwave Irradiation Conditions: Methods and Applications. European Journal of Organic Chemistry, 2000, 2000, 3659-3673.	2.4	160
4	Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chemical Communications, 2004, , 1734-1735.	4.1	149
5	Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube. Journal of Physical Chemistry B, 2004, 108, 12691-12697.	2.6	117
6	Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moietyElectronic supplementary information (ESI) available: synthetic procedures and full characterization of all new compounds. See http://www.rsc.org/suppdata/jm/b2/b200432a/. Journal of Materials Chemistry, 2002, 12, 2077-2087.	6.7	91
7	Modification of Regioselectivity in Cycloadditions to C70under Microwave Irradiation. Journal of Organic Chemistry, 2000, 65, 2499-2507.	3.2	84
8	Efficient tautomerization hydrazone-azomethine imine under microwave irradiation. Synthesis of [4,3′] and [5,3′]bipyrazoles. Tetrahedron, 1998, 54, 13167-13180.	1.9	75
9	Cycloadditions to [60]fullerene using microwave irradiation: A convenient and expeditious procedure. Tetrahedron, 1997, 53, 2599-2608.	1.9	73
10	Synthesis of Pyrazolo[3,4-b]pyridines by Cycloaddition Reactions under Microwave Irradiation. Tetrahedron, 2000, 56, 1569-1577.	1.9	64
11	Thermal and Microwave-Assisted Synthesis of Dielsâ^'Alder Adducts of [60]Fullerene with 2,3-Pyrazinoquinodimethanes:Â Characterization and Electrochemical Properties. Journal of Organic Chemistry, 1997, 62, 3705-3710.	3.2	62
12	Synthesis and Properties of Isoxazolo[60]fullereneâ^'Donor Dyadsâ€. Journal of Organic Chemistry, 2000, 65, 8675-8684.	3.2	62
13	Palladium-catalysed phenylation of heteroaromatics in water or methylformamide under microwave irradiation. Tetrahedron Letters, 2001, 42, 635-637.	1.4	61
14	C60-Based Triads with Improved Electron-Acceptor Properties: Pyrazolylpyrazolino[60]fullerenesâ€. Journal of Organic Chemistry, 2001, 66, 5033-5041.	3.2	60
15	The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotube. Carbon, 2007, 45, 2250-2252.	10.3	60
16	Pyrazolinofullerenes: a less known type of highly versatile fullerene derivatives. Chemical Society Reviews, 2011, 40, 5232.	38.1	57
17	Synthesis, electrochemistry and photophysical properties of phenylenevinylene fullerodendrimers. Tetrahedron Letters, 2001, 42, 3435-3438.	1.4	56
18	Carbon Nanohorns as a Scaffold for the Construction of Disposable Electrochemical Immunosensing Platforms. Application to the Determination of Fibrinogen in Human Plasma and Urine. Analytical Chemistry, 2014, 86, 7749-7756.	6.5	53

#	Article	IF	CITATIONS
19	Synthesis of new C60î—,donor dyads by reaction of pyrazolylhydrazones with [60]fullerene under microwave irradiation. Tetrahedron Letters, 1999, 40, 1587-1590.	1.4	52
20	Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 2004, 386, 342-345.	2.6	51
21	Comparative study on the photovoltaic characteristics of A–D–A and D–A–D molecules based on Zn-porphyrin; a D–A–D molecule with over 8.0% efficiency. Journal of Materials Chemistry A, 2017, 5, 1057-1065.	10.3	49
22	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer. Journal of Organic Chemistry, 2004, 69, 2661-2668.	3.2	48
23	Synthesis and properties of pyrazolino[60]fullerene-donor systems. Tetrahedron, 2002, 58, 5821-5826.	1.9	47
24	Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosensors and Bioelectronics, 2015, 74, 24-29.	10.1	47
25	On the Thermal Stability of [60]Fullerene Cycloadducts:  Retro-Cycloaddition Reaction of 2-Pyrazolino[4,5:1,2][60]fullerenes. Journal of Organic Chemistry, 2008, 73, 3184-3188.	3.2	46
26	Electroactive 3′-(N-phenylpyrazolyl)isoxazoline[4′,5′:1,2][60]fullerene dyads. Tetrahedron Letters, 1999, 40, 4889-4892.	1.4	45
27	Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped Arrays: Synthesis, Electrochemistry, Photophysics, and Self-Assembly on Surfaces. Chemistry - A European Journal, 2005, 11, 4405-4415.	3.3	45
28	A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	3.3	45
29	Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes. Nanoscale, 2012, 4, 4370.	5.6	44
30	Microwave Irradiation: An Important Tool to Functionalize Fullerenes and Carbon Nanotubes. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 766-782.	1.1	40
31	High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chemical Communications, 2007, , 4498.	4.1	40
32	Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 2010, 46, 7028.	4.1	40
33	A photoresponsive graphene oxide–C ₆₀ conjugate. Chemical Communications, 2014, 50, 9053.	4.1	39
34	CuSCN as selective contact in solution-processed small-molecule organic solar cells leads to over 7% efficient porphyrin-based device. Journal of Materials Chemistry A, 2016, 4, 11009-11022.	10.3	39
35	1,3-Dipolar Cycloaddition of Nitriles under Microwave Irradiation in Solvent-Free Conditions. Heterocycles, 1996, 43, 1021.	0.7	36
36	Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Advances, 2016, 6, 49543-49550.	3.6	36

#	Article	IF	CITATIONS
37	Charge stabilizing tris(triphenylamine)-zinc porphyrin–carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale, 2017, 9, 7551-7558.	5.6	35
38	Synthesis of dumbbell-shaped bis-(pyrazolino[60]fullerene)-oligophenylenevinylene derivatives. Tetrahedron Letters, 2002, 43, 7507-7511.	1.4	34
39	(4 + 2) and (2 + 2) Cycloadditions of Benzyne to C ₆₀ and Zig-Zag Single-Walled Carbon Nanotubes: The Effect of the Curvature. Journal of Physical Chemistry C, 2016, 120, 1716-1726.	3.1	34
40	Electron Transfer in Nonpolar Solvents in Fullerodendrimers with Peripheral Ferrocene Units. Chemistry - A European Journal, 2006, 12, 5149-5157.	3.3	33
41	Synthesis and Photoinduced Intramolecular Processes of Fulleropyrrolidine–Oligothienylenevinylene–Ferrocene Triads. Chemistry - A European Journal, 2007, 13, 3924-3933.	3.3	33
42	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Organic Electronics, 2013, 14, 2826-2832.	2.6	33
43	Diels-Alder cycloaddition of vinylpyrazoles. Synergy between microwave irradiation and solvent-free conditions. Tetrahedron, 1996, 52, 9237-9248.	1.9	32
44	Facial Selectivity in Cycloadditions of a Chiral Ketene Acetal under Microwave Irradiation in Solvent-Free Conditions. Configurational Assignment of the Cycloadducts by NOESY Experiments and Molecular Mechanics Calculations. Journal of Organic Chemistry, 1995, 60, 4160-4166.	3.2	30
45	Photoinduced electron transfer of zinc porphyrin–oligo(thienylenevinylene)–fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Physical Chemistry Chemical Physics, 2014, 16, 2443-2451.	2.8	27
46	Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 2013, 63, 140-148.	10.3	26
47	A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 2011, 47, 12771.	4.1	24
48	Covalent functionalization of N-doped graphene by N-alkylation. Chemical Communications, 2015, 51, 16916-16919.	4.1	24
49	First Diels-Alder Reaction of Pyrazolyl Imines under Microwave Irradiation. Synlett, 1998, 1998, 1998, 1069-1070.	1.8	23
50	Efficiency improvement using bis(trifluoromethane) sulfonamide lithium salt as a chemical additive in porphyrin based organic solar cells. Nanoscale, 2016, 8, 17953-17962.	5.6	23
51	Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 2008, 18, 1592.	6.7	22
52	Effect of porphyrin loading on performance of dye sensitized solar cells based on iodide/tri-iodide and cobalt electrolytes. Journal of Materials Chemistry A, 2013, 1, 13640.	10.3	22
53	The effect of focused microwaves on the reaction of ethyl N-trichloroethylidenecarbamate with pyrazole derivatives. Tetrahedron, 1999, 55, 9623-9630.	1.9	21
54	Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 2014, 5, 2072.	7.4	21

MarÃa J GÃ³mez-Escalonilla

#	Article	IF	CITATIONS
55	The importance of the linking bridge in donor–C60 electroactive dyads. New Journal of Chemistry, 2002, 26, 76-80.	2.8	20
56	Ruthenocene as a new donor fragment in [60]fullerene–donor dyads. Tetrahedron Letters, 2005, 46, 4781-4784.	1.4	20
57	Carbon nanotubes and porphyrins: an exciting combination for optoelectronic devices. Journal of Porphyrins and Phthalocyanines, 2007, 11, 348-358.	0.8	20
58	Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11, 14978-14992.	5.6	20
59	Synthesis and Photophysical Properties of a Pyrazolino[60]fullerene with Dimethylaniline Connected by an Acetylene Linkage. European Journal of Organic Chemistry, 2006, 2006, 2344-2351.	2.4	19
60	New cyclopentadithiophene (CDT) linked porphyrin donors with different end-capping acceptors for efficient small molecule organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4742-4751.	5.5	19
61	A ready access to unprecedented N-anilinopyrazolino[60]fullerenes. Tetrahedron Letters, 2004, 45, 1651-1654.	1.4	18
62	Pyrazolino [60]fullerenes: synthesis andÂproperties. Comptes Rendus Chimie, 2006, 9, 1058-1074.	0.5	18
63	Comparison between the Photophysical Properties of Pyrazolo- and Isoxazolo[60]fullerenes with Dual Donors (Ferrocene, Aniline and Alkoxyphenyl). European Journal of Organic Chemistry, 2007, 2007, 2175-2185.	2.4	18
64	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	5.6	18
65	Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale, 2018, 10, 5205-5213.	5.6	18
66	Peripheral versus axial substituted phthalocyanine-double-walled carbon nanotube hybrids as light harvesting systems. Journal of Materials Chemistry C, 2015, 3, 10215-10224.	5.5	17
67	Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6461-6469.	8.0	17
68	[60]Fullerene-based liquid crystals acting as acid-sensitive fluorescent probes. Chemical Communications, 2008, , 4590.	4.1	16
69	Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 2015, 3, 4960-4969.	5.5	16
70	Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines. Physical Chemistry Chemical Physics, 2016, 18, 29582-29590.	2.8	16
71	Oligomers of cyclopentadithiophene-vinylene in aromatic and quinoidal versions and redox species with intermediate forms. Chemical Science, 2017, 8, 8106-8114.	7.4	16
72	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo[60]fullerenes vs Tetrathiafulvalene. Bulletin of the Chemical Society of Japan, 2005, 78, 1500-1507.	3.2	15

#	Article	IF	CITATIONS
73	The influence of the terminal acceptor and oligomer length on the photovoltaic properties of A–D–A small molecule donors. Journal of Materials Chemistry C, 2020, 8, 4763-4770.	5.5	15
74	N-Arylation of Pyrrolidino[3′,4′:1,2][60]fullerene: Synthesis under Solvent-Free Conditions and Electrochemistry of New C60–Acceptor Dyads. European Journal of Organic Chemistry, 1999, 1999, 3433-3436.	2.4	14
75	Efficient Photoinduced Energy and Electron Transfer in Zn ^{II} –Porphyrin/Fullerene Dyads with Interchromophoric Distances up to 2.6â€nm and No Wireâ€kike Connectivity. Chemistry - A European Journal, 2017, 23, 14200-14212.	3.3	14
76	Synthesis and photophysical properties of a [60]fullerene compound with dimethylaniline and ferrocene connected through a pyrazolino group: a study by laser flash photolysis. Physical Chemistry Chemical Physics, 2006, 8, 4104-4111.	2.8	13
77	Through-space communication in a TTF–C60–TTF triad. New Journal of Chemistry, 2007, 31, 230-236.	2.8	13
78	Ternary All‧mallâ€Molecule Solar Cells with Two Smallâ€Molecule Donors and Y6 Nonfullerene Acceptor with a Power Conversion Efficiency over Above 14% Processed from a Nonhalogenated Solvent. Solar Rrl, 2020, 4, 2000460.	5.8	13
79	A complete model for the prediction of 1H- and 13C-NMR chemical shifts and torsional angles in phenyl-substituted pyrazoles. Tetrahedron, 2001, 57, 4179-4187.	1.9	12
80	N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chemical Science, 2018, 9, 8221-8227.	7.4	12
81	Optical properties and photoinduced processes in multicomponent architectures with oligophenylenevinylene units. Synthetic Metals, 2004, 147, 19-28.	3.9	11
82	Synthesis and photophysical properties of ruthenocene-[60]fullerene dyads. New Journal of Chemistry, 2006, 30, 93-101.	2.8	11
83	Photophysical Properties of the Newly Synthesized Triad Based on [70]Fullerene Studies with Laser Flash Photolysis. Journal of Physical Chemistry B, 2007, 111, 4335-4341.	2.6	11
84	Photochemical Evidence of Electronic Interwall Communication in Doubleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16922-16930.	3.3	11
85	Doubleâ€Wall Carbon Nanotube–Porphyrin Supramolecular Hybrid: Synthesis and Photophysical Studies. ChemPhysChem, 2014, 15, 100-108.	2.1	11
86	Regioselectivity of the Pauson–Khand reaction in single-walled carbon nanotubes. Nanoscale, 2018, 10, 15078-15089.	5.6	11
87	Relation between charge transfer and solvent polarity in fullerene derivatives: NMR studiesElectronic supplementary information (ESI) available: Table S1: chemical shifts (ppm) in C6D6 (ETN = 0.111), CDCl3 (ETN = 0.259), and CD2Cl2 (ETN = 0.309). See http://www.rsc.org/suppdata/im/b2/b203112b/. lournal of Materials Chemistry. 2002. 12. 2130-2136.	6.7	10
88	Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale, 2020, 12, 9890-9898.	5.6	10
89	Synthesis and Photoinduced Energy―and Electronâ€Transfer Processes of C ₆₀ –Oligothienylenevinylene–C ₇₀ Dumbbell Compounds. Chemistry - A European Journal, 2011, 17, 5432-5444.	3.3	9
90	Cycloaddition of Nitrile Oxides to Graphene: a Theoretical and Experimental Approach. Chemistry - A European Journal, 2019, 25, 14644-14650.	3.3	9

#	Article	IF	CITATIONS
91	Photophysics, electrochemistry and structure of a pyrazolino[60]fullerene dendrimer in solid molecular films. Synthetic Metals, 2005, 148, 47-52.	3.9	8
92	Push–pull triphenylamine based chromophores as photosensitizers and electron donors for molecular solar cells. Tetrahedron, 2013, 69, 6875-6883.	1.9	8
93	Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics, 2016, 18, 1828-1837.	2.8	8
94	Modulating charge carrier density and mobility in doped graphene by covalent functionalization. Chemical Communications, 2019, 55, 9999-10002.	4.1	7
95	Microwaves in Cycloadditions. , 0, , 295-343.		6
96	Heck reaction on fullerene derivatives. Tetrahedron Letters, 2008, 49, 3656-3658.	1.4	6
97	Photoinduced Electron Transfer in Branched Bis(ferrocenylacetylene) ₆₀ Systems: Influence of the Nature of Conjugation. European Journal of Organic Chemistry, 2008, 2008, 3535-3543.	2.4	6
98	Self-Assembly-Directed Organization of a Fullerene–Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199-11208.	13.7	6
99	Molecular dynamics of solutions of poly-3-octyl-thiophene and functionalized single wall carbon nanotubes studied by neutron scattering. Chemical Physics, 2013, 427, 129-141.	1.9	4
100	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	4.6	4
101	Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 2022, , .	3.3	3
102	Sc3N@lh-C80 based donor–acceptor conjugate: role of thiophene spacer in promoting ultrafast excited state charge separation. RSC Advances, 2020, 10, 19861-19866.	3.6	2
103	Reactivity of Bis(heteroaryl)methanes towards Double Electrophiles. Synthesis of Two New Trinuclear [5.6.5]- and [5.5.5]-heterocyclic Systems from Bis(pyrazol-1-yl)methane. Heterocycles, 1995, 41, 1779.	0.7	2
104	Regioselective preparation of a bis-pyrazolinofullerene by a macrocyclization reaction. Chemical Communications, 2016, 52, 13205-13208.	4.1	1
105	Synthesis of Dumbbell-Shaped Bis-(pyrazolino[60]fullerene)-oligophenylenevinylene Derivatives ChemInform, 2003, 34, no.	0.0	0
106	Cover Feature: Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Đoped Graphene Hybrids Synthesized by Click Chemistry (Chem. Eur. J.) Tj ETQq0 () OsrgBT /O	verlock 10 T
	(is mass clis. Ethunyl optended push ² ⁽ⁱ) will tune perphysing for pear infrared organic photodetectors		

107	<i>meso</i> -Ethynyl-extended pushâ Journal of Materials Chemistry C, 0, ,		for near-infrared orga	nic photodeted
-----	---	--	------------------------	----------------