Damon R Lisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6555792/publications.pdf

Version: 2024-02-01

101543 10,131 63 36 citations h-index papers

g-index 71 71 71 10480 docs citations times ranked citing authors all docs

128289

60

#	Article	IF	CITATIONS
1	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	12.6	3,612
2	How important are transposons for plant evolution?. Nature Reviews Genetics, 2013, 14, 49-61.	16.3	711
3	Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7704-7711.	7.1	533
4	PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1-24.	2.3	518
5	Epigenetic Regulation of Transposable Elements in Plants. Annual Review of Plant Biology, 2009, 60, 43-66.	18.7	409
6	Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiology, 2008, 148, 1772-1781.	4.8	376
7	Transposable elements and host genome evolution. Trends in Ecology and Evolution, 2000, 15, 95-99.	8.7	310
8	Following Tetraploidy in Maize, a Short Deletion Mechanism Removed Genes Preferentially from One of the Two Homeologs. PLoS Biology, 2010, 8, e1000409.	5.6	260
9	Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Current Opinion in Plant Biology, 2012, 15, 131-139.	7.1	194
10	The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Current Opinion in Genetics and Development, 2018, 49, 1-7.	3.3	186
11	The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant Journal, 2003, 34, 453-471.	5.7	179
12	RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14728-14733.	7.1	179
13	Mutator transposons. Trends in Plant Science, 2002, 7, 498-504.	8.8	175
14	Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5283-5288.	7.1	172
15	Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nature Genetics, 2005, 37, 641-644.	21.4	164
16	Many or most genes in <i>Arabidopsis</i> transposed after the origin of the order Brassicales. Genome Research, 2008, 18, 1924-1937.	5 . 5	157
17	Horizontal Transfer of a Plant Transposon. PLoS Biology, 2005, 4, e5.	5 . 6	134
18	Transposable element origins of epigenetic gene regulation. Current Opinion in Plant Biology, 2011, 14, 156-161.	7.1	130

#	Article	IF	CITATIONS
19	Loss of RNA–Dependent RNA Polymerase 2 (RDR2) Function Causes Widespread and Unexpected Changes in the Expression of Transposons, Genes, and 24-nt Small RNAs. PLoS Genetics, 2009, 5, e1000737.	3.5	106
20	A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6130-6135.	7.1	100
21	Initiation, Establishment, and Maintenance of Heritable MuDR Transposon Silencing in Maize Are Mediated by Distinct Factors. PLoS Biology, 2006, 4, e339.	5.6	95
22	The Functional Role of Pack-MULEs in Rice Inferred from Purifying Selection and Expression Profile. Plant Cell, 2009, 21, 25-38.	6.6	91
23	Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes. Plant Cell, 2016, 28, 314-325.	6.6	89
24	Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. Plant Cell, 2017, 29, 2974-2994.	6.6	88
25	<i>Mu killer</i> Causes the Heritable Inactivation of the <i>Mutator</i> Family of Transposable Elements in <i>Zea mays</i> Genetics, 2003, 165, 781-797.	2.9	78
26	Pack- <i>Mutator </i> $\hat{a} \in \text{``like transposable elements'}$ (Pack-MULEs) induce directional modification of genes through biased insertion and DNA acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1537-1542.	7.1	74
27	Maize transgene results in Mexico are artefacts (see editorial footnote). Nature, 2002, 416, 601-602.	27.8	71
28	Epigenetic reprogramming during vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22184-22189.	7.1	69
29	The mop1 (mediator of paramutation1) Mutant Progressively Reactivates One of the Two Genes Encoded by the MuDR Transposon in Maize. Genetics, 2006, 172, 579-592.	2.9	63
30	Functional Analysis of Deletion Derivatives of the Maize Transposon MuDR Delineates Roles for the MURA and MURB Proteins. Genetics, 1999, 151, 331-341.	2.9	61
31	Mutator Transposase Is Widespread in the Grasses. Plant Physiology, 2001, 125, 1293-1303.	4.8	59
32	PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1.	2.3	55
33	Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Research, 2017, 45, 5126-5141.	14.5	53
34	Distal Expression of <i>knotted1</i> in Maize Leaves Leads to Reestablishment of Proximal/Distal Patterning and Leaf Dissection Â. Plant Physiology, 2009, 151, 1878-1888.	4.8	47
35	Production and Processing of siRNA Precursor Transcripts from the Highly Repetitive Maize Genome. PLoS Genetics, 2009, 5, e1000598.	3.5	39
36	Strategies for Silencing and Escape. International Review of Cell and Molecular Biology, 2011, 292, 119-152.	3.2	39

#	Article	IF	CITATIONS
37	A Position Effect on the Heritability of Epigenetic Silencing. PLoS Genetics, 2008, 4, e1000216.	3.5	38
38	A Solution to the C-Value Paradox and the Function of Junk DNA: The Genome Balance Hypothesis. Molecular Plant, 2015, 8, 899-910.	8.3	36
39	Regulation of transposable elements in maize. Current Opinion in Plant Biology, 2012, 15, 511-516.	7.1	34
40	<i>Mutator</i> and <i>MULE</i> Transposons. Microbiology Spectrum, 2015, 3, MDNA3-0032-2014.	3.0	33
41	The Maize Regulatory Gene B-Peru Contains a DNA Rearrangement That Specifies Tissue-Specific Expression Through Both Positive and Negative Promoter Elements. Genetics, 1998, 149, 1125-1138.	2.9	32
42	Transposons unbound. Nature, 1998, 393, 22-23.	27.8	31
43	Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Research, 2020, 48, 6685-6698.	14.5	30
44	Pack-MULEs: theft on a massive scale. BioEssays, 2005, 27, 353-355.	2.5	25
45	RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genetics, 2021, 17, e1009326.	3.5	24
46	Reply from M.G. Kidwell and D.R. Lisch. Trends in Ecology and Evolution, 2000, 15, 288.	8.7	23
47	POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data. International Journal of Plant Genomics, 2011, 2011, 1-10.	2.2	20
48	Silencing of <i>Mutator </i> Elements in Maize Involves Distinct Populations of Small RNAs and Distinct Patterns of DNA Methylation. Genetics, 2020, 215, 379-391.	2.9	19
49	The <i>mop1</i> mutation affects the recombination landscape in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	17
50	Broad-spectrum fungal resistance in sorghum is conferred through the complex regulation of an immune receptor gene embedded in a natural antisense transcript. Plant Cell, 2022, 34, 1641-1665.	6.6	17
51	Mutator and MULE transposons. , 2009, , 277-306.		14
52	Mutator Transposon in Maize and MULEs in the Plant Genome. Journal of Genetics and Genomics, 2006, 33, 477-487.	0.3	13
53	Small RNA-Mediated <i>De Novo </i> Silencing of <i> Ac/Ds </i> Transposons Is Initiated by Alternative Transposition in Maize. Genetics, 2020, 215, 393-406.	2.9	11
54	Regulation of the Mutator System of Transposons in Maize. Methods in Molecular Biology, 2013, 1057, 123-142.	0.9	10

#	Article	IF	CITATIONS
55	The Epigenome and Beyond: How Does Non-genetic Inheritance Change Our View of Evolution?. Integrative and Comparative Biology, 2021, , .	2.0	5
56	A new SPIN on horizontal transfer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16827-16828.	7.1	4
57	Editorial overview: Genome architecture and expression: Mobile elements at work. Current Opinion in Genetics and Development, 2018, 49, iv-v.	3.3	3
58	Genome-wide Estimation of Evolutionary Distance and Phylogenetic Analysis of Homologous Genes. Bio-protocol, 2018, 8, e3097.	0.4	3
59	<i>Mutator</i> and <i>MULE</i> Transposons., 0,, 801-826.		2
60	Cost-Effective Profiling of Mutator Transposon Insertions in Maize by Next-Generation Sequencing. Methods in Molecular Biology, 2020, 2072, 39-50.	0.9	2
61	A Molecular Cloning and Sanger Sequencing-based Protocol for Detecting Site-specific DNA Methylation. Bio-protocol, 2022, 12, .	0.4	2
62	What is being written, and why?. Physics of Life Reviews, 2013, 10, 336-337.	2.8	1
63	Maize GEvo: A Comparative DNA Sequence Alignment Visualization and Research Tool., 2009,, 341-351.		O