Pablo A Marquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655420/publications.pdf

Version: 2024-02-01

189 papers 17,941 citations

53 h-index 127 g-index

212 all docs

212 docs citations

212 times ranked

21829 citing authors

#	Article	IF	CITATIONS
1	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	9.5	28
2	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	5.8	29
3	A general theory for temperature dependence in biology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	34
4	Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype?. BioEssays, 2021, 43, e2000126.	2.5	8
5	The macroecology of fish migration. Global Ecology and Biogeography, 2021, 30, 99-116.	5.8	16
6	Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web. Scientific Reports, 2021, 11, 1765.	3.3	22
7	Coexistence, dispersal and spatial structure in metacommunities: a stochastic model approach. Theoretical Ecology, 2021, 14, 279-302.	1.0	4
8	Conservation planning for people and nature in a Chilean biodiversity hotspot. People and Nature, 2021, 3, 686-699.	3.7	12
9	Azorella Cushion Plants and Aridity are Important Drivers of Soil Microbial Communities in Andean Ecosystems. Ecosystems, 2021, 24, 1576-1590.	3.4	10
10	Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science, 2021, 372, .	12.6	283
11	Survival of the Systems. Trends in Ecology and Evolution, 2021, 36, 333-344.	8.7	25
12	Survival of the Systems. Trends in Ecology and Evolution, 2021, 36, 333-344. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	7.8	25
	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology		
12	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509. Violence among the first horticulturists in the atacama desert (1000 BCE – 600 CE). Journal of	7.8	147
12	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509. Violence among the first horticulturists in the atacama desert (1000 BCE – 600 CE). Journal of Anthropological Archaeology, 2021, 63, 101324.	7.8	147
12 13 14	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509. Violence among the first horticulturists in the atacama desert (1000 BCE – 600 CE). Journal of Anthropological Archaeology, 2021, 63, 101324. Chile: elect a president to strengthen climate action, not weaken it. Nature, 2021, 600, 386-386. Soil microbial abundance and activity across forefield glacier chronosequence in the Northern	7.8 1.6 27.8	147 10 0
12 13 14 15	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509. Violence among the first horticulturists in the atacama desert (1000 BCE – 600 CE). Journal of Anthropological Archaeology, 2021, 63, 101324. Chile: elect a president to strengthen climate action, not weaken it. Nature, 2021, 600, 386-386. Soil microbial abundance and activity across forefield glacier chronosequence in the Northern Patagonian Ice Field, Chile. Arctic, Antarctic, and Alpine Research, 2020, 52, 553-562.	7.8 1.6 27.8	147 10 0

#	Article	IF	Citations
19	Violence in hunters, fishermen, and gatherers of the Chinchorro culture: Archaic societies of the Atacama Desert (10,000–4,000 cal yr BP). American Journal of Physical Anthropology, 2020, 172, 227-245.	2.1	11
20	GCM <scp>compare</scp> R: A web application to assess differences and assist in the selection of general circulation models for climate change research. Methods in Ecology and Evolution, 2020, 11, 656-663.	5.2	50
21	Can Ecological Interactions be Inferred from Spatial Data?. Biodiversity Informatics, 2020, 15, 11-54.	3.0	8
22	What Is the Species Richness Distribution?. , 2020, , 177-188.		5
23	Launching CABI Agriculture and Bioscience: ensuring that today's research meets tomorrow's global challenges in agriculture and the environment. CABI Agriculture and Bioscience, 2020, 1, .	2.4	0
24	Let's Train More Theoretical Ecologists – Here Is Why. Trends in Ecology and Evolution, 2019, 34, 759-762.	8.7	12
25	Nonequilibrium evolution of volatility in origination and extinction explains fat-tailed fluctuations in Phanerozoic biodiversity. Science Advances, 2019, 5, eaat0122.	10.3	5
26	Phenological modularity in amphibian calling behaviour: Geographic trends and local determinants. Austral Ecology, 2019, 44, 1451-1462.	1.5	4
27	Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders. Conservation Science and Practice, 2019, 1, e118.	2.0	11
28	Modelling the current and future biodiversity distribution in the Chilean Mediterranean hotspot. The role of protected areas network in a warmer future. Diversity and Distributions, 2019, 25, 1897-1909.	4.1	15
29	Main drivers of freshwater fish diversity across extra-tropical Southern Hemisphere rivers. Hydrobiologia, 2019, 843, 155-172.	2.0	4
30	A 19 Year Analysis of Small Mammals Associated with Human Hantavirus Cases in Chile. Viruses, 2019, 11, 848.	3.3	6
31	Assessing the Causes Behind the Late Quaternary Extinction of Horses in South America Using Species Distribution Models. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	12
32	Insights on fostering the emergence of robust conservation actions from Zimbabwe's CAMPFIRE program. Global Ecology and Conservation, 2019, 17, e00538.	2.1	14
33	An Open-System Approach to Complex Biological Networks. SIAM Journal on Applied Mathematics, 2019, 79, 619-640.	1.8	17
34	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	10.3	194
35	Navigating transformation of biodiversity and climate. Science Advances, 2019, 5, eaba0969.	10.3	6
36	Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85–90 °N. ISME Journal, 2019, 13, 316-333.	9.8	18

#	Article	IF	Citations
37	Shifts in habitat suitability and the conservation status of the Endangered Andean cat <i>Leopardus jacobita</i> under climate change scenarios. Oryx, 2019, 53, 356-367.	1.0	11
38	Species coâ€occurrence networks: Can they reveal trophic and nonâ€trophic interactions in ecological communities?. Ecology, 2018, 99, 690-699.	3.2	242
39	A metabolic view of amphibian local community structure: the role of activation energy. Ecography, 2018, 41, 388-400.	4.5	4
40	Species dispersal and biodiversity in human-dominated metacommunities. Journal of Theoretical Biology, 2018, 457, 199-210.	1.7	10
41	Exclusion of small mammals and lagomorphs invasion interact with human-trampling to drive changes in topsoil microbial community structure and function in semiarid Chile. Soil Biology and Biochemistry, 2018, 124, 1-10.	8.8	3
42	ACTA DE TARAPACÃ. " PUEBLO SIN AGUA, PUEBLO MUERTO". Chungara, 2018, 50, 0-0.	0.1	3
43	Can environmental impact assessments alone conserve freshwater fish biota? Review of the Chilean experience. Environmental Impact Assessment Review, 2017, 63, 87-94.	9.2	17
44	Microbial communities in soil chronosequences with distinct parent material: the effect of soil <scp>pH</scp> and litter quality. Journal of Ecology, 2017, 105, 1709-1722.	4.0	49
45	Extra-metabolic energy use and the rise in human hyper-density. Scientific Reports, 2017, 7, 43869.	3.3	30
46	Single species dynamics under climate change. Theoretical Ecology, 2017, 10, 181-193.	1.0	5
47	Innovation: an emerging focus from cells to societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160414.	4.0	28
48	Integrating macroecology through a statistical mechanics of adaptive matter. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10523-10525.	7.1	6
49	On the proportional abundance of species: Integrating population genetics and community ecology. Scientific Reports, 2017, 7, 16815.	3.3	9
50	Innovation and the growth of human population. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160415.	4.0	24
51	Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. Journal of Anthropological Archaeology, 2017, 46, 28-39.	1.6	80
52	Patterns of bird diversity and habitat use in mixed vineyard-matorral landscapes of Central Chile. Ecological Indicators, 2017, 73, 345-357.	6.3	28
53	Biocultural Homogenization in Urban Settings: Public Knowledge of Birds in City Parks of Santiago, Chile. Sustainability, 2017, 9, 485.	3.2	31
54	Loco or no Loco? Holocene Climatic Fluctuations, Human Demography, and Community Based Management of Coastal Resources in Northern Chile. Frontiers in Earth Science, 2017, 5, .	1.8	19

#	Article	IF	CITATIONS
55	The Multidimensional Stoichiometric Niche. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	56
56	The avifauna of Bosque Fray Jorge National Park and Chile's Norte Chico. Journal of Arid Environments, 2016, 126, 23-36.	2.4	10
57	A Continuum of Specialists and Generalists in Empirical Communities. PLoS ONE, 2015, 10, e0114674.	2.5	18
58	Comparison of soil microbial communities inhabiting vineyards and native sclerophyllous forests in central <scp>C</scp> hile. Ecology and Evolution, 2015, 5, 3857-3868.	1.9	25
59	On the Importance of First Principles in Ecological Theory Development. BioScience, 2015, 65, 342-343.	4.9	11
60	Dual thinking for scientists. Ecology and Society, 2015, 20, .	2.3	50
61	Can we infer plant facilitation from remote sensing? a test across global drylands. Ecological Applications, 2015, 25, 1456-1462.	3.8	35
62	Facilitation by nurse plants regulates community invasibility in harsh environments. Journal of Vegetation Science, 2015, 26, 756-767.	2.2	34
63	Fire, percolation thresholds and the savanna forest transition: a neutral model approach. Journal of Ecology, 2014, 102, 1386-1393.	4.0	55
64	On Theory in Ecology. BioScience, 2014, 64, 701-710.	4.9	195
65	Inferring species roles in metacommunity structure from species co-occurrence networks. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141425.	2.6	35
66	The dynamics of technological change under constraints: Adopters and resources. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 3299-3317.	0.9	6
67	Heat freezes niche evolution. Ecology Letters, 2013, 16, 1206-1219.	6.4	708
68	Decomposing recruitment limitation for an avianâ€dispersed rain forest tree in an anciently fragmented landscape. Journal of Ecology, 2013, 101, 1439-1448.	4.0	12
69	Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6907-6912.	7.1	571
70	Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. Methods in Ecology and Evolution, 2013, 4, 401-415.	5.2	59
71	Topological properties of polar food webs. Marine Ecology - Progress Series, 2013, 474, 15-26.	1.9	34
72	Range structure analysis: unveiling the internal structure of species' ranges. Theoretical Ecology, 2013, 6, 419-426.	1.0	9

#	Article	IF	CITATIONS
73	Comparing the relative contributions of biotic and abiotic factors as mediators of species' distributions. Ecological Modelling, 2013, 248, 57-70.	2.5	69
74	Reply to van Leeuwen et al.: Planning for agricultural adaptation to climate change and its consequences for conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3053.	7.1	4
75	Representation of Ecosystem Services by Terrestrial Protected Areas: Chile as a Case Study. PLoS ONE, 2013, 8, e82643.	2.5	42
76	Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14754-14760.	7.1	109
77	Population dynamics of the vicuña (<i>Vicugna vicugna</i>): density-dependence, rainfall, and spatial distribution. Journal of Mammalogy, 2012, 93, 658-666.	1.3	18
78	Distributional (In)Congruence of Biodiversity–Ecosystem Functioning. Advances in Ecological Research, 2012, 46, 1-88.	2.7	52
79	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	27.8	1,518
80	Diversity emerging: from competitive exclusion to neutral coexistence in ecosystems. Theoretical Ecology, 2012, 5, 457-463.	1.0	7
81	Connecting landscape structure and patterns in body size distributions. Oikos, 2012, 121, 697-710.	2.7	37
82	Establishment and formation of fog-dependent <i>Tillandsia landbeckii</i> dunes in the Atacama Desert: Evidence from radiocarbon and stable isotopes. Journal of Geophysical Research, 2011, 116, .	3.3	36
83	Finite size scaling in the local abundances of geographic populations. Biological Research, 2011, 44, 107-112.	3.4	1
84	Spatial patterns of phylogenetic diversity. Ecology Letters, 2011, 14, 141-149.	6.4	171
85	Using species coâ€occurrence networks to assess the impacts of climate change. Ecography, 2011, 34, 897-908.	4.5	160
86	Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos, 2011, 120, 1247-1255.	2.7	68
87	Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia, 2011, 167, 835-845.	2.0	36
88	Microsatellite markers for the relict tree <i>Aextoxicon punctatum:</i> The only species in the Chilean endemic family Aextoxicaceae. American Journal of Botany, 2011, 98, e30-2.	1.7	2
89	Reconstructing the history of human impacts on coastal biodiversity in Chile: constraints and opportunities. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 74-82.	2.0	11
90	Vegetation pattern formation in a fog-dependent ecosystem. Journal of Theoretical Biology, 2010, 265, 18-26.	1.7	65

#	Article	IF	CITATIONS
91	Food web structure and body size: trophic position and resource acquisition. Oikos, 2010, 119, 147-153.	2.7	132
92	Interactions among patch area, forest structure and water fluxes in a fogâ€inundated forest ecosystem in semiâ€arid Chile. Functional Ecology, 2010, 24, 909-917.	3.6	23
93	From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy, 2010, 27, 148-160.	5.6	183
94	Predicting effects of ecosystem engineering on species richness along primary productivity gradients. Acta Oecologica, 2010, 36, 46-54.	1.1	18
95	Phylogeny of the genera Euclidiodes and Hasodima (Lepidoptera: Geometridae) and description of two new species from the Fray Jorge relict forest in northern Chile. Zootaxa, 2009, 2273, 59-68.	0.5	2
96	Mammal and butterfly species richness in Chile: taxonomic covariation and history. Revista Chilena De Historia Natural, 2009, 82, .	1.2	14
97	A network analysis of plant–pollinator interactions in temperate rain forests of Chiloé Island, Chile. Oecologia, 2009, 160, 697-706.	2.0	35
98	Deconstructing latitudinal species richness patterns in the ocean: does larval development hold the clue?. Ecology Letters, 2009, 12, 601-611.	6.4	47
99	Assessing the performance of the existing and proposed network of marine protected areas to conserve marine biodiversity in Chile. Biological Conservation, 2009, 142, 3147-3153.	4.1	30
100	Biogenic habitat creation affects biomass–diversity relationships in plant communities. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 191-201.	2.7	21
101	First Intermediate Host of the Digenean Trematode Proctoeces lintoni (Fellodistomidae) in Chile. Journal of Parasitology, 2009, 95, 1408-1414.	0.7	18
102	Beyond Darwin: On the role of niche construction and self-organization in evolution. Revista Chilena De Historia Natural, 2009, 82, .	1.2	3
103	Ecosystem engineering affects ecosystem functioning in high-Andean landscapes. Oecologia, 2008, 155, 821-829.	2.0	31
104	How well do the existing and proposed reserve networks represent vertebrate species in Chile?. Diversity and Distributions, 2008, 14, 148-158.	4.1	62
105	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	6.4	716
106	Regeneration patterns and persistence of the fogâ€dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 2008, 14, 161-176.	9.5	41
107	Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Molecular Ecology, 2008, 17, 678-690.	3.9	58
108	A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science, 2008, 320, 1768-1771.	12.6	1,729

#	Article	IF	Citations
109	On the Relationship between Productivity and Food Chain Length at Different Ecological Levels. American Naturalist, 2007, 169, 62-72.	2.1	64
110	Scaling metabolic rate fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10900-10903.	7.1	27
111	Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology, 2007, 33, 455-468.	2.0	39
112	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	5.6	398
113	Inverse latitudinal gradients in species diversity. , 2007, , 246-257.		41
114	Survival of species in patchy landscapes: percolation in space and time., 2007,, 409-440.		14
115	Climate and diversity: the role of history. , 2007, , 225-245.		2
116	On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos, 2007, 116, 1524-1530.	2.7	88
117	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995-1015.	6.4	1,124
118	Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems. Journal of Ecology, 2007, 95, 682-688.	4.0	99
119	Rarity in Chilean forest birds: which ecological and lifeâ€history traits matter?. Diversity and Distributions, 2007, 13, 203-212.	4.1	31
120	On the seasonal effect of landscape structure on a bird species: the thorn-tailed rayadito in a relict forest in northern Chile. Landscape Ecology, 2007, 22, 1059-1071.	4.2	26
121	Effects of herbivory and patch size on tree seedling survivorship in a fog-dependent coastal rainforest in semiarid Chile. Oecologia, 2007, 153, 625-632.	2.0	19
122	Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology, 2007, 33, 455-468.	2.0	16
123	On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos, 2007, 116, 1524-1530.	2.7	1
124	Coexistence in metacommunities: A tree-species model. Mathematical Biosciences, 2006, 202, 42-56.	1.9	6
125	Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. Journal of Arid Environments, 2006, 65, 543-552.	2.4	75
126	Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters, 2006, 9, 630-643.	6.4	149

#	Article	IF	CITATIONS
127	Rain Forest Islands in the Chilean Semiarid Region: Fog-dependency, Ecosystem Persistence and Tree Regeneration. Ecosystems, 2006, 9, 598-608.	3.4	100
128	Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 374-378.	7.1	213
129	Stationary state structure of a random copying mechanism over a complex network. Physica A: Statistical Mechanics and Its Applications, 2005, 353, 674-684.	2.6	1
130	Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. Journal of Biogeography, 2005, 32, 1931-1941.	3.0	34
131	ECOLOGY: Untangling an Entangled Bank. Science, 2005, 307, 684-686.	12.6	13
132	Priority areas for the conservation of coastal marine vertebrates in Chile. Biological Conservation, 2005, 126, 420-428.	4.1	27
133	Scaling and power-laws in ecological systems. Journal of Experimental Biology, 2005, 208, 1749-1769.	1.7	312
134	PHYLOGEOGRAPHY OF OLIGORYZOMYS LONGICAUDATUS (RODENTIA: SIGMODONTINAE) IN TEMPERATE SOUTH AMERICA. Journal of Mammalogy, 2005, 86, 191-200.	1.3	61
135	METABOLIC ECOLOGY: LINKING INDIVIDUALS TO ECOSYSTEMS. Ecology, 2004, 85, 1794-1796.	3.2	56
136	Testing the energetic equivalence rule with helminth endoparasites of vertebrates. Ecology Letters, 2004, 7, 527-531.	6.4	65
137	Intraguild predation: a widespread interaction related to species biology. Ecology Letters, 2004, 7, 557-564.	6.4	403
138	Effectiveness of the global protected area network in representing species diversity. Nature, 2004, 428, 640-643.	27.8	1,149
139	Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time. American Naturalist, 2004, 163, 672-691.	2.1	173
140	Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network. BioScience, 2004, 54, 1092.	4.9	516
141	Exotic plant invasions to the mediterranean region of Chile: causes, history and impacts. Revista Chilena De Historia Natural, 2004, 77, .	1.2	51
142	PERIDOMESTIC SMALL MAMMALS ASSOCIATED WITH CONFIRMED CASES OF HUMAN HANTAVIRUS DISEASE IN SOUTHCENTRAL CHILE. American Journal of Tropical Medicine and Hygiene, 2004, 70, 305-309.	1.4	53
143	Peridomestic small mammals associated with confirmed cases of human hantavirus disease in southcentral Chile. American Journal of Tropical Medicine and Hygiene, 2004, 70, 305-9.	1.4	28
144	Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole?. Ecography, 2003, 26, 139-144.	4.5	135

#	Article	IF	CITATIONS
145	Dispersal and transient dynamics in metapopulations. Ecology Letters, 2003, 6, 197-204.	6.4	16
146	BODY MASS OF LATE QUATERNARY MAMMALS. Ecology, 2003, 84, 3403-3403.	3.2	393
147	ECOLOGY: Of Predators, Prey, and Power Laws. Science, 2002, 295, 2229-2230.	12.6	47
148	Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge, Chile. Oecologia, 2002, 132, 296-306.	2.0	68
149	Phylogenetic and biogeographic relationships of the mouse opossum Thylamys (Didelphimorphia,) Tj ETQq $1\ 1\ 0.7$	784314 rg 2.7	BT /Overlock
150	The search for general principles in ecology. Nature, 2002, 418, 723-723.	27.8	15
151	Title is missing!. Biodiversity and Conservation, 2002, 11, 1975-1990.	2.6	23
152	Altitudinal zonation among lizards of the genus Liolaemus: questions answered and unanswered questions. Revista Chilena De Historia Natural, 2001, 74, 313.	1.2	9
153	Effects of Human Activity on the Structure of Coastal Marine Bird Assemblages in Central Chile. Conservation Biology, 2001, 15, 1396-1404.	4.7	37
154	Patch recolonization by the tunicate Pyura praeputialis in the rocky intertidal of the Bay of Antofagasta, Chile: evidence for self-facilitation mechanisms. Marine Ecology - Progress Series, 2001, 224, 93-101.	1.9	22
155	Effects of Habitat Fragmentation on Bird Species in a Relict Temperate Forest in Semiarid Chile. Conservation Biology, 2000, 14, 534-543.	4.7	80
156	Geographical ecology of South American desert small mammals: consequences of observations at local and regional scales. Global Ecology and Biogeography, 2000, 9, 219-223.	5.8	3
157	Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Revista Chilena De Historia Natural, 2000, 73, 797.	1.2	130
158	ECOLOGY: Invariants, Scaling Laws, and Ecological Complexity. Science, 2000, 289, 1487-1488.	12.6	30
159	Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes. American Naturalist, 2000, 156, 478-494.	2.1	264
160	Geographic Energetics of the Andean Mouse, Abrothrix andinus. Journal of Mammalogy, 1999, 80, 205-209.	1.3	7
161	El Nino events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography, 1999, 22, 213-218.	4.5	97
162	Threshold Parameters and Metapopulation Persistence. Bulletin of Mathematical Biology, 1999, 61, 341-353.	1.9	8

#	Article	IF	Citations
163	Conservation status, rarity, and geographic priorities for conservation of Chilean mammals: an assessment. Biological Conservation, 1999, 88, 53-68.	4.1	86
164	Large Temporal and Spatial Scales in the Structure of Mammalian Assemblages in South America: A Macroecological Approach. Oikos, 1999, 85, 299.	2.7	48
165	Small mammals of the Atacama Desert (Chile). Journal of Arid Environments, 1999, 42, 129-135.	2.4	16
166	On size and area: Patterns of mammalian body size extremes across landmasses. Evolutionary Ecology, 1998, 12, 127-139.	1.2	128
167	Pattern Formation in a Patch Occupancy Metapopulation Model: a Cellular Automata Approach. Journal of Theoretical Biology, 1998, 194, 79-90.	1.7	25
168	Population extinction risks of three Neotropical small mammal species. Oecologia, 1998, 115, 120-126.	2.0	8
169	Seaweeds, latitudinal diversity patterns, and Rapoport's Rule. Diversity and Distributions, 1998, 4, 71-75.	4.1	67
170	Vegetation in an altitudinal gradient along the RıÌo Loa in the Atacama Desert of northern Chile. Journal of Arid Environments, 1998, 40, 383-399.	2.4	29
171	Spatiotemporal Variability of Rodent Subpopulations at a Semiarid Neotropical Locality. Journal of Mammalogy, 1997, 78, 505-513.	1.3	12
172	Southern temperate biota and ecosystems: past, present and future. Trends in Ecology and Evolution, 1997, 12, 294-295.	8.7	0
173	Darwinian Fitness and Reproductive Power: Reply to Kozlowski. American Naturalist, 1996, 147, 1092-1097.	2.1	30
174	How do Species Really Divide Resources?. American Naturalist, 1996, 147, 1072-1086.	2.1	37
175	The Introduced Hawaiian Avifauna Reconsidered: Evidence for Self-Organized Criticality?. Journal of Theoretical Biology, 1996, 182, 161-167.	1.7	43
176	Extinction and colonization processes in subpopulations of five neotropical small mammal species. Oecologia, 1996, 107, 197-203.	2.0	40
177	Community Structure of Desert Small Mammals: Comparisons Across Four Continents. Ecology, 1996, 77, 746-761.	3.2	126
178	Body Size, Population Density, and the Energetic Equivalence Rule. Journal of Animal Ecology, 1995, 64, 325.	2.8	119
179	Diversity of Small Mammals in the Pacific Coastal Desert of Peru and Chile and in the Adjacent Andean Area - Biogeography and Community Structure. Australian Journal of Zoology, 1994, 42, 527.	1.0	31
180	Natural History of Microcavia niata in the High Andean Zone of Northern Chile. Journal of Mammalogy, 1993, 74, 136-140.	1.3	18

#	Article	IF	CITATIONS
181	Evolution of Body Size: Consequences of an Energetic Definition of Fitness. American Naturalist, 1993, 142, 573-584.	2.1	560
182	Energetics and Torpor in the Atacama Desert-Dwelling Rodent Phyllotis darwinirupestris. Journal of Mammalogy, 1991, 72, 734-738.	1.3	33
183	Ecology of Garthia gaudichaudi, a Gecko Endemic to the Semiarid Region of Chile. Journal of Herpetology, 1990, 24, 431.	0.5	12
184	Scaling Population Density to Body Size in Rocky Intertidal Communities. Science, 1990, 250, 1125-1127.	12.6	183
185	Habitat and Diet of Darwin's Fox (Pseudalopex fulvipes) on the Chilean Mainland. Journal of Mammalogy, 1990, 71, 246-248.	1.3	40
186	Ecological aspects of thermoregulation at high altitudes: the case of andean Liolaemus lizards in northern Chile. Oecologia, 1989, 81, 16-20.	2.0	53
187	Niche Relationships between Two Sympatric Liolaemus Lizards in a Fluctuating Environment: The "Lean" versus "Feast" Scenario. Journal of Herpetology, 1989, 23, 22.	0.5	12
188	Microhabitat shifts of lizards under different contexts of sympatry: a case study with South American Liolaemus. Oecologia, 1988, 76, 567-569.	2.0	21
189	Protected-Area Management and Climate Change. , 0, , 283-293.		3