
Jack Saddler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6553678/publications.pdf Version: 2024-02-01

LACK SADDIER

#	Article	lF	CITATIONS
1	Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. Bioresource Technology, 2022, 343, 126100.	9.6	31
2	Climate change affects cellâ€wall structure and hydrolytic performance of a perennial grass as an energy crop. Biofuels, Bioproducts and Biorefining, 2022, 16, 471-487.	3.7	3
3	The use of steam pretreatment to enhance pellet durability and the enzyme-mediated hydrolysis of pellets to fermentable sugars. Bioresource Technology, 2022, 347, 126731.	9.6	4
4	Determining the amount of â€~green' coke generated when coâ€processing lipids commercially by fluid catalytic cracking. Biofuels, Bioproducts and Biorefining, 2022, 16, 325-334.	3.7	5
5	Production of lower carbon-intensity fuels by co-processing biogenic feedstocks: Potential and challenges for refineries. Fuel, 2022, 324, 124636.	6.4	11
6	Sulphite addition during steam pretreatment enhanced both enzyme-mediated cellulose hydrolysis and ethanol production. Bioresources and Bioprocessing, 2022, 9, .	4.2	5
7	The influence of pre-steaming and lignin distribution on wood pellet robustness and ease of subsequent enzyme-mediated cellulose hydrolysis. Sustainable Energy and Fuels, 2021, 5, 424-429.	4.9	4
8	Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments. Cellulose, 2021, 28, 189-206.	4.9	15
9	Use of Endoglucanase and Accessory Enzymes to Facilitate Mechanical Pulp Nanofibrillation. ACS Sustainable Chemistry and Engineering, 2021, 9, 1406-1413.	6.7	26
10	The production of lactic acid from chemi-thermomechanical pulps using a chemo-catalytic approach. Bioresource Technology, 2021, 324, 124664.	9.6	12
11	Challenges in determining the renewable content of the final fuels after co-processing biogenic feedstocks in the fluid catalytic cracker (FCC) of a commercial oil refinery. Fuel, 2021, 294, 120526.	6.4	19
12	Enhancing Kraft based dissolving pulp production by integrating green liquor neutralization. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100034.	2.6	2
13	Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate. Industrial Crops and Products, 2021, 173, 114148.	5.2	21
14	Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 2020, 250, 116956.	10.2	58
15	Potential To Produce Sugars and Lignin-Containing Cellulose Nanofibrils from Enzymatically Hydrolyzed Chemi-Thermomechanical Pulps. ACS Sustainable Chemistry and Engineering, 2020, 8, 14955-14963.	6.7	29
16	Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis. Bioresource Technology, 2020, 315, 123789.	9.6	23
17	Enhancing Enzyme-Mediated Cellulose Hydrolysis by Incorporating Acid Groups Onto the Lignin During Biomass Pretreatment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608835.	4.1	8
18	The use of fluorescent protein-tagged carbohydrate-binding modules to evaluate the influence of drying on cellulose accessibility and enzymatic hydrolysis. RSC Advances, 2020, 10, 27152-27160.	3.6	9

#	Article	IF	CITATIONS
19	Enzyme-Mediated Lignocellulose Liquefaction Is Highly Substrate-Specific and Influenced by the Substrate Concentration or Rheological Regime. Frontiers in Bioengineering and Biotechnology, 2020, 8, 917.	4.1	4
20	Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS Applied Bio Materials, 2020, 3, 2201-2208.	4.6	4
21	Enhancing Enzyme-Mediated Hydrolysis of Mechanical Pulps by Deacetylation and Delignification. ACS Sustainable Chemistry and Engineering, 2020, 8, 5847-5855.	6.7	13
22	Substrate Characteristics That Influence the Filter Paper Assay's Ability to Predict the Hydrolytic Potential of Cellulase Mixtures. ACS Sustainable Chemistry and Engineering, 2020, 8, 10521-10528.	6.7	10
23	Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydrate Polymers, 2020, 247, 116727.	10.2	58
24	Valorization of Bark Using Ethanol–Water Organosolv Treatment: Isolation and Characterization of Crude Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 4745-4754.	6.7	25
25	The influence of lignin on the effectiveness of using a chemithermomechanical pulping based process to pretreat softwood chips and pellets prior to enzymatic hydrolysis. Bioresource Technology, 2020, 302, 122895.	9.6	41
26	High Production Yield and More Thermally Stable Lignin-Containing Cellulose Nanocrystals Isolated Using a Ternary Acidic Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 7182-7191.	6.7	79
27	Elucidation of Changes in Cellulose Ultrastructure and Accessibility in Hardwood Fractionation Processes with Carbohydrate Binding Modules. ACS Sustainable Chemistry and Engineering, 2020, 8, 6767-6776.	6.7	8
28	Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 2020, 147, 111906.	8.8	101
29	The Production of Lipids Using 5-Hydorxymethy Furfural Tolerant Rhodotorula graminis Grown on the Hydrolyzates of Steam Pretreated Softwoods. Sustainability, 2020, 12, 755.	3.2	4
30	The influence of lignin migration and relocation during steam pretreatment on the enzymatic hydrolysis of softwood and corn stover biomass substrates. Biotechnology and Bioengineering, 2019, 116, 2864-2873.	3.3	42
31	Laccase-mediated hydrophilization of lignin decreases unproductive enzyme binding but limits subsequent enzymatic hydrolysis at high substrate concentrations. Bioresource Technology, 2019, 292, 121999.	9.6	11
32	Alkali–oxygen treatment prior to the mechanical pulping of hardwood enhances enzymatic hydrolysis and carbohydrate recovery through selective lignin modification. Sustainable Energy and Fuels, 2019, 3, 227-236.	4.9	31
33	Sulfite Post-Treatment To Simultaneously Detoxify and Improve the Enzymatic Hydrolysis and Fermentation of a Steam-Pretreated Softwood Lodgepole Pine Whole Slurry. ACS Sustainable Chemistry and Engineering, 2019, 7, 5192-5199.	6.7	23
34	Functionalizing Cellulose Nanocrystals with Click Modifiable Carbohydrate-Binding Modules. Biomacromolecules, 2019, 20, 3087-3093.	5.4	15
35	The Application of Fiber Quality Analysis (FQA) and Cellulose Accessibility Measurements To Better Elucidate the Impact of Fiber Curls and Kinks on the Enzymatic Hydrolysis of Fibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 8827-8833.	6.7	15
36	Potential synergies of dropâ€in biofuel production with further coâ€processing at oil refineries. Biofuels, Bioproducts and Biorefining, 2019, 13, 760-775.	3.7	128

#	Article	IF	CITATIONS
37	Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22545-22551.	7.1	37
38	Potential yields and emission reductions of biojet fuels produced via hydrotreatment of biocrudes produced through direct thermochemical liquefaction. Biotechnology for Biofuels, 2019, 12, 281.	6.2	17
39	Use of Carbohydrate Binding Modules To Elucidate the Relationship between Fibrillation, Hydrolyzability, and Accessibility of Cellulosic Substrates. ACS Sustainable Chemistry and Engineering, 2019, 7, 1113-1119.	6.7	12
40	Understanding the slowdown of whole slurry hydrolysis of steam pretreated lignocellulosic woody biomass catalyzed by an up-to-date enzyme cocktail. Sustainable Energy and Fuels, 2018, 2, 1048-1056.	4.9	16
41	Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment. Bioresource Technology, 2018, 258, 12-17.	9.6	43
42	Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Scientific Reports, 2018, 8, 3195.	3.3	108
43	Why does CH10 xylanase have better performance than CH11 xylanase for the deconstruction of pretreated biomass?. Biomass and Bioenergy, 2018, 110, 13-16.	5.7	41
44	Extent of Enzyme Inhibition by Phenolics Derived from Pretreated Biomass Is Significantly Influenced by the Size and Carbonyl Group Content of the Phenolics. ACS Sustainable Chemistry and Engineering, 2018, 6, 3823-3829.	6.7	45
45	The potential of endoglucanases to rapidly and specifically enhance the rheological properties of micro/nanofibrillated cellulose. Cellulose, 2018, 25, 977-986.	4.9	16
46	Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation. Applied Biochemistry and Biotechnology, 2018, 184, 264-277.	2.9	6
47	The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 2018, 258, 79-87.	9.6	37
48	The Potential of Using Immobilized Xylanases to Enhance the Hydrolysis of Soluble, Biomass Derived Xylooligomers. Materials, 2018, 11, 2005.	2.9	10
49	Enhancing bacterial cellulose production via adding mesoporous halloysite nanotubes in the culture medium. Carbohydrate Polymers, 2018, 198, 191-196.	10.2	23
50	Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Science and Technology, 2017, 51, 557-569.	3.2	28
51	Dropâ€in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels, Bioproducts and Biorefining, 2017, 11, 344-362.	3.7	69
52	Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2017, 5, 2702-2710.	6.7	115
53	Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Scientific Reports, 2017, 7, 42121.	3.3	37
54	Alkali-Oxygen Impregnation Prior to Steam Pretreating Poplar Wood Chips Enhances Selective Lignin Modification and Removal while Maximizing Carbohydrate Recovery, Cellulose Accessibility, and Enzymatic Hydrolysis, ACS Sustainable Chemistry and Engineering, 2017, 5, 4011-4017	6.7	33

#	Article	IF	CITATIONS
55	Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnology for Biofuels, 2017, 10, 192.	6.2	228
56	A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresource Technology, 2017, 243, 898-904.	9.6	64
57	A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnology for Biofuels, 2017, 10, 157.	6.2	124
58	Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 2017, 10, 176.	6.2	95
59	Mechanistic insights into the liquefaction stage of enzymeâ€mediated biomass deconstruction. Biotechnology and Bioengineering, 2017, 114, 2489-2496.	3.3	18
60	What Are the Major Components in Steam Pretreated Lignocellulosic Biomass That Inhibit the Efficacy of Cellulase Enzyme Mixtures?. ACS Sustainable Chemistry and Engineering, 2016, 4, 3429-3436.	6.7	77
61	Oxidative cleavage of some cellulosic substrates by auxiliary activity (AA) family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes. Green Chemistry, 2016, 18, 6329-6336.	9.0	29
62	Enzymatic Hydrolysis of Industrial Derived Xylo-oligomers to Monomeric Sugars for Potential Chemical/Biofuel Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 7130-7136.	6.7	10
63	Pretreatment of biomass. Bioresource Technology, 2016, 199, 1.	9.6	10
64	The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresource Technology, 2016, 199, 135-141.	9.6	87
65	A NaBH4 Coupled Ninhydrin-Based Assay for the Quantification of Protein/Enzymes During the Enzymatic Hydrolysis of Pretreated Lignocellulosic Biomass. Applied Biochemistry and Biotechnology, 2015, 176, 1564-1580.	2.9	24
66	Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3451-3456.	7.1	63
67	The Use of Carbohydrate Binding Modules (CBMs) to Monitor Changes in Fragmentation and Cellulose Fiber Surface Morphology during Cellulase- and Swollenin-induced Deconstruction of Lignocellulosic Substrates. Journal of Biological Chemistry, 2015, 290, 2938-2945.	3.4	43
68	Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresource Technology, 2015, 185, 302-307.	9.6	45
69	Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme and Microbial Technology, 2015, 79-80, 42-48.	3.2	118
70	Optimization of chip size and moisture content to obtain high, combined sugar recovery after sulfur dioxide-catalyzed steam pretreatment of softwood and enzymatic hydrolysis of the cellulosic component. Bioresource Technology, 2015, 187, 288-298.	9.6	17
71	Enhancing Hemicellulose Recovery and the Enzymatic Hydrolysis of Cellulose by Adding Lignosulfonates during the Two-Stage Steam Pretreatment of Poplar. ACS Sustainable Chemistry and Engineering, 2015, 3, 986-991.	6.7	44
72	The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresource Technology, 2015, 186, 149-153.	9.6	150

#	Article	IF	CITATIONS
73	Second-generation ethanol in Chile: optimisation of the autohydrolysis of Eucalyptus globulus. Biomass Conversion and Biorefinery, 2014, 4, 125-135.	4.6	8
74	Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy and Environmental Science, 2014, 7, 2308-2315.	30.8	193
75	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
76	The enzymatic hydrolysis of pretreated pulp fibers predominantly involves "peeling/erosion―modes of action. Biotechnology for Biofuels, 2014, 7, 87.	6.2	34
77	Special Issue from the NSERC Bioconversion network workshop: pretreatment and fractionation of biomass for biorefinery/biofuels. Biotechnology for Biofuels, 2013, 6, 17.	6.2	9
78	Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnology for Biofuels, 2013, 6, 12.	6.2	173
79	The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture―but is highly substrate specific. Biotechnology for Biofuels, 2013, 6, 112.	6.2	185
80	Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnology for Biofuels, 2012, 5, 51.	6.2	57
81	Use of the Simons' Staining Technique to Assess Cellulose Accessibility in Pretreated Substrates. Industrial Biotechnology, 2012, 8, 230-237.	0.8	56
82	Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars?. Bioresource Technology, 2012, 121, 190-198.	9.6	52
83	The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresource Technology, 2012, 103, 201-208.	9.6	340
84	Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. Bioresource Technology, 2012, 107, 235-242.	9.6	46
85	The Influence of Lignin on the Enzymatic Hydrolysis of Pretreated Biomass Substrates. ACS Symposium Series, 2011, , 145-167.	0.5	41
86	Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 2011, 4, 3.	6.2	263
87	The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?. Biotechnology for Biofuels, 2011, 4, 36.	6.2	347
88	Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnology and Bioengineering, 2011, 108, 538-548.	3.3	211
89	The effects of increasing swelling and anionic charges on the enzymatic hydrolysis of organosolvâ€pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 2011, 108, 1549-1558.	3.3	47
90	Influence of steam pretreatment severity on postâ€ŧreatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 2011, 108, 2300-2311.	3.3	103

#	Article	IF	CITATIONS
91	The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology, 2011, 102, 4507-4517.	9.6	200
92	The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 2010, 105, 871-879.	3.3	206
93	Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields?. Bioresource Technology, 2010, 101, 7827-7833.	9.6	84
94	An overview of second generation biofuel technologies. Bioresource Technology, 2010, 101, 1570-1580.	9.6	1,200
95	Influence of xylan on the enzymatic hydrolysis of steamâ€pretreated corn stover and hybrid poplar. Biotechnology Progress, 2009, 25, 315-322.	2.6	153
96	High consistency enzymatic hydrolysis of hardwood substrates. Bioresource Technology, 2009, 100, 5890-5897.	9.6	107
97	Adsorption of Cellulase on Cellulolytic Enzyme Lignin from Lodgepole Pine. Journal of Agricultural and Food Chemistry, 2009, 57, 7771-7778.	5.2	166
98	The bioconversion of mountain pine beetleâ€killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 2008, 101, 39-48.	3.3	155
99	The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: A modified Simons' staining technique. Biotechnology Progress, 2008, 24, 1178-1185.	2.6	164
100	Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 2007, 97, 287-296.	3.3	345
101	Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnology and Bioengineering, 2007, 98, 737-746.	3.3	146
102	Evaluating the Distribution of Cellulases and the Recycling of Free Cellulases during the Hydrolysis of Lignocellulosic Substrates. Biotechnology Progress, 2007, 23, 398-406.	2.6	163
103	Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 2006, 125, 198-209.	3.8	563
104	Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger:  Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 5806-5813.	5.2	555
105	A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, 2006, 93, 880-886.	3.3	62
106	Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 2006, 94, 851-861.	3.3	401
107	Strategies to Enhance the Enzymatic Hydrolysis of Pretreated Softwood with High Residual Lignin Content. Applied Biochemistry and Biotechnology, 2005, 124, 1069-1080.	2.9	208
108	Optimization of SO ₂ -Catalyzed Steam Pretreatment of Corn Fiber for Ethanol Production. Applied Biochemistry and Biotechnology, 2003, 106, 319-336.	2.9	49

#	Article	IF	CITATIONS
109	Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnology and Bioengineering, 2002, 77, 678-684.	3.3	138
110	SO ₂ -Catalyzed Steam Explosion of Corn Fiber for Ethanol Production. Applied Biochemistry and Biotechnology, 2002, 98-100, 59-72.	2.9	84
111	Cellulase Adsorption and an Evaluation of Enzyme Recycle During Hydrolysis of Steam-Exploded Softwood Residues. Applied Biochemistry and Biotechnology, 2002, 98-100, 641-654.	2.9	196
112	Do Cellulose Binding Domains Increase Substrate Accessibility?. Applied Biochemistry and Biotechnology, 2001, 91-93, 575-592.	2.9	18
113	Sugar Recovery and Fermentability of Hemicellulose Hydrolysates from Steam-Exploded Softwoods Containing Bark. Biotechnology Progress, 2001, 17, 887-892.	2.6	32
114	Do Enzymatic Hydrolyzability and Simons' Stain Reflect the Changes in the Accessibility of Lignocellulosic Substrates to Cellulase Enzymes?. Biotechnology Progress, 2001, 17, 1049-1054.	2.6	143
115	Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. , 2000, 51, 375-383.		111
116	Steam Pretreatment of Douglas-Fir Wood Chips. Applied Biochemistry and Biotechnology, 2000, 84-86, 693-706.	2.9	80
117	An Overview of Factors Influencing the Enzymatic Hydrolysis of Lignocellulosic Feedstocks. ACS Symposium Series, 2000, , 100-111.	0.5	24
118	Enzyme Treatments of the Dissolved and Colloidal Substances Present in Mill White Water and the Effects on the Resulting Paper Properties. Journal of Wood Chemistry and Technology, 2000, 20, 321-335.	1.7	28
119	The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates. Enzyme and Microbial Technology, 1999, 25, 644-650.	3.2	92
120	Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis. Biotechnology Progress, 1999, 15, 804-816.	2.6	702
121	Optimization of Steam Explosion to Enhance Hemicellulose Recovery and Enzymatic Hydrolysis of Cellulose in Softwoods. Applied Biochemistry and Biotechnology, 1999, 77, 47-54.	2.9	64
122	The Nature of Lignin from Steam Explosion/ Enzymatic Hydrolysis of Softwood: Structural Features and Possible Uses(Scientific Note). Applied Biochemistry and Biotechnology, 1999, 79, 867-876.	2.9	76
123	Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (douglas fir). , 1999, 64, 284-289.		92
124	The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 1998, 64, 113-119.	9.6	376
125	The Synergistic Effects of Endoglucanase and Xylanase in Modifying Douglas Fir Kraft Pulp. ACS Symposium Series, 1998, , 75-87.	0.5	6
126	Physical characterization of enzymatically modified kraft pulp fibers. Journal of Biotechnology, 1997, 57, 205-216.	3.8	59

#	Article	IF	CITATIONS
127	Session 4 industrial needs for commercialization. Applied Biochemistry and Biotechnology, 1997, 63-65, 609-623.	2.9	5
128	Molecular Mass Distribution of Materials Solubilized by Xylanase Treatment of Douglas-Fir Kraft Pulp. ACS Symposium Series, 1996, , 44-62.	0.5	1
129	A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Applied Biochemistry and Biotechnology, 1996, 57-58, 711-727.	2.9	97
130	Factors affecting gas chromatographic analysis of resin acids present in pulp mill effluents. Toxicological and Environmental Chemistry, 1996, 57, 1-16.	1.2	6
131	Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 1996, 51, 375-383.	3.3	103
132	Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, 1995, 45, 328-336.	3.3	129
133	Identification of essential cellulase components in the hydrolysis of a steam-exploded birch substrate1. Biotechnology and Applied Biochemistry, 1995, 21, 185-202.	3.1	3
134	Adsorption and desorption of cellulase components during the hydrolysis of a steam-exploded birch substrate1. Biotechnology and Applied Biochemistry, 1995, 21, 203-216.	3.1	17
135	Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Applied Biochemistry and Biotechnology, 1994, 45-46, 407-415.	2.9	54
136	Enzymatic Separation of High–Quality Uninked Pulp Fibers from Recycled Newspaper. Nature Biotechnology, 1994, 12, 905-908.	17.5	18
137	A quantitative approach to the study of the adsorption/desorption of cellulase components in a crude cellulase mixture. Biotechnology Letters, 1993, 7, 713-718.	0.5	11
138	Trichoderma Xylanases, Their Properties and Application. Critical Reviews in Biotechnology, 1992, 12, 413-435.	9.0	177