
Sagnik Bhattacharyya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6553397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opposite Effects of Δ-9-Tetrahydrocannabinol and Cannabidiol on Human Brain Function and Psychopathology. Neuropsychopharmacology, 2010, 35, 764-774.	2.8	595
2	Distinct Effects of Δ9-Tetrahydrocannabinol and Cannabidiol on Neural Activation During Emotional Processing. Archives of General Psychiatry, 2009, 66, 95.	13.8	412
3	Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. Journal of Psychopharmacology, 2011, 25, 121-130.	2.0	406
4	Cannabis and anxiety: a critical review of the evidence. Human Psychopharmacology, 2009, 24, 515-523.	0.7	398
5	Structural and Functional Imaging Studies in Chronic Cannabis Users: A Systematic Review of Adolescent and Adult Findings. PLoS ONE, 2013, 8, e55821.	1.1	334
6	Glutamatergic Dysfunction in OCD. Neuropsychopharmacology, 2005, 30, 1735-1740.	2.8	322
7	Continued versus discontinued cannabis use in patients with psychosis: a systematic review and meta-analysis. Lancet Psychiatry,the, 2016, 3, 215-225.	3.7	229
8	Modulation of Mediotemporal and Ventrostriatal Function in Humans by Δ9-Tetrahydrocannabinol. Archives of General Psychiatry, 2009, 66, 442.	13.8	226
9	Acute Effects of a Single, Oral dose of d9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) Administration in Healthy Volunteers. Current Pharmaceutical Design, 2012, 18, 4966-4979.	0.9	225
10	Glutamate Dysfunction in People with Prodromal Symptoms of Psychosis: Relationship to Gray Matter Volume. Biological Psychiatry, 2009, 66, 533-539.	0.7	210
11	Presynaptic Striatal Dopamine Dysfunction in People at Ultra-high Risk for Psychosis: Findings in a Second Cohort. Biological Psychiatry, 2013, 74, 106-112.	0.7	208
12	Induction of Psychosis byΔ9-Tetrahydrocannabinol Reflects Modulation of Prefrontal and Striatal Function During Attentional Salience Processing. Archives of General Psychiatry, 2012, 69, 27.	13.8	193
13	Neuroimaging in cannabis use: a systematic review of the literature. Psychological Medicine, 2010, 40, 383-398.	2.7	189
14	Alterations in White Matter Evident Before the Onset of Psychosis. Schizophrenia Bulletin, 2012, 38, 1170-1179.	2.3	186
15	A systematic review of factors influencing adherence to antipsychotic medication in schizophrenia-spectrum disorders. Psychiatry Research, 2015, 225, 14-30.	1.7	181
16	Neural Basis of Δ-9-Tetrahydrocannabinol and Cannabidiol: Effects During Response Inhibition. Biological Psychiatry, 2008, 64, 966-973.	0.7	179
17	A Critical Review of the Antipsychotic Effects of Cannabidiol: 30 Years of a Translational Investigation. Current Pharmaceutical Design, 2012, 18, 5131-5140.	0.9	174
18	Anti-Brain Autoantibodies and Altered Excitatory Neurotransmitters in Obsessive–Compulsive Disorder. Neuropsychopharmacology, 2009, 34, 2489-2496.	2.8	139

#	Article	IF	CITATIONS
19	The Neural Substrate of Reward Anticipation in Health: A Meta-Analysis of fMRI Findings in the Monetary Incentive Delay Task. Neuropsychology Review, 2018, 28, 496-506.	2.5	136
20	Modulation of effective connectivity during emotional processing by î"9-tetrahydrocannabinol and cannabidiol. International Journal of Neuropsychopharmacology, 2010, 13, 421.	1.0	134
21	Modulation of Auditory and Visual Processing by Delta-9-Tetrahydrocannabinol and Cannabidiol: an fMRI Study. Neuropsychopharmacology, 2011, 36, 1340-1348.	2.8	126
22	Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neuroscience and Biobehavioral Reviews, 2012, 36, 2165-2177.	2.9	125
23	Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects. Journal of Neuroscience, 2019, 39, 8250-8258.	1.7	124
24	Effects of continuation, frequency, and type of cannabis use on relapse in the first 2 years after onset of psychosis: an observational study. Lancet Psychiatry,the, 2016, 3, 947-953.	3.7	120
25	Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neuroscience and Biobehavioral Reviews, 2016, 64, 359-381.	2.9	117
26	Does Cannabis Composition Matter? Differential Effects of Delta-9-tetrahydrocannabinol and Cannabidiol on Human Cognition. Current Addiction Reports, 2017, 4, 62-74.	1.6	115
27	Effect of Cannabidiol on Medial Temporal, Midbrain, and Striatal Dysfunction in People at Clinical High Risk of Psychosis. JAMA Psychiatry, 2018, 75, 1107.	6.0	113
28	Association of cannabis use with hospital admission and antipsychotic treatment failure in first episode psychosis: an observational study. BMJ Open, 2016, 6, e009888.	0.8	109
29	Preliminary report of biological basis of sensitivity to the effects of cannabis on psychosis: AKT1 and DAT1 genotype modulates the effects of δ-9-tetrahydrocannabinol on midbrain and striatal function. Molecular Psychiatry, 2012, 17, 1152-1155.	4.1	108
30	Resting Hyperperfusion of the Hippocampus, Midbrain, and Basal Ganglia in People at High Risk for Psychosis. American Journal of Psychiatry, 2016, 173, 392-399.	4.0	104
31	Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience. Neuropsychopharmacology, 2015, 40, 1343-1352.	2.8	101
32	Cannabis use and the development of tolerance: a systematic review of human evidence. Neuroscience and Biobehavioral Reviews, 2018, 93, 1-25.	2.9	101
33	Poor medication adherence and risk of relapse associated with continued cannabis use in patients with first-episode psychosis: a prospective analysis. Lancet Psychiatry,the, 2017, 4, 627-633.	3.7	93
34	Cannabis use and transition to psychosis in people at ultra-high risk. Psychological Medicine, 2014, 44, 2503-2512.	2.7	83
35	Adversity in childhood linked to elevated striatal dopamine function in adulthood. Schizophrenia Research, 2016, 176, 171-176.	1.1	77
36	Disruption of Frontal Theta Coherence by Δ9-Tetrahydrocannabinol is Associated with Positive Psychotic Symptoms. Neuropsychopharmacology, 2011, 36, 827-836.	2.8	74

#	Article	IF	CITATIONS
37	Cannabidiol as a potential treatment for psychosis. Therapeutic Advances in Psychopharmacology, 2019, 9, 204512531988191.	1.2	74
38	Dysconnectivity of Large-Scale Functional Networks in Early Psychosis: A Meta-analysis. Schizophrenia Bulletin, 2019, 45, 579-590.	2.3	73
39	The effects of cannabis on memory function in users with and without a psychotic disorder: findings from a combined meta-analysis. Psychological Medicine, 2016, 46, 177-188.	2.7	72
40	Association Between Continued Cannabis Use and Risk of Relapse in First-Episode Psychosis. JAMA Psychiatry, 2016, 73, 1173.	6.0	71
41	Increased Resting Hippocampal and Basal Ganglia Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort. Schizophrenia Bulletin, 2018, 44, 1323-1331.	2.3	70
42	Residual effects of cannabis use in adolescent and adult brains — A meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 2018, 88, 26-41.	2.9	69
43	Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. European Neuropsychopharmacology, 2015, 25, 26-37.	0.3	68
44	Acute and Non-acute Effects of Cannabis on Human Memory Function: A Critical Review of Neuroimaging Studies. Current Pharmaceutical Design, 2014, 20, 2114-2125.	0.9	68
45	Interpersonal sensitivity in the at-risk mental state for psychosis. Psychological Medicine, 2012, 42, 1835-1845.	2.7	63
46	Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Molecular Psychiatry, 2020, 25, 3231-3240.	4.1	62
47	Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology, 2020, 237, 1121-1130.	1.5	60
48	Altered Medial Temporal Activation Related to Local Glutamate Levels in Subjects with Prodromal Signs of Psychosis. Biological Psychiatry, 2011, 69, 97-99.	0.7	59
49	Neural Mechanisms for the Cannabinoid Modulation of Cognition and Affect in Man: A Critical Review of Neuroimaging Studies. Current Pharmaceutical Design, 2012, 18, 5045-5054.	0.9	58
50	Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Scientific Reports, 2017, 7, 15025.	1.6	57
51	The effect of cannabis use on memory function: an update. Substance Abuse and Rehabilitation, 2013, 4, 11.	1.6	56
52	Role of the endocannabinoid system in brain functions relevant for schizophrenia: An overview of human challenge studies with cannabis or â^†9-tetrahydrocannabinol (THC). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 52, 53-69.	2.5	56
53	Neuroimaging Studies of Acute Effects of THC and CBD in Humans and Animals: a Systematic Review. Current Pharmaceutical Design, 2014, 20, 2168-2185.	0.9	56
54	Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. European Neuropsychopharmacology, 2015, 25, 1201-1224.	0.3	53

#	Article	IF	CITATIONS
55	Do cognitive schema mediate the association between childhood trauma and being at ultra-high risk for psychosis?. Journal of Psychiatric Research, 2017, 88, 89-96.	1.5	53
56	Cannabis use and adherence to antipsychotic medication: a systematic review and meta-analysis. Psychological Medicine, 2017, 47, 1691-1705.	2.7	53
57	Cannabis affects people differently: inter-subject variation in the psychotogenic effects of Δ ⁹ -tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers. Psychological Medicine, 2013, 43, 1255-1267.	2.7	51
58	Imaging the Neural Effects of Cannabinoids: Current Status and Future Opportunities for Psychopharmacology. Current Pharmaceutical Design, 2009, 15, 2603-2614.	0.9	50
59	Continuity of cannabis use and violent offending over the life course. Psychological Medicine, 2016, 46, 1663-1677.	2.7	48
60	Developmental sensitivity to cannabis use patterns and risk for major depressive disorder in mid-life: findings from 40 years of follow-up. Psychological Medicine, 2018, 48, 2169-2176.	2.7	47
61	Cannabidiol attenuates insular dysfunction during motivational salience processing in subjects at clinical high risk for psychosis. Translational Psychiatry, 2019, 9, 203.	2.4	47
62	Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Frontiers in Psychiatry, 2020, 11, 859.	1.3	47
63	Mapping social reward and punishment processing in the human brain: A voxel-based meta-analysis of neuroimaging findings using the social incentive delay task. Neuroscience and Biobehavioral Reviews, 2021, 122, 1-17.	2.9	46
64	Normalization of mediotemporal and prefrontal activity, and mediotemporal-striatal connectivity, may underlie antipsychotic effects of cannabidiol in psychosis. Psychological Medicine, 2021, 51, 596-606.	2.7	45
65	Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis. Schizophrenia Bulletin, 2017, 43, sbw181.	2.3	44
66	Regular cannabis use is associated with altered activation of central executive and default mode networks even after prolonged abstinence in adolescent users: Results from a complementary meta-analysis. Neuroscience and Biobehavioral Reviews, 2019, 96, 45-55.	2.9	40
67	Road work on memory lane—Functional and structural alterations to the learning and memory circuit in adults born very preterm. NeuroImage, 2014, 102, 152-161.	2.1	38
68	Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. Journal of Psychopharmacology, 2018, 32, 825-849.	2.0	37
69	Protein kinase B (<i>AKT1</i>) genotype mediates sensitivity to cannabis-induced impairments in psychomotor control. Psychological Medicine, 2014, 44, 3315-3328.	2.7	36
70	Anti-depressive Therapies After Heart Transplantation. Journal of Heart and Lung Transplantation, 2006, 25, 785-793.	0.3	35
71	Glutamatergic Dysfunction-Newer Targets for Anti-Obsessional Drugs. Recent Patents on CNS Drug Discovery, 2007, 2, 47-55.	0.9	35
72	Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Frontiers in Psychology, 2020, 11, 833.	1.1	35

#	Article	IF	CITATIONS
73	Dhat Syndrome: A Systematic Review. Psychosomatics, 2013, 54, 212-218.	2.5	34
74	Modulation of brain structure by catecholâ€ <scp>O</scp> â€methyltransferase <scp><i>Val¹⁵⁸Met</i></scp> polymorphism in chronic cannabis users. Addiction Biology, 2014, 19, 722-732.	1.4	34
75	Are adult stressful life events associated with psychotic relapse? A systematic review of 23 studies. Psychological Medicine, 2020, 50, 2302-2316.	2.7	34
76	Therapeutic Potential of Cannabinoids in Neurodegenerative Disorders: A Selective Review. Current Pharmaceutical Design, 2014, 20, 2218-2230.	0.9	33
77	Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids. Psychological Medicine, 2016, 46, 27-45.	2.7	32
78	Safety and tolerability of natural and synthetic cannabinoids in adults aged over 50 years: A systematic review and meta-analysis. PLoS Medicine, 2021, 18, e1003524.	3.9	31
79	Can cognitive insight predict symptom remission in a first episode psychosis cohort?. BMC Psychiatry, 2017, 17, 54.	1.1	29
80	Longitudinal assessment of the effect of cannabis use on hospital readmission rates in early psychosis: A 6-year follow-up in an inpatient cohort. Psychiatry Research, 2018, 268, 381-387.	1.7	28
81	Previous cannabis exposure modulates the acute effects of delta-9-tetrahydrocannabinol on attentional salience and fear processing Experimental and Clinical Psychopharmacology, 2018, 26, 582-598.	1.3	25
82	The influence of risk factors on the onset and outcome of psychosis: What we learned from the GAP study. Schizophrenia Research, 2020, 225, 63-68.	1.1	24
83	Δ9-tetrahydrocannabinol and 2-AG decreases neurite outgrowth and differentially affects ERK1/2 and Akt signaling in hiPSC-derived cortical neurons. Molecular and Cellular Neurosciences, 2020, 103, 103463.	1.0	24
84	Effect of image analysis software on neurofunctional activation during processing of emotional human faces. Journal of Clinical Neuroscience, 2010, 17, 311-314.	0.8	23
85	Cannabis use and treatment resistance in first episode psychosis: a natural language processing study. Lancet, The, 2015, 385, S79.	6.3	23
86	The effects of cannabis use on salience attribution: a systematic review. Acta Neuropsychiatrica, 2018, 30, 43-57.	1.0	23
87	A single dose of cannabidiol modulates medial temporal and striatal function during fear processing in people at clinical high risk for psychosis. Translational Psychiatry, 2020, 10, 311.	2.4	23
88	Modulation of acute effects of delta-9-tetrahydrocannabinol on psychotomimetic effects, cognition and brain function by previous cannabis exposure. European Neuropsychopharmacology, 2018, 28, 850-862.	0.3	22
89	Substance use and regional gray matter volume in individuals at high risk of psychosis. European Neuropsychopharmacology, 2012, 22, 114-122.	0.3	21
90	Antipsychotic efficacy in psychosis with co-morbid cannabis misuse: A systematic review. Journal of Psychopharmacology, 2016, 30, 99-111.	2.0	21

#	Article	IF	CITATIONS
91	A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sciences, 2020, 10, 102.	1.1	21
92	Cannabidiol modulation of hippocampal glutamate in early psychosis. Journal of Psychopharmacology, 2021, 35, 814-822.	2.0	20
93	Effect of continued cannabis use on medication adherence in the first two years following onset of psychosis. Psychiatry Research, 2017, 255, 36-41.	1.7	19
94	Evaluation of THC-Related Neuropsychiatric Symptoms Among Adults Aged 50 Years and Older. JAMA Network Open, 2021, 4, e2035913.	2.8	19
95	Communication breakdown: delta-9 tetrahydrocannabinol effects on pre-speech neural coherence. Molecular Psychiatry, 2012, 17, 568-569.	4.1	18
96	The Yin and Yang of Cannabis: A Systematic Review of Human Neuroimaging Evidence of the Differential Effects of Δ9-Tetrahydrocannabinol and Cannabidiol. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 636-645.	1.1	18
97	The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis and Cannabinoid Research, 2018, 3, 1-10.	1.5	17
98	Descriptive Psychopathology of the Acute Effects of Intravenous Delta-9-Tetrahydrocannabinol Administration in Humans. Brain Sciences, 2019, 9, 93.	1.1	17
99	Psychotic-like experiences with cannabis use predict cannabis cessation and desire to quit: a cannabis discontinuation hypothesis. Psychological Medicine, 2019, 49, 103-112.	2.7	17
100	Neurocognitive effects of cannabis: Lessons learned from human experimental studies. Progress in Brain Research, 2018, 242, 179-216.	0.9	16
101	Disrupted parahippocampal and midbrain function underlie slower verbal learning in adolescent-onset regular cannabis use. Psychopharmacology, 2021, 238, 1315-1331.	1.5	16
102	Depressive and Anxiety Disorder Comorbidity in Obsessive Compulsive Disorder. Psychopathology, 2005, 38, 315-319.	1.1	15
103	Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task. Neurolmage: Clinical, 2014, 6, 54-63.	1.4	15
104	Attentional bias towards cannabis cues in cannabis users: A systematic review and meta-analysis. Drug and Alcohol Dependence, 2020, 206, 107719.	1.6	14
105	Human Striatal Response to Reward Anticipation Linked to Hippocampal Glutamate Levels. International Journal of Neuropsychopharmacology, 2018, 21, 623-630.	1.0	13
106	Antipsychotic treatment failure in patients with psychosis and co-morbid cannabis use: A systematic review. Psychiatry Research, 2019, 280, 112523.	1.7	13
107	Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids. Psychological Medicine, 2020, 50, 1862-1871.	2.7	13
108	Metamorphosis of Delusion of Pregnancy. Canadian Journal of Psychiatry, 2001, 46, 561-562.	0.9	12

#	Article	IF	CITATIONS
109	Cannabinoids, reward processing, and psychosis. Psychopharmacology, 2022, 239, 1157-1177.	1.5	12
110	Late onset OCD. Australian and New Zealand Journal of Psychiatry, 2004, 38, 477-478.	1.3	11
111	Delta-9-Tetrahydrocannabinol Disruption of Time Perception and of Self-Timed Actions. Pharmacopsychiatry, 2010, 43, 236-237.	1.7	11
112	Impact of childhood trauma on risk of relapse requiring psychiatric hospital admission for psychosis. British Journal of Psychiatry, 2016, 209, 169-170.	1.7	11
113	Increased hippocampal engagement during learning as a marker of sensitivity to psychotomimetic effects of <i>I´</i> -9-THC. Psychological Medicine, 2018, 48, 2748-2756.	2.7	11
114	Does thinner right entorhinal cortex underlie genetic liability to cannabis use?. Psychological Medicine, 2018, 48, 2766-2775.	2.7	11
115	Adolescentâ€onset heavy cannabis use associated with significantly reduced glial but not neuronal markers and glutamate levels in the hippocampus. Addiction Biology, 2020, 25, e12827.	1.4	11
116	Individualized prediction of 2-year risk of relapse as indexed by psychiatric hospitalization following psychosis onset: Model development in two first episode samples. Schizophrenia Research, 2021, 228, 483-492.	1.1	11
117	Altered relationship between cortisol response to social stress and mediotemporal function during fear processing in people at clinical high risk for psychosis: a preliminary report. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 461-475.	1.8	11
118	A family genetic study of clinical subtypes of obsessive-compulsive disorder. Psychiatric Genetics, 2005, 15, 175-180.	0.6	10
119	Early psychosis for the non-specialist doctor. BMJ: British Medical Journal, 2017, 357, j4578.	2.4	9
120	Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape. Human Brain Mapping, 2020, 41, 4386-4396.	1.9	9
121	Is there sufficient evidence that cannabis use is a risk factor for psychosis?. , 2020, , 305-331.		8
122	Safety and Tolerability of Natural and Synthetic Cannabinoids in Older Adults: A Systematic Review and Meta-Analysis of Open-Label Trials and Observational Studies. Drugs and Aging, 2021, 38, 887-910.	1.3	8
123	Cannabis Use Linked to Altered Functional Connectivity of the Visual Attentional Connectivity in Patients With Psychosis and Controls. Schizophrenia Bulletin Open, 2020, 1, .	0.9	7
124	Association of extent of cannabis use and psychotic like intoxication experiences in a multi-national sample of first episode psychosis patients and controls. Psychological Medicine, 2021, 51, 2074-2082.	2.7	7
125	The Autism–Psychosis Continuum Conundrum: Exploring the Role of the Endocannabinoid System. International Journal of Environmental Research and Public Health, 2022, 19, 5616.	1.2	7
126	Attenuated transcriptional response to pro-inflammatory cytokines in schizophrenia hiPSC-derived neural progenitor cells. Brain, Behavior, and Immunity, 2022, 105, 82-97.	2.0	7

8

#	Article	IF	CITATIONS
127	Neuroimaging Evidence for Cannabinoid Modulation of Cognition and Affect in Man. Frontiers in Behavioral Neuroscience, 2012, 6, 22.	1.0	6
128	Do fewer males present to clinical highâ€risk services for psychosis relative to firstâ€episode services?. Microbial Biotechnology, 2017, 11, 429-435.	0.9	6
129	17.3 EFFECT OF CANNABIDIOL ON SYMPTOMS, DISTRESS AND NEUROPHYSIOLOGICAL ABNORMALITIES IN CLINICAL HIGH-RISK FOR PSYCHOSIS PATIENTS: A PLACEBO-CONTROLLED STUDY. Schizophrenia Bulletin, 2018, 44, S28-S28.	2.3	6
130	Driving Cessation in Patients Attending a Young-Onset Dementia Clinic: A Retrospective Cohort Study. Dementia and Geriatric Cognitive Disorders Extra, 2018, 8, 190-198.	0.6	6
131	Differential sensitivity to the acute psychotomimetic effects of delta-9-tetrahydrocannabinol associated with its differential acute effects on glial function and cortisol. Psychological Medicine, 2022, 52, 2024-2031.	2.7	6
132	Epigenetic Mediation of AKT1 rs1130233's Effect on Delta-9-Tetrahydrocannabinol-Induced Medial Temporal Function during Fear Processing. Brain Sciences, 2021, 11, 1240.	1.1	6
133	Is It Time to Test the Antiseizure Potential of Palmitoylethanolamide in Human Studies? A Systematic Review of Preclinical Evidence. Brain Sciences, 2022, 12, 101.	1.1	6
134	Correlation still does not imply causation – Authors' reply. Lancet Psychiatry,the, 2016, 3, 401-402.	3.7	5
135	Cannabis: Neuropsychiatry and Its Effects on Brain and Behavior. Brain Sciences, 2020, 10, 834.	1.1	5
136	Cannabis useâ€related working memory deficit mediated by lower left hippocampal volume. Addiction Biology, 2021, 26, e12984.	1.4	5
137	Hippocampal functional connectivity in Alzheimer's disease: a resting state 7T fMRI study. International Psychogeriatrics, 2021, 33, 95-96.	0.6	4
138	Commentary on "The Potential of Cannabidiol Treatment for Cannabis Users With Recent-Onset Psychosis― Schizophrenia Bulletin, 2018, 44, 18-19.	2.3	3
139	S152. CANNABIDIOL INDUCED MODULATION OF MEDIOTEMPORAL ACTIVITY DURING A VERBAL MEMORY TASK IN FIRST-EPISODE PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S384-S384.	2.3	3
140	Association of cannabis with glutamatergic levels in patients with early psychosis: Evidence for altered volume striatal glutamate relationships in patients with a history of cannabis use in early psychosis. Translational Psychiatry, 2020, 10, 111.	2.4	3
141	Editorial (Thematic Issue: Neurobiological and Neurocognitive Basis of the Effects of Cannabinoids in) Tj ETQq1 1 Design, 2014, 20, 2069-2071.	0.784314 0.9	FrgBT /Over 2
142	How to approach psychotic symptoms in a non-specialist setting. BMJ: British Medical Journal, 2017, 359, j4752.	2.4	2
143	SU71. Effects of Cannabidiol on Mediotemporal and Dorsostriatal Activity During Encoding and Recall, in the At-Risk Mental State for Psychosis. Schizophrenia Bulletin, 2017, 43, S187-S187.	2.3	2
144	Cannabidiol attenuates insular activity during motivational salience processing in patients with early psychosis. Psychological Medicine, 0, , 1-10.	2.7	2

#	Article	IF	CITATIONS
145	P.3.02 Opposite neural effects of the main psychoactive ingredients of cannabis —implications for therapeutics. European Neuropsychopharmacology, 2009, 19, S63-S64.	0.3	1
146	ALTERED MEDIAL TEMPORAL ACTIVATION RELATED TO LOCAL GLUTAMATE IN SUBJECTS WITH PRODROMAL SIGNS OF PSYCHOSIS. Schizophrenia Research, 2010, 117, 533.	1.1	1
147	The neural basis for the acute effects of cannabis on learning and psychosis. , 0, , 160-168.		1
148	Neuroimaging and Genetics of the Acute and Chronic Effects of Cannabis. , 2017, , e42-e52.		1
149	O10.7. INVESTIGATING THE MECHANISMS UNDERLYING THE BENEFICIAL EFFECTS OF ESTROGENS IN SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S105-S105.	2.3	1
150	T99. LONG-TERM CANNABIS USE ASSOCIATED WITH ALTERED FUNCTIONING DURING VERBAL LEARNING. Schizophrenia Bulletin, 2018, 44, S154-S154.	2.3	1
151	O3.7. SMOOTH PURSUIT EYE MOVEMENTS INDICATE BIOLOGICAL DISTINCTION BETWEEN CANNABIS-USING AND NON-USING PATIENTS IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2019, 45, S167-S168.	2.3	1
152	012.7. TREATMENT WITH CANNABIDIOL REDUCES RESTING STATE PERFUSION IN INDIVIDUALS AT CLINICAL HIGH RISK FOR PSYCHOSIS. Schizophrenia Bulletin, 2019, 45, S200-S200.	2.3	1
153	Network organization of co-opetitive genetic influences on morphologies of the human cerebral cortex. Journal of Neural Engineering, 2019, 16, 026028.	1.8	1
154	A Preliminary Investigation of the Views of People With Parkinson's (With and Without Psychosis) and Caregivers on Participating in Clinical Trials During the Covid-19 Pandemic: An Online Survey. Frontiers in Psychiatry, 2020, 11, 602480.	1.3	1
155	Are researchers getting the terms used to denote different types of recreational cannabis right?—a user perspective. Journal of Cannabis Research, 2021, 3, 12.	1.5	1
156	Eye movements in patients in early psychosis with and without a history of cannabis use. NPJ Schizophrenia, 2021, 7, 24.	2.0	1
157	Investigating the Role of the Endocannabinoid System in Early Psychosis. Journal of Exploratory Research in Pharmacology, 2017, 2, 85-92.	0.2	1
158	A Review of Functional Neuroimaging in People with Down Syndrome with and without Dementia. Dementia and Geriatric Cognitive Disorders Extra, 2022, 11, 324-332.	0.6	1
159	Early-Onset Obsessive—Compulsive Disorder. Canadian Journal of Psychiatry, 2003, 48, 352-353.	0.9	Ο
160	P.2.05 Acute cannabinoid effects on brain activation during response inhibition. European Neuropsychopharmacology, 2007, 17, S43-S44.	0.3	0
161	P.3.21 Delta-9-tetrahydrocannabinol modulates activity in parahippocampal cortex and ventral striatum during memory processing. European Neuropsychopharmacology, 2008, 18, s80.	0.3	0
162	P.1.e.020 Effects of cannabis ingredients in the temporal cortex – neural basis for potential antipsychotic effect of cannabidiol. European Neuropsychopharmacology, 2008, 18, S270-S271.	0.3	0

#	Article	IF	CITATIONS
163	Opposite Neural Effects of the Main Psychoactive Ingredients of Cannabis- Neural Basis for Potential Therapeutic Effects of Cannabidiol. European Psychiatry, 2009, 24, .	0.1	0
164	CANNABIS, CNS RHYTHMS & POSITIVE PSYCHOTIC SYMPTOMS. Schizophrenia Research, 2012, 136, S25-S26.	1.1	0
165	P.3.b.024 Effect of childhood adversity on brain dopamine function in adulthood. European Neuropsychopharmacology, 2014, 24, S505.	0.3	0
166	288. Δ-9-THC Modulates Fear Processing and Functional Connectivity in an Emotional Salience Task. Biological Psychiatry, 2017, 81, S118-S119.	0.7	0
167	Is there a "critical age―for first use of marijuana? Analysis of cannabis induced experiences by age at first use in a large internet-based sample. European Psychiatry, 2017, 41, s835-s836.	0.1	0
168	17. CANNABIDIOL AS A TREATMENT IN DIFFERENT STAGES OF PSYCHOSIS- EFFICACY AND MECHANISMS. Schizophrenia Bulletin, 2018, 44, S27-S27.	2.3	0
169	S224. DELTA-9-TETRAHYDROCANNABINOL CHALLENGE IN CANNABIS USERS AND NON-USERS DIFFERENTIALLY AFFECTS BRAIN FUNCTION AND BEHAVIOR: AN FMRI STUDY OF DEVELOPMENT OF TOLERANCE. Schizophrenia Bulletin, 2018, 44, S413-S413.	2.3	0
170	O3.4. DOES CANNABIS INDUCE PSYCHOSIS BY ALTERING GLUTAMATE SIGNALING IN THE STRIATUM?. Schizophrenia Bulletin, 2019, 45, S166-S167.	2.3	0
171	O3.1. ASSOCIATION OF EXTENT OF CANNABIS USE AND ACUTE INTOXICATION EXPERIENCES IN A MULTI-NATIONAL SAMPLE OF FIRST EPISODE PSYCHOSIS PATIENTS AND CONTROLS. Schizophrenia Bulletin, 2019, 45, S165-S166.	2.3	0
172	S170. Are Cannabis-Using and Non-Using Patients Different Groups? Evidence for Altered Volume Striatal Glutamate Relationships in Cannabis-Using Patients in Early Psychosis. Biological Psychiatry, 2019, 85, S363.	0.7	0
173	T145. EFFECTS OF CANNABIDIOL ON EMOTION PROCESSING IN PSYCHOSIS RISK: AN FMRI INVESTIGATION. Schizophrenia Bulletin, 2020, 46, S286-S286.	2.3	0
174	Editorial: The Endocannabinoid System: Filling the Translational Gap Between Neuroscience and Psychiatry. Frontiers in Psychiatry, 2021, 12, 771442.	1.3	0
175	Cannabinoids in psychiatry: they are here to stay. British Journal of Psychiatry, 2022, , 1-3.	1.7	0