Gines Maria Salido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6552658/publications.pdf

Version: 2024-02-01

66234 118652 5,971 197 42 62 citations h-index g-index papers 198 198 198 5118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oraill±, but not Oraill², co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells. Cellular and Molecular Life Sciences, 2022, 79, 33.	2.4	9
2	Orai2 Modulates Store-Operated Ca2+ Entry and Cell Cycle Progression in Breast Cancer Cells. Cancers, 2022, 14, 114.	1.7	17
3	Store-Operated Calcium Entry and Its Implications in Cancer Stem Cells. Cells, 2022, 11, 1332.	1.8	8
4	Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells. Journal of Biological Chemistry, 2021, 296, 100254.	1.6	16
5	Melatonin Modulates the Antioxidant Defenses and the Expression of Proinflammatory Mediators in Pancreatic Stellate Cells Subjected to Hypoxia. Antioxidants, 2021, 10, 577.	2.2	5
6	Melatonin Induces Apoptosis and Modulates Cyclin Expression and MAPK Phosphorylation in Pancreatic Stellate Cells Subjected to Hypoxia. International Journal of Molecular Sciences, 2021, 22, 5555.	1.8	8
7	SARAF and EFHB Modulate Store-Operated Ca2+ Entry and Are Required for Cell Proliferation, Migration and Viability in Breast Cancer Cells. Cancers, 2021, 13, 4160.	1.7	9
8	Role of Orai3 in the Pathophysiology of Cancer. International Journal of Molecular Sciences, 2021, 22, 11426.	1.8	9
9	PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca2+ Entry Via STIM2 in MDA-MB-231 Cells. International Journal of Molecular Sciences, 2020, 21, 7641.	1.8	14
10	TRPC6 channel and its implications in breast cancer: an overview. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118828.	1.9	15
11	Melatonin modulates proliferation of pancreatic stellate cells through caspase-3 activation and changes in cyclin A and D expression. Journal of Physiology and Biochemistry, 2020, 76, 345-355.	1.3	7
12	Arachidonic Acid Attenuates Cell Proliferation, Migration and Viability by a Mechanism Independent on Calcium Entry. International Journal of Molecular Sciences, 2020, 21, 3315.	1.8	14
13	Pancreatic stellate cells exhibit adaptation to oxidative stress evoked by hypoxia. Biology of the Cell, 2020, 112, 280-299.	0.7	14
14	The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. Journal of Applied Toxicology, 2020, 40, 1554-1565.	1.4	4
15	NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines. Cancers, 2020, 12, 257.	1.7	25
16	TRPC Channels in the SOCE Scenario. Cells, 2020, 9, 126.	1.8	61
17	Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Scientific Reports, 2020, 10, 6352.	1.6	16
18	Molecular Basis and Regulation of Store-Operated Calcium Entry. Advances in Experimental Medicine and Biology, 2020, 1131, 445-469.	0.8	27

#	Article	IF	Citations
19	Functional role of TRPC6 and STIM2 in cytosolic and endoplasmic reticulum Ca2+ content in resting estrogen receptor-positive breast cancer cells. Biochemical Journal, 2020, 477, 3183-3197.	1.7	12
20	Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 179, 73-116.	0.9	11
21	The melatonin receptor antagonist luzindole induces Ca2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129407.	1.1	8
22	Adenylyl Cyclase Type 8 Overexpression Impairs Phosphorylation-Dependent Orai1 Inactivation and Promotes Migration in MDA-MB-231 Breast Cancer Cells. Cancers, 2019, 11, 1624.	1.7	36
23	Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells. Journal of Physiology and Biochemistry, 2019, 75, 185-197.	1.3	18
24	STIM1 phosphorylation at Y316 modulates its interaction with SARAF and the activation of SOCE and $\langle i \rangle I \langle j \rangle CRAC$. Journal of Cell Science, 2019, 132, .	1.2	25
25	Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Current Medicinal Chemistry, 2019, 26, 4102-4118.	1.2	10
26	Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogenâ€activated protein kinases in pancreatic tumour AR42J cells. Journal of Cellular Biochemistry, 2018, 119, 1122-1133.	1.2	14
27	Fine-tuning of store-operated calcium entry by fast and slow Ca2+-dependent inactivation: Involvement of SARAF. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 463-469.	1.9	26
28	EFHB is a Novel Cytosolic Ca2+ Sensor That Modulates STIM1-SARAF Interaction. Cellular Physiology and Biochemistry, 2018, 51, 1164-1178.	1.1	25
29	Store-Operated Ca2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. International Journal of Molecular Sciences, 2018, 19, 4053.	1.8	35
30	TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure. Cancers, 2018, 10, 331.	1.7	67
31	Stanniocalcin 2 Regulates Non-capacitative Ca2+ Entry and Aggregation in Mouse Platelets. Frontiers in Physiology, 2018, 9, 266.	1.3	10
32	Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food and Chemical Toxicology, 2018, 120, 71-80.	1.8	9
33	Role of STIM2 in cell function and physiopathology. Journal of Physiology, 2017, 595, 3111-3128.	1.3	59
34	Role of STIM1 in the surface expression of SARAF. Channels, 2017, 11, 84-88.	1.5	19
35	TRPs in Pain Sensation. Frontiers in Physiology, 2017, 8, 392.	1.3	104
36	Cardiovascular and Hemostatic Disorders: SOCE and Ca2+ Handling in Platelet Dysfunction. Advances in Experimental Medicine and Biology, 2017, 993, 453-472.	0.8	8

#	Article	IF	CITATIONS
37	Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Scientific Reports, 2016, 6, 24452.	1.6	56
38	Store-operated Ca2+ Entry-associated Regulatory factor (SARAF) Plays an Important Role in the Regulation of Arachidonate-regulated Ca2+ (ARC) Channels. Journal of Biological Chemistry, 2016, 291, 6982-6988.	1.6	30
39	Molecular modulators of store-operated calcium entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2037-2043.	1.9	53
40	Historical Overview of Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2016, 898, 3-24.	0.8	10
41	SARAF modulates TRPC1, but not TRPC6, channel function in a STIM1-independent manner. Biochemical Journal, 2016, 473, 3581-3595.	1.7	24
42	Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology, 2016, 357-358, 74-84.	2.0	14
43	Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca2+concentration determinations. Cytotechnology, 2016, 68, 1369-1380.	0.7	9
44	Role of mTOR1 and mTOR2 complexes in MEG-01 cell physiology. Thrombosis and Haemostasis, 2015, 114, 969-981.	1.8	7
45	Regulators of G-Protein-Signaling Proteins: Negative Modulators of G-Protein-Coupled Receptor Signaling. International Review of Cell and Molecular Biology, 2015, 317, 97-183.	1.6	25
46	Evaluation of the antiaggregant activity of ascorbyl phenolic esters with antioxidant properties. Journal of Physiology and Biochemistry, 2015, 71, 415-434.	1.3	4
47	Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radical Biology and Medicine, 2015, 87, 226-236.	1.3	56
48	Melatonin, mitochondria, and Ca2+ homeostasis in the exocrine pancreas: an overview. Turkish Journal of Biology, 2015, 39, 801-812.	2.1	0
49	Homer proteins mediate the interaction between STIM1 and Cav1.2 channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1145-1153.	1.9	31
50	Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biology and Toxicology, 2015, 31, 95-110.	2.4	22
51	FKBP25 and FKBP38 regulate non-capacitative calcium entry through TRPC6. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2684-2696.	1.9	10
52	STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochemical Journal, 2014, 463, 373-381.	1.7	16
53	The canonical transient receptor potential 6 (TRPC6) channel is sensitive to extracellular pH in mouse platelets. Blood Cells, Molecules, and Diseases, 2014, 52, 108-115.	0.6	11
54	Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Molecular and Cellular Biochemistry, 2014, 397, 75-86.	1.4	15

#	Article	IF	Citations
55	The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells. Toxicology Letters, 2014, 229, 465-473.	0.4	11
56	TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 789-796.	1.9	23
57	Change in the Characteristics of Ca2+ Signaling in Pancreatic Acinar Cells in Culture. Open Access Journal of Science and Technology, 2014, 2, .	0.2	2
58	Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. Journal of Physiology and Biochemistry, 2013, 69, 897-908.	1.3	13
59	FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 652-662.	1.9	25
60	The membrane potential modulates thrombin-stimulated Ca2+ mobilization and platelet aggregation. Archives of Biochemistry and Biophysics, 2013, 538, 130-137.	1.4	1
61	Homer Proteins in Ca ²⁺ Entry. IUBMB Life, 2013, 65, 497-504.	1.5	30
62	Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca 2+ entry by regulation of STIM1-Orai1 association. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3025-3034.	1.9	30
63	Ebselen Alters Mitochondrial Physiology and Reduces Viability of Rat Hippocampal Astrocytes. DNA and Cell Biology, 2013, 32, 147-155.	0.9	14
64	The polybasic lysine-rich domain of plasma membrane-resident STIM1 is essential for the modulation of store-operated divalent cation entry by extracellular calcium. Cellular Signalling, 2013, 25, 1328-1337.	1.7	18
65	Longâ€ŧerm <scp>mTOR</scp> inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients. Journal of Cellular and Molecular Medicine, 2013, 17, 636-647.	1.6	17
66	Pharmacology of TRP Channels in the Vasculature. Current Vascular Pharmacology, 2013, 11, 480-489.	0.8	6
67	Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochemical Journal, 2012, 445, 29-38.	1.7	35
68	Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1976-1983.	1.9	15
69	Unraveling STIM2 function. Journal of Physiology and Biochemistry, 2012, 68, 619-633.	1.3	27
70	Cinnamtannin B-1, a natural antioxidant that reduces the effects of H2O2 on CCK-8-evoked responses in mouse pancreatic acinar cells. Journal of Physiology and Biochemistry, 2012, 68, 181-191.	1.3	17
71	STIM1 tyrosine-phosphorylation is required for STIM1-Orai1 association in human platelets. Cellular Signalling, 2012, 24, 1315-1322.	1.7	32
72	Capacitative and non-capacitative signaling complexes in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1242-1251.	1.9	41

#	Article	IF	Citations
73	Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells. Molecular and Cellular Biochemistry, 2012, 362, 15-23.	1.4	14
74	Identification and Function of Exchange Proteins Activated Directly by Cyclic AMP (Epac) in Mammalian Spermatozoa. PLoS ONE, 2012, 7, e37713.	1.1	17
75	Ca2+leakage rate from agonist-sensitive intracellular pools is altered in platelets from patients with type 2 diabetes. Platelets, 2011, 22, 284-293.	1.1	6
76	Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells, Molecules, and Diseases, 2011, 46, 252-260.	0.6	25
77	The TRPC Ion Channels: Association with Orai1 and STIM1 Proteins and Participation in Capacitative and Non-capacitative Calcium Entry. Advances in Experimental Medicine and Biology, 2011, 704, 413-433.	0.8	71
78	Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochemical Journal, 2011, 435, 227-235.	1.7	20
79	Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. Journal of Pineal Research, 2011, 50, 250-260.	3.4	56
80	Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 431-437.	1.9	31
81	Acidic NAADP-releasable Ca2+ compartments in the megakaryoblastic cell line MEG01. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1483-1494.	1.9	30
82	The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochemical Pharmacology, 2011, 82, 400-410.	2.0	51
83	Ethanol reduces kainate-evoked glutamate secretion in rat hippocampal astrocytes. Brain Research, 2011, 1402, 1-8.	1.1	10
84	Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cellular Signalling, 2011, 23, 1850-1856.	1.7	24
85	STIM1 and STIM2 Are Located in the Acidic Ca2+ Stores and Associates with Orai1 upon Depletion of the Acidic Stores in Human Platelets. Journal of Biological Chemistry, 2011, 286, 12257-12270.	1.6	67
86	Homocysteine induces caspase activation by endoplasmic reticulum stress in platelets from type 2 diabetics and healthy donors. Thrombosis and Haemostasis, 2010, 103, 1022-1032.	1.8	22
87	Lipid rafts modulate the activation but not the maintenance of store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1083-1093.	1.9	50
88	Synthesis and evaluation of the platelet antiaggregant properties of phenolic antioxidants structurally related to rosmarinic acid. Bioorganic Chemistry, 2010, 38, 108-114.	2.0	18
89	Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. Journal of Pineal Research, 2010, 49, 256-263.	3.4	24
90	Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. International Journal of Experimental Pathology, 2010, 91, 114-124.	0.6	13

#	Article	IF	Citations
91	Effect of cinnamtannin Bâ€1 on cholecystokininâ€8â€evoked responses in mouse pancreatic acinar cells. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 980-988.	0.9	21
92	Role of Oxidant Scavengers in the Prevention of Ca2+ Homeostasis Disorders. Molecules, 2010, 15, 7167-7187.	1.7	20
93	SERCA2b Activity Is Regulated by Cyclophilins in Human Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 419-425.	1.1	24
94	TRPC3 Regulates Agonist-stimulated Ca2+ Mobilization by Mediating the Interaction between Type I Inositol 1,4,5-Trisphosphate Receptor, RACK1, and Orai1. Journal of Biological Chemistry, 2010, 285, 8045-8053.	1.6	73
95	A Phenylpropanoid, a Slovenolide, Two Sulphur-Containing Germacranes and Ca ²⁺ -ATPase Inhibitors from <i>Thapsia villosa</i> Inhibitors from <i>Thapsia villosa</i> Inhibitors from <i>Thapsia villosa</i> Inhibitors from <i>Inhibitors from<i>Inhibitors from<i from<="" from<i="" i="" inhibitors=""> Inhibitors from</i> Inhibitors from Inhibito	0.7	8
96	Ethanol consumption as inductor of pancreatitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2010, $1, 3$.	0.6	11
97	Agonistâ€induced Ca 2+ mobilization is regulated by a complex involving Orai1, hTRPC3 and the type I inositol 1,4,5â€trisphosphate receptor. FASEB Journal, 2010, 24, 869.2.	0.2	0
98	Lipid rafts determine association of Orai1, STIM1 and the TRPC1 and TRPC6 proteins. FASEB Journal, 2010, 24, 481.2.	0.2	0
99	TRPC channels and store-operated Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 223-230.	1.9	114
100	Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1614-1622.	1.9	31
101	Biochemical and functional properties of the store-operated Ca2+ channels. Cellular Signalling, 2009, 21, 457-461.	1.7	65
102	Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biology, 2009, 10, 77.	3.0	13
103	N,N,Nâ \in 2,Nâ \in 2-tetrakis(2-pyridylmethyl)ethylenediamine induces apoptosis through the activation of caspases-3 and -8 in human platelets. A role for endoplasmic reticulum stress. Journal of Thrombosis and Haemostasis, 2009, 7, 992-999.	1.9	30
104	Ethanol Alters the Physiology of Neuron–Glia Communication. International Review of Neurobiology, 2009, 88, 167-198.	0.9	16
105	Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cells, Molecules, and Diseases, 2009, 42, 279-285.	0.6	54
106	Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells, Molecules, and Diseases, 2009, 43, 211-213.	0.6	45
107	Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. Journal of Hepatology, 2009, 50, 872-882.	1.8	114
108	Acidic-store depletion is required for human platelet aggregation. Blood Coagulation and Fibrinolysis, 2009, 20, 511-516.	0.5	12

#	Article	IF	CITATIONS
109	Dynamic interaction of hTRPC6 with the Orai1–STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochemical Journal, 2009, 420, 267-277.	1.7	85
110	Effect of hydrogen peroxide on secretory response, calcium mobilisation and caspase-3 activity in the isolated rat parotid gland. Molecular and Cellular Biochemistry, 2008, 319, 23-31.	1.4	9
111	Ethanol impairs calcium homeostasis following CCK-8 stimulation in mouse pancreatic acinar cells. Alcohol, 2008, 42, 565-573.	0.8	23
112	Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes. Toxicology, 2008, 244, 280-291.	2.0	21
113	Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. Journal of Thrombosis and Haemostasis, 2008, 6, 1780-1788.	1.9	63
114	Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 84-97.	1.9	71
115	Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1163-1176.	1.9	54
116	STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochemical Pharmacology, 2008, 75, 2157-2164.	2.0	60
117	SERCA2b and 3 play a regulatory role in store-operated calcium entry in human platelets. Cellular Signalling, 2008, 20, 337-346.	1.7	24
118	Functional relevance of the de novo coupling between hTRPC1 and type II IP3 receptor in store-operated Ca2+ entry in human platelets. Cellular Signalling, 2008, 20, 737-747.	1.7	39
119	Effect of homocysteine on calcium mobilization and platelet function in type 2 diabetes mellitus. Journal of Cellular and Molecular Medicine, 2008, 12, 2586-2597.	1.6	9
120	Intracellular Calcium Release from Human Platelets: Different Messengers for Multiple Stores. Trends in Cardiovascular Medicine, 2008, 18, 57-61.	2.3	50
121	Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sciences, 2008, 82, 977-982.	2.0	27
122	Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochemistry International, 2008, 52, 1061-1067.	1.9	35
123	Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels, 2008, 2, 401-403.	1.5	72
124	Enhanced exocytotic-like insertion of Orail into the plasma membrane upon intracellular Ca ²⁺ store depletion. American Journal of Physiology - Cell Physiology, 2008, 294, C1323-C1331.	2.1	32
125	Orail Mediates the Interaction between STIM1 and hTRPC1 and Regulates the Mode of Activation of hTRPC1-forming Ca2+ Channels. Journal of Biological Chemistry, 2008, 283, 25296-25304.	1.6	149
126	Role of intracellular calcium on hydrogen peroxide-induced apoptosis in rat pancreatic acinar AR42J cells. Journal of Applied Biomedicine, 2008, 6, 211-224.	0.6	6

#	Article	IF	CITATIONS
127	Differential involvement of thrombin receptors in Ca2+ release from two different intracellular stores in human platelets. Biochemical Journal, 2007, 401, 167-174.	1.7	41
128	Cinnamtannin B-1 from bay wood reduces abnormal intracellular Ca2+ homeostasis and platelet hyperaggregability in type 2 diabetes mellitus patients. Archives of Biochemistry and Biophysics, 2007, 457, 235-242.	1.4	35
129	Involvement of SNARE proteins in thrombin-induced platelet aggregation: Evidence for the relevance of Ca2+ entry. Archives of Biochemistry and Biophysics, 2007, 465, 16-25.	1.4	22
130	Antiaggregant effects of Arbutus unedo extracts in human platelets. Journal of Ethnopharmacology, 2007, 113, 325-331.	2.0	44
131	Characterization of the Intracellular Mechanisms Involved in the Antiaggregant Properties of Cinnamtannin B-1 from Bay Wood in Human Platelets. Journal of Medicinal Chemistry, 2007, 50, 3937-3944.	2.9	25
132	Tyrosine phosphorylation / dephosphorylation balance is involved in thrombin-evoked microtubular reorganisation in human platelets. Thrombosis and Haemostasis, 2007, 98, 375-384.	1.8	27
133	Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Research, 2007, 1178, 28-37.	1.1	93
134	Magnesium–calcium signalling in rat parotid acinar cells: effects of acetylcholine. Molecular and Cellular Biochemistry, 2007, 307, 193-207.	1.4	2
135	Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 489-498.	2.2	31
136	Urtica dioica extract reduces platelet hyperaggregability in type 2 diabetes mellitus by inhibition of oxidant production, Ca ²⁺ mobilization and protein tyrosine phosphorylation. Journal of Applied Biomedicine, 2007, 5, 105-113.	0.6	10
137	Dose-dependent effect of hydrogen peroxide on calcium mobilization in mouse pancreatic acinar cells. Biochemistry and Cell Biology, 2006, 84, 39-48.	0.9	31
138	Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets, 2006, 17, 283-288.	1.1	41
139	Intracellular Ca2+ homeostasis and aggregation in platelets are impaired by ethanol through the generation of H2O2 and oxidation of sulphydryl groups. Archives of Biochemistry and Biophysics, 2006, 452, 9-16.	1.4	12
140	Alterations in intracellular calcium homeostasis and platelet aggregation induced by ethanol. Biochemical and Biophysical Research Communications, 2006, 341, 917-924.	1.0	10
141	Thrombin-induced caspases 3 and 9 translocation to the cytoskeleton is independent of changes in cytosolic calcium in human platelets. Blood Cells, Molecules, and Diseases, 2006, 36, 392-401.	0.6	17
142	A role for 5,6-epoxyeicosatrienoic acid in calcium entry byde novoconformational coupling in human platelets. Journal of Physiology, 2006, 570, 309-323.	1.3	35
143	Ethanol impairs CCK-8-evoked amylase secretion through Ca2+-mediated ROS generation in mouse pancreatic acinar cells. Alcohol, 2006, 38, 51-57.	0.8	23
144	Effect of Insulin on Acetylcholine-Evoked Amylase Release and Calcium Mobilization in Streptozotocin-Induced Diabetic Rat Pancreatic Acinar Cells. Annals of the New York Academy of Sciences, 2006, 1084, 58-70.	1.8	5

#	Article	IF	CITATIONS
145	Mechanism of Exocrine Pancreatic Insufficiency in Streptozotocin-Induced Type 1 Diabetes Mellitus. Annals of the New York Academy of Sciences, 2006, 1084, 71-88.	1.8	40
146	H2O2 Mobilizes Ca2+ from Agonist- and Thapsigargin-sensitive and Insensitive Intracellular Stores and Stimulates Glutamate Secretion in Rat Hippocampal Astrocytes. Neurochemical Research, 2006, 31, 741-750.	1.6	35
147	Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cellular Signalling, 2006, 18, 373-381.	1.7	91
148	Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerization. Cellular Signalling, 2006, 18, 1252-1261.	1.7	26
149	Early caspase-3 activation independent of apoptosis is required for cellular function. Journal of Cellular Physiology, 2006, 209, 142-152.	2.0	83
150	Calcium Signalling and Reactive Oxygen Species in Non-Excitable Cells. Mini-Reviews in Medicinal Chemistry, 2006, 6, 409-415.	1,1	19
151	Involvement of ryanodine-operated channels in tert-butylhydroperoxide-evoked Ca2+ mobilisation in pancreatic acinar cells. Journal of Experimental Biology, 2006, 209, 2156-2164.	0.8	4
152	Interaction of STIM1 with Endogenously Expressed Human Canonical TRP1 upon Depletion of Intracellular Ca2+ Stores. Journal of Biological Chemistry, 2006, 281, 28254-28264.	1.6	189
153	Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets. Biochemical Journal, 2005, 390, 243-252.	1.7	112
154	Ca2+-independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cellular Signalling, 2005, 17, 1011-1021.	1.7	52
155	Store-operated Ca2+ entry: Vesicle fusion or reversible trafficking and de novo conformational coupling?. Journal of Cellular Physiology, 2005, 205, 262-269.	2.0	55
156	H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Molecular and Cellular Biochemistry, 2005, 269, 165-173.	1.4	30
157	Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+entry in mouse pancreatic acinar cells. American Journal of Physiology - Cell Physiology, 2005, 288, C214-C221.	2.1	21
158	Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochemical and Biophysical Research Communications, 2005, 333, 794-802.	1.0	94
159	Dynamics of calcium fluxes in human platelets assessed in calcium-free medium. Biochemical and Biophysical Research Communications, 2005, 334, 779-786.	1.0	31
160	Effect of H2O2 on CCK-8-evoked changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Biology of the Cell, 2005, 97, 847-856.	0.7	12
161	Two Pathways for Store-mediated Calcium Entry Differentially Dependent on the Actin Cytoskeleton in Human Platelets. Journal of Biological Chemistry, 2004, 279, 29231-29235.	1.6	79
162	Coactivation of capacitative calcium entry and L-type calcium channels in guinea pig gallbladder. American Journal of Physiology - Renal Physiology, 2004, 286, G1090-G1100.	1.6	33

#	Article	IF	CITATIONS
163	A role for SNAP-25 but not VAMPs in store-mediated Ca2+entry in human platelets. Journal of Physiology, 2004, 558, 99-109.	1.3	39
164	Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochemical Pharmacology, 2004, 67, 491-502.	2.0	83
165	Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochemical Pharmacology, 2004, 67, 1065-1076.	2.0	66
166	Hydrogen Peroxide Generation Induces pp60 Activation in Human Platelets. Journal of Biological Chemistry, 2004, 279, 1665-1675.	1.6	119
167	Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion, 2004, 3, 285-296.	1.6	39
168	Store-operated Ca2+ entry and tyrosine kinase pp60src hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Archives of Biochemistry and Biophysics, 2004, 432, 261-268.	1.4	45
169	Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica, 2004, 89, 1142-4.	1.7	44
170	Changes in mitochondrial activity evoked by cholecystokinin in isolated mouse pancreatic acinar cells. Cellular Signalling, 2003, 15, 1039-1048.	1.7	32
171	Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochemical Journal, 2003, 370, 255-263.	1.7	51
172	XOD-catalyzed ROS generation mobilizes calcium from intracellular stores in mouse pancreatic acinar cells. Cellular Signalling, 2002, 14, 153-159.	1.7	31
173	Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cellular Signalling, 2002, 14, 547-556.	1.7	44
174	Effect of sodium nitroprusside and 8-bromo cyclic GMP on nerve-mediated and acetylcholine-evoked secretory responses in the rat pancreas. British Journal of Pharmacology, 2002, 136, 49-56.	2.7	8
175	Participation of mitochondria in calcium signalling in the exocrine pancreas. Journal of Physiology and Biochemistry, 2001, 57, 331-339.	1.3	10
176	Effect of exogenous cholecystokinin and secretin on pancreatic secretion of insulin and glucagon in rats: in vivo model without hepatic filter. Digestive Diseases and Sciences, 2001, 46, 2127-2133.	1.1	5
177	The cholecystokinin analogues JMV-180 and CCK-8 stimulate phospholipase C through the same binding site of CCKA receptor in rat pancreatic acini. British Journal of Pharmacology, 2001, 133, 1227-1234. Effect of xanthine oxidase-catalyzed reactive oxygen species generation on secretagogue-evoked	2.7	6
178	calcium mobilization in mouse pancreatic acinar cellsâ€â€Abbreviations: ACh, acetylcholine; Ca2+, calcium; [Ca2+]i, intracellular free calcium concentration; CCK-8, cholecystokinin octapeptide; DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; PIP2, phosphatidyl-inositol 4,5-bisphosphate; PLC, phospholipase C; ROS, reactive oxygen species; SERCA, sarco/endoplasmic reticulum Ca2+ ATPase; TPS,	2.0	5
179	thapsigargin; and. Biochemical Pharmacology, 2001, 62, 1621-1627. Vanadate inhibits the calcium extrusion in rat pancreatic acinar cells. Cellular Signalling, 2001, 13, 451-456.	1.7	11
180	Inhibition of phosphatidylcholine synthesis precedes apoptosis induced by C2-ceramide. NeuroReport, 2000, 11, 3103-3108.	0.6	22

#	Article	IF	CITATIONS
181	A role for phosphoinositides in tyrosine phosphorylation of p125 focal adhesion kinase in rat pancreatic acini. Cellular Signalling, 2000, 12, 173-182.	1.7	11
182	Effect of dephostatin on intracellular free calcium concentration and amylase secretion in isolated rat pancreatic acinar cells. Molecular and Cellular Biochemistry, 2000, 205, 163-169.	1.4	4
183	Activation of m3 Muscarinic Receptors Induces Rapid Tyrosine Phosphorylation of p125FAK, p130cas, and Paxillin in Rat Pancreatic Acini. Archives of Biochemistry and Biophysics, 2000, 377, 85-94.	1.4	21
184	Interaction of islet hormones with cholecystokinin octapeptide-evoked secretory responses in the isolated pancreas of normal and diabetic rats. Experimental Physiology, 1999, 84, 299-318.	0.9	2
185	Interaction of Islet Hormones with Cholecystokinin Octapeptide-Evoked Secretory Responses in the Isolated Pancreas of Normal and Diabetic Rats. Experimental Physiology, 1999, 84, 299-318.	0.9	17
186	Oxidizing effects of vanadate on calcium mobilization and amylase release in rat pancreatic acinar cells. Biochemical Pharmacology, 1999, 58, 77-84.	2.0	15
187	Phenylarsine Oxide Evokes Intracellular Calcium Increases and Amylase Secretion in Isolated Rat Pancreatic Acinar Cells. Cellular Signalling, 1999, 11, 727-734.	1.7	11
188	Cholecystokinin-Evoked Ca2+ Waves in Isolated Mouse Pancreatic Acinar Cells Are Modulated by Activation of Cytosolic Phospholipase A2, Phospholipase D, and Protein Kinase C. Biochemical and Biophysical Research Communications, 1999, 261, 726-733.	1.0	38
189	Effect of Basic Fibroblast Growth Factor on Cholecystokinin-Induced Amylase Release and Intracellular Calcium Increase in Male Rat Pancreatic Acinar Cells. Biochemical Pharmacology, 1998, 55, 903-908.	2.0	16
190	Free Cytosolic Calcium Levels Modify Intracellular pH in Rat Pancreatic Acini. Biochemical and Biophysical Research Communications, 1997, 230, 652-656.	1.0	37
191	Interactions of Islet Hormones with Acetylcholine in the Isolated Rat Pancreas. Peptides, 1997, 18, 1415-1422.	1.2	18
192	The role of magnesium in regulating CCK-8-evoked secretory responses in the exocrine rat pancreas. Molecular and Cellular Biochemistry, 1996, 154, 123-132.	1.4	10
193	Histamine and the cAMP pathway in the guinea-pig pancreas. Cellular Signalling, 1995, 7, 57-60.	1.7	8
194	Phagocytic process of head kidney granulocytes of tench (Tinca tinca, L.). Fish and Shellfish Immunology, 1993, 3, 411-421.	1.6	13
195	Circadian Rhythms of Food Intake in Gastroduodenally-Ulcerated Rats: Effects of Three Anti-Ulcer Drugs. Chronobiology International, 1989, 6, 321-328.	0.9	5
196	Cimetidine and postprandial pancreatic exocrine secretion in dogs. Agents and Actions, 1985, 17, 145-149.	0.7	10
197	Circadian Rhythmicity in the †Basal' Pancreatic Secretion of the Domestic Fowl. Chronobiology International, 1984, 1, 173-176.	0.9	10