
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonal evolution in serially passaged <i>Cryptococcus neoformans</i> × <i>deneoformans</i> hybrids reveals a heterogenous landscape of genomic change. Genetics, 2022, 220, .	1.2	3
2	Joseph Heitman. Current Biology, 2022, 32, R106-R109.	1.8	0
3	Exploring Space via Astromycology: A Report on the CIFAR Programs <i>Earth 4D</i> and <i>Fungal Kingdom</i> Inaugural Joint Meeting. Astrobiology, 2022, , .	1.5	0
4	Epistatic genetic interactions govern morphogenesis during sexual reproduction and infection in a global human fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
5	Identification of Mucormycosis by Fluorescence In Situ Hybridization Targeting Ribosomal RNA in Tissue Samples. Journal of Fungi (Basel, Switzerland), 2022, 8, 289.	1.5	2
6	Multiple Hybridization Events Punctuate the Evolutionary Trajectory of <i>Malassezia furfur</i> . MBio, 2022, 13, e0385321.	1.8	9
7	On Fruits and Fungi: A Risk of Antifungal Usage in Food Storage and Distribution in Driving Drug Resistance in Candida auris. MBio, 2022, 13, e0073922.	1.8	7
8	Structure-Guided Synthesis of FK506 and FK520 Analogs with Increased Selectivity Exhibit <i>In Vivo</i> Therapeutic Efficacy against Cryptococcus. MBio, 2022, 13, .	1.8	8
9	Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genetics, 2021, 17, e1009313.	1.5	14
10	Showcasing Fungal Genetics & Genomics with the Genetics Society of America. Genetics, 2021, 217, .	1.2	0
11	Multiple Pathways to Homothallism in Closely Related Yeast Lineages in the Basidiomycota. MBio, 2021, 12, .	1.8	5
12	Showcasing Fungal Genetics & amp; Genomics with the Genetics Society of America. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
13	Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Applied and Environmental Microbiology, 2021, 87, .	1.4	10
14	The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Diversity, 2021, 109, 27-55.	4.7	37
15	Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathogens, 2021, 17, e1009912.	2.1	0
16	On a Special Collection in MMBR on Sex in Fungi: Molecular Mechanisms and Evolutionary Implications. Microbiology and Molecular Biology Reviews, 2021, 85, e0009421.	2.9	1
17	Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genetics, 2021, 17, e1009743.	1.5	8
18	Uniparental nuclear inheritance following bisexual mating in fungi. ELife, 2021, 10, .	2.8	15

#	Article	IF	CITATIONS
19	Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genetics, 2021, 17, e1008871.	1.5	13
20	Application of an optimized annotation pipeline to the <i>Cryptococcus deuterogattii</i> genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	16
21	Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs. MBio, 2021, 12, e0300021.	1.8	14
22	Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLoS Genetics, 2021, 17, e1009935.	1.5	9
23	5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inÂCryptococcus. Nature Communications, 2020, 11, 127.	5.8	73
24	The Pheromone and Pheromone Receptor Mating-Type Locus Is Involved in Controlling Uniparental Mitochondrial Inheritance in <i>Cryptococcus</i> . Genetics, 2020, 214, 703-717.	1.2	19
25	Fungal pathogens. Current Biology, 2020, 30, R1163-R1169.	1.8	26
26	Approaches for Genetic Discoveries in the Skin Commensal and Pathogenic Malassezia Yeasts. Frontiers in Cellular and Infection Microbiology, 2020, 10, 393.	1.8	14
27	Expression of a Malassezia Codon Optimized mCherry Fluorescent Protein in a Bicistronic Vector. Frontiers in Cellular and Infection Microbiology, 2020, 10, 367.	1.8	5
28	The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potential—Phaffia australis sp. nov. and Phaffia tasmanica sp. nov Microorganisms, 2020, 8, 1651.	1.6	9
29	A Novel Mycovirus Evokes Transcriptional Rewiring in the Fungus <i>Malassezia</i> and Stimulates Beta Interferon Production in Macrophages. MBio, 2020, 11, .	1.8	30
30	Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nature Communications, 2020, 11, 4212.	5.8	22
31	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
32	HGT in the human and skin commensal <i>Malassezia</i> : A bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15884-15894.	3.3	37
33	The Rise of Fungi: A Report on the CIFAR Program <i>Fungal Kingdom: Threats & Opportunities</i> Inaugural Meeting. G3: Genes, Genomes, Genetics, 2020, 10, 1837-1842.	0.8	4
34	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	1.5	29
35	FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2020, 526, 48-54.	1.0	5
36	Centromere scission drives chromosome shuffling and reproductive isolation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7917-7928.	3.3	47

#	Article	IF	CITATIONS
37	The necessity for molecular classification of basidiomycetous biocontrol yeasts. BioControl, 2020, 65, 489-500.	0.9	12
38	Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in <i>Cryptococcus neoformans</i> . Genetics, 2020, 214, 635-649.	1.2	6
39	Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. MBio, 2020, 11, .	1.8	10
40	A Novel Resistance Pathway for Calcineurin Inhibitors in the Human-Pathogenic Mucorales Mucor circinelloides. MBio, 2020, 11, .	1.8	29
41	Transposon mobilization in the human fungal pathogen <i>Cryptococcus</i> is mutagenic during infection and promotes drug resistance in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9973-9980.	3.3	32
42	Microbe Profile: Cryptococcus neoformans species complex. Microbiology (United Kingdom), 2020, 166, 797-799.	0.7	12
43	Advances in understanding the evolution of fungal genome architecture. F1000Research, 2020, 9, 776.	0.8	31
44	Loss of centromere function drives karyotype evolution in closely related Malassezia species. ELife, 2020, 9, .	2.8	45
45	Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions. ELife, 2020, 9, .	2.8	22
46	Mating-System Evolution: All Roads Lead to Selfing. Current Biology, 2019, 29, R743-R746.	1.8	7
47	Epigenetic mechanisms of drug resistance in fungi. Fungal Genetics and Biology, 2019, 132, 103253.	0.9	36
48	Advancing Functional Genetics Through <i>Agrobacterium</i> -Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast <i>Malassezia</i> . Genetics, 2019, 212, 1163-1179.	1.2	19
49	Calcium-Calmodulin-Calcineurin Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. Cell Host and Microbe, 2019, 26, 453-462.	5.1	106
50	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	1.8	77
51	Genetic and genomic evolution of sexual reproduction: echoes from LECA to the fungal kingdom. Current Opinion in Genetics and Development, 2019, 58-59, 70-75.	1.5	15
52	Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genetics, 2019, 15, e1008365.	1.5	31
53	E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics, 2019, 213, 1-7.	1.2	1
54	Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genetics, 2019, 15, e1008394.	1.5	8

#	Article	IF	CITATIONS
55	The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of CryptococcusHuman Pathogenic Fungi. Annual Review of Genetics, 2019, 53, 417-444.	3.2	30
56	Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 2019, 10, 4275.	5.8	80
57	She Loves Me, She Loves Me Not: On the Dualistic Asexual/Sexual Nature of Dermatophyte Fungi. Mycopathologia, 2019, 185, 87-101.	1.3	4
58	<i>Cryptococcus neoformans</i> Mating and Genetic Crosses. Current Protocols in Microbiology, 2019, 53, e75.	6.5	34
59	Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to <i>Cryptococcus</i> Pathogens. MBio, 2019, 10, .	1.8	37
60	Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. Journal of Microbiology, 2019, 57, 509-520.	1.3	18
61	Fungi in the Marine Environment: Open Questions and Unsolved Problems. MBio, 2019, 10, .	1.8	200
62	Nutrient and Stress Sensing in Pathogenic Yeasts. Frontiers in Microbiology, 2019, 10, 442.	1.5	41
63	Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genetics, 2019, 15, e1007957.	1.5	46
64	<i>Mucor circinelloides</i> Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. MBio, 2019, 10, .	1.8	28
65	<i>Cryptococcus deuterogattii</i> VGIIa Infection Associated with Travel to the Pacific Northwest Outbreak Region in an Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibody-Positive Patient in the United States. MBio, 2019, 10, .	1.8	28
66	Pbp1-Interacting Protein Mkt1 Regulates Virulence and Sexual Reproduction in Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2019, 9, 355.	1.8	7
67	Cryptococcus neoformans Recovered From Olive Trees (Olea europaea) in Turkey Reveal Allopatry With African and South American Lineages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 384.	1.8	12
68	Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genetics and Biology, 2019, 124, 29-38.	0.9	4
69	Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides. MBio, 2019, 10, .	1.8	156
70	RNAi is a critical determinant of centromere evolution in closely related fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3108-3113.	3.3	112
71	Whole-Genome Analysis Illustrates Global Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen <i>Trichophyton rubrum</i> . Genetics, 2018, 208, 1657-1669.	1.2	48
72	Phylogenetic and Phylogenomic Definition of <i>Rhizopus</i> Species. G3: Genes, Genomes, Genetics, 2018, 8, 2007-2018.	0.8	47

#	Article	IF	CITATIONS
73	A High-Resolution Map of Meiotic Recombination in <i>Cryptococcus deneoformans</i> Demonstrates Decreased Recombination in Unisexual Reproduction. Genetics, 2018, 209, 567-578.	1.2	34
74	Had1 Is Required for Cell Wall Integrity and Fungal Virulence in <i>Cryptococcus neoformans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 643-652.	0.8	16
75	Dissecting the Roles of the Calcineurin Pathway in Unisexual Reproduction, Stress Responses, and Virulence in <i>Cryptococcus deneoformans</i> . Genetics, 2018, 208, 639-653.	1.2	30
76	<i>In Vitro</i> and <i>In Vivo</i> Assessment of FK506 Analogs as Novel Antifungal Drug Candidates. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	44
77	Evolutionarily Conserved and Divergent Roles of Unfolded Protein Response (UPR) in the Pathogenic Cryptococcus Species Complex. Scientific Reports, 2018, 8, 8132.	1.6	11
78	The Skin Commensal Yeast Malassezia globosa Thwarts Bacterial Biofilms to Benefit the Host. Journal of Investigative Dermatology, 2018, 138, 1026-1029.	0.3	19
79	Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing. MBio, 2018, 9, .	1.8	54
80	An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease. Cell Host and Microbe, 2018, 24, 308-323.e6.	5.1	48
81	Pearls collections: What we can learn about infectious disease and cancer. PLoS Pathogens, 2018, 14, e1006915.	2.1	12
82	Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence, 2017, 8, 186-197.	1.8	130
83	Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales <i>Mucor circinelloides</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2047-2054.	0.8	22
84	Population genomics and the evolution of virulence in the fungal pathogen <i>Cryptococcus neoformans</i> . Genome Research, 2017, 27, 1207-1219.	2.4	134
85	Eukaryotic Sexual Reproduction Evoked "with a Little Help from My Friends― Cell, 2017, 170, 1059-1061.	13.5	2
86	Dynamics of parasitophorous vacuoles formed by the microsporidian pathogen Encephalitozoon cuniculi. Fungal Genetics and Biology, 2017, 107, 20-23.	0.9	3
87	FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in <i>Malassezia</i> . MBio, 2017, 8, .	1.8	14
88	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	1.2	105
89	New facets of antifungal therapy. Virulence, 2017, 8, 222-236.	1.8	123
90	Sexual Reproduction in Dermatophytes. Mycopathologia, 2017, 182, 45-55.	1.3	27

LO OFFICI	Heitman
IOSEPH	
JOSLIII	

#	Article	IF	CITATIONS
91	Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen <i>Cryptococcus neoformans</i> . Genetics, 2017, 205, 201-219.	1.2	35
92	Plant Pathogenic Fungi. , 2017, , 701-726.		22
93	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
94	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
95	Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host. , 2017, , 975-980.		2
96	Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. , 2017, , 549-570.		0
97	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25
98	The Complexity of Fungal Vision. , 2017, , 441-461.		0
99	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
100	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10
101	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
102	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
103	Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. , 2017, , 399-416.		1
104	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
105	Nematode-Trapping Fungi. , 2017, , 963-974.		4
106	Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. , 2017, , 981-1004.		6
107	Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. , 2017, , 215-229.		9
108	Fungi that Infect Humans. , 2017, , 811-843.		8

#	Article	IF	CITATIONS
109	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
110	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
111	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
112	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
113	Amyloid Prions in Fungi. , 2017, , 673-685.		0
114	Fungal Recognition and Host Defense Mechanisms. , 2017, , 887-902.		1
115	Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus. PLoS ONE, 2017, 12, e0171695.	1.1	41
116	MTL genotypes, phenotypic switching, and susceptibility profiles of Candida parapsilosis species group compared to Lodderomyces elongisporus. PLoS ONE, 2017, 12, e0182653.	1.1	8
117	Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly ofMalassezia sympodialis. Nucleic Acids Research, 2017, 45, gkx006.	6.5	47
118	A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genetics, 2017, 13, e1006686.	1.5	50
119	Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biology, 2017, 15, e2002527.	2.6	67
120	Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genetics, 2017, 13, e1006667.	1.5	90
121	PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genetics, 2017, 13, e1007113.	1.5	43
122	Genetic and epigenetic engines of diversity in pathogenic microbes. PLoS Pathogens, 2017, 13, e1006468.	2.1	7
123	Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. ELife, 2017, 6, .	2.8	74
124	Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex. PLoS Genetics, 2016, 12, e1005868.	1.5	43
125	Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function. MBio, 2016, 7, e00492-16.	1.8	29
126	Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen <i>Malassezia</i> Genus. MBio, 2016, 7, .	1.8	44

#	Article	IF	CITATIONS
127	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
128	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	3.9	79
129	Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Human Molecular Genetics, 2016, 25, 3524-3538.	1.4	8
130	Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nature Communications, 2016, 7, 12766.	5.8	112
131	Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350.	1.5	39
132	Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathogens, 2016, 12, e1005873.	2.1	77
133	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	2.9	68
134	Cryptococcal Osteomyelitis in an Adolescent Survivor of T-Cell Acute Lymphoblastic Leukemia. Pediatric Infectious Disease Journal, 2015, 34, 662-666.	1.1	7
135	Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host–pathogen interactions of the pathogenic mucoralean fungus <scp><i>M</i></scp> <i>ucor circinelloides</i> . Molecular Microbiology, 2015, 97, 844-865.	1.2	74
136	Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genetics, 2015, 11, e1005614.	1.5	198
137	Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific Reports, 2015, 5, 8767.	1.6	31
138	From two to one: Unipolar sexual reproduction. Fungal Biology Reviews, 2015, 29, 118-125.	1.9	17
139	Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genetics and Biology, 2015, 78, 65-75.	0.9	43
140	A Case of Cryptococcus gattii in Western Florida. Infectious Diseases in Clinical Practice, 2015, 23, 105-108.	0.1	1
141	Cryptococcosis Serotypes Impact Outcome and Provide Evidence of Cryptococcus neoformans Speciation. MBio, 2015, 6, e00311.	1.8	67
142	Evolution of sexual reproduction: A view from the fungal kingdom supports an evolutionary epoch with sex before sexes. Fungal Biology Reviews, 2015, 29, 108-117.	1.9	97
143	Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nature Communications, 2015, 6, 6757.	5.8	155
144	Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast <i>Trichosporon oleaginosus</i> : Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. MBio, 2015, 6, e00918.	1.8	63

#	Article	IF	CITATIONS
145	Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. MBio, 2015, 6, e00868-15.	1.8	101
146	On the Discovery of TOR As the Target of Rapamycin. PLoS Pathogens, 2015, 11, e1005245.	2.1	12
147	Cryptococcus neoformans Hyperfilamentous Strain Is Hypervirulent in a Murine Model of Cryptococcal Meningoencephalitis. PLoS ONE, 2014, 9, e104432.	1.1	17
148	Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species. PLoS ONE, 2014, 9, e108633.	1.1	22
149	Analysis of a Food-Borne Fungal Pathogen Outbreak: Virulence and Genome of a <i>Mucor circinelloides</i> Isolate from Yogurt. MBio, 2014, 5, e01390-14.	1.8	106
150	Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal. PLoS Pathogens, 2014, 10, e1004285.	2.1	85
151	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	1.5	336
152	Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in Cryptococcus neoformans. PLoS Genetics, 2014, 10, e1004849.	1.5	71
153	Estrogen Receptor Antagonists Are Anti-Cryptococcal Agents That Directly Bind EF Hand Proteins and Synergize with Fluconazole <i>In Vivo</i> . MBio, 2014, 5, e00765-13.	1.8	91
154	Highly Recombinant VGII Cryptococcus gattii Population Develops Clonal Outbreak Clusters through both Sexual Macroevolution and Asexual Microevolution. MBio, 2014, 5, e01494-14.	1.8	81
155	Sexual Reproduction of Human Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019281-a019281.	2.9	45
156	Unisexual Reproduction Reverses Muller's Ratchet. Genetics, 2014, 198, 1059-1069.	1.2	25
157	Unseen sex in ancient virgin fungi. New Phytologist, 2014, 201, 3-5.	3.5	6
158	Origins of Eukaryotic Sexual Reproduction. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016154-a016154.	2.3	175
159	Sex in the Mucoralean Fungi. Mycoses, 2014, 57, 18-24.	1.8	21
160	Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature, 2014, 513, 555-558.	13.7	147
161	Endolysosomal Membrane Trafficking Complexes Drive Nutrient-Dependent TORC1 Signaling to Control Cell Growth in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 196, 1077-1089.	1.2	28
162	Distinct and redundant roles of exonucleases in Cryptococcus neoformans: Implications for virulence and mating. Fungal Genetics and Biology, 2014, 73, 20-28.	0.9	10

#	Article	IF	CITATIONS
163	Unisexual Reproduction. Advances in Genetics, 2014, 85, 255-305.	0.8	31
164	Calcineurin Controls Hyphal Growth, Virulence, and Drug Tolerance of Candida tropicalis. Eukaryotic Cell, 2014, 13, 844-854.	3.4	52
165	Cloning the Mating-Type Genes of Schizophyllum commune: A Historical Perspective. , 2014, , 265-282.		2
166	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
167	Cryptococcus neoformans: Latency and Disease. , 2014, , 429-439.		12
168	How Fungi Sense Sugars, Alcohols, and Amino Acids. , 2014, , 467-479.		0
169	Cryptococcus neoformans: Budding Yeast and Dimorphic Filamentous Fungus. , 2014, , 717-735.		Ο
170	Unisexual Reproduction of Cryptococcus gattii. PLoS ONE, 2014, 9, e111089.	1.1	20
171	Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia, 2013, 105, 1374-1390.	0.8	42
172	RNAi function, diversity, and loss in the fungal kingdom. Chromosome Research, 2013, 21, 561-572.	1.0	95
173	Identification of the Mating-Type (<i>MAT</i>) Locus That Controls Sexual Reproduction of Blastomyces dermatitidis. Eukaryotic Cell, 2013, 12, 109-117.	3.4	38
174	Synthesis and antifungal activities of miltefosine analogs. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4828-4831.	1.0	20
175	Evolution of Sex: Mating Rituals of a Pre-Metazoan. Current Biology, 2013, 23, R1006-R1008.	1.8	7
176	Cryptococcus neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host and Microbe, 2013, 13, 265-276.	5.1	167
177	Evolution of fungal sexual reproduction. Mycologia, 2013, 105, 1-27.	0.8	133
178	Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast <i>Malassezia sympodialis</i> . MBio, 2013, 4, e00572-12.	1.8	118
179	Ordered Kinetochore Assembly in the Human-Pathogenic Basidiomycetous Yeast Cryptococcus neoformans. MBio, 2013, 4, e00614-13.	1.8	42
180	Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides. PLoS Pathogens, 2013, 9, e1003625.	2.1	134

#	Article	IF	CITATIONS
181	Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013, 9, e1003771.	1.5	45
182	Genetic Circuits that Govern Bisexual and Unisexual Reproduction in Cryptococcus neoformans. PLoS Genetics, 2013, 9, e1003688.	1.5	74
183	Unisexual Reproduction Drives Evolution of Eukaryotic Microbial Pathogens. PLoS Pathogens, 2013, 9, e1003674.	2.1	23
184	Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans. PLoS Biology, 2013, 11, e1001653.	2.6	145
185	Generators of Phenotypic Diversity in the Evolution of Pathogenic Microorganisms. PLoS Pathogens, 2013, 9, e1003181.	2.1	37
186	Sex-Induced Silencing Operates During Opposite-Sex and Unisexual Reproduction in <i>Cryptococcus neoformans</i> . Genetics, 2013, 193, 1163-1174.	1.2	28
187	Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii. G3: Genes, Genomes, Genetics, 2013, 3, 527-539.	0.8	48
188	Unisexual Reproduction Enhances Fungal Competitiveness by Promoting Habitat Exploration via Hyphal Growth and Sporulation. Eukaryotic Cell, 2013, 12, 1155-1159.	3.4	26
189	Molecular and Genetic Evidence for a Tetrapolar Mating System in the Basidiomycetous Yeast Kwoniella mangrovensis and Two Novel Sibling Species. Eukaryotic Cell, 2013, 12, 746-760.	3.4	25
190	Posaconazole Exhibits In Vitro and In Vivo Synergistic Antifungal Activity with Caspofungin or FK506 against Candida albicans. PLoS ONE, 2013, 8, e57672.	1.1	54
191	Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization. PLoS ONE, 2013, 8, e69804.	1.1	17
192	Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases. PLoS Pathogens, 2012, 8, e1002701.	2.1	159
193	Gene Conversion Occurs within the Mating-Type Locus of Cryptococcus neoformans during Sexual Reproduction. PLoS Genetics, 2012, 8, e1002810.	1.5	54
194	Discovery of a Modified Tetrapolar Sexual Cycle in Cryptococcus amylolentus and the Evolution of MAT in the Cryptococcus Species Complex. PLoS Genetics, 2012, 8, e1002528.	1.5	54
195	Clobal Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata. PLoS Pathogens, 2012, 8, e1002718.	2.1	158
196	Transgene Induced Co-Suppression during Vegetative Growth in Cryptococcus neoformans. PLoS Genetics, 2012, 8, e1002885.	1.5	43
197	Parallels in Intercellular Communication in Oomycete and Fungal Pathogens of Plants and Humans. PLoS Pathogens, 2012, 8, e1003028.	2.1	14
198	Calcofluor White Combination Antifungal Treatments for Trichophyton rubrum and Candida albicans. PLoS ONE, 2012, 7, e39405.	1.1	34

JOSEPH HEITMAN

#	Article	IF	CITATIONS
199	Genetic Diversity and Genomic Plasticity of <i>Cryptococcus neoformans</i> AD Hybrid Strains. G3: Genes, Genomes, Genetics, 2012, 2, 83-97.	0.8	73
200	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	1.8	211
201	Comparative analysis of calcineurin signaling betweenCandida dubliniensisandCandida albicans. Communicative and Integrative Biology, 2012, 5, 122-126.	0.6	16
202	Rapamycin Exerts Antifungal Activity <i>In Vitro</i> and <i>In Vivo</i> against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor. Eukaryotic Cell, 2012, 11, 270-281.	3.4	67
203	Function of Cryptococcus neoformans KAR7 (<i>SEC66</i>) in Karyogamy during Unisexual and Opposite-Sex Mating. Eukaryotic Cell, 2012, 11, 783-794.	3.4	42
204	Pleiotropic Roles of the Msi1-Like Protein Msl1 in Cryptococcus neoformans. Eukaryotic Cell, 2012, 11, 1482-1495.	3.4	10
205	A Flucytosine-Responsive Mbp1/Swi4-Like Protein, Mbs1, Plays Pleiotropic Roles in Antifungal Drug Resistance, Stress Response, and Virulence of Cryptococcus neoformans. Eukaryotic Cell, 2012, 11, 53-67.	3.4	37
206	A Unique Chromosomal Rearrangement in the Cryptococcus neoformans var. <i>grubii</i> Type Strain Enhances Key Phenotypes Associated with Virulence. MBio, 2012, 3, .	1.8	30
207	Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2012, 2, 675-691.	0.8	90
208	Pseudohyphal Growth of Cryptococcus neoformans Is a Reversible Dimorphic Transition in Response to Ammonium That Requires Amt1 and Amt2 Ammonium Permeases. Eukaryotic Cell, 2012, 11, 1391-1398.	3.4	28
209	Should Y stay or should Y go: The evolution of nonâ€recombining sex chromosomes. BioEssays, 2012, 34, 938-942.	1.2	26
210	Cryptococcus gattii, No Longer an Accidental Pathogen?. Current Fungal Infection Reports, 2012, 6, 245-256.	0.9	39
211	Calcineurin Is Required for Pseudohyphal Growth, Virulence, and Drug Resistance in Candida lusitaniae. PLoS ONE, 2012, 7, e44192.	1.1	49
212	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
213	Surfactant Protein D Facilitates Cryptococcus neoformans Infection. Infection and Immunity, 2012, 80, 2444-2453.	1.0	33
214	Profiling a killer, the development of <i>Cryptococcus neoformans</i> . FEMS Microbiology Reviews, 2012, 36, 78-94.	3.9	76
215	6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality. , 2011, , 97-160.		81
216	Epidemiology and Evolution of Fungal Pathogens in Plants and Animals. , 2011, , 59-132.		17

13

#	Article	IF	CITATIONS
217	Sex in Fungi. Annual Review of Genetics, 2011, 45, 405-430.	3.2	257
218	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	13.9	181
219	Diversity in the realm of eukaryotic microbe form and function. Current Opinion in Microbiology, 2011, 14, 631-633.	2.3	0
220	Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes and Infection, 2011, 13, 895-907.	1.0	138
221	Is sex necessary?. BMC Biology, 2011, 9, 56.	1.7	30
222	Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 2011, 25, 48-60.	1.9	85
223	Validation of <i>Kwoniella heveanensis</i> , teleomorph of the basidiomycetous yeast <i>Cryptococcus heveanensis</i> . Mycotaxon, 2011, 116, 227-229.	0.1	6
224	The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10, 1714-1723.	3.4	14
225	Cryptococcus gattii Genotype VGI Infection in New England. Pediatric Infectious Disease Journal, 2011, 30, 1111-1114.	1.1	24
226	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
227	Calcineurin Colocalizes with P-Bodies and Stress Granules during Thermal Stress in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10, 1396-1402.	3.4	52
228	Sporangiospore Size Dimorphism Is Linked to Virulence of Mucor circinelloides. PLoS Pathogens, 2011, 7, e1002086.	2.1	128
229	Unique Evolution of the UPR Pathway with a Novel bZIP Transcription Factor, Hxl1, for Controlling Pathogenicity of Cryptococcus neoformans. PLoS Pathogens, 2011, 7, e1002177.	2.1	106
230	Deletion of Cryptococcus neoformans AIF Ortholog Promotes Chromosome Aneuploidy and Fluconazole-Resistance in a Metacaspase-Independent Manner. PLoS Pathogens, 2011, 7, e1002364.	2.1	52
231	A Diverse Population of Cryptococcus gattii Molecular Type VGIII in Southern Californian HIV/AIDS Patients. PLoS Pathogens, 2011, 7, e1002205.	2.1	95
232	Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics. PLoS ONE, 2011, 6, e25280.	1.1	20
233	On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Current Fungal Infection Reports, 2010, 4, 244-255.	0.9	35
234	Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2010, 75, 658-675.	1.2	77

#	Article	IF	CITATIONS
235	Morphological and Genomic Characterization of Filobasidiella depauperata: A Homothallic Sibling Species of the Pathogenic Cryptococcus Species Complex. PLoS ONE, 2010, 5, e9620.	1.1	34
236	The Evolution of Sex: a Perspective from the Fungal Kingdom. Microbiology and Molecular Biology Reviews, 2010, 74, 298-340.	2.9	326
237	Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathogens, 2010, 6, e1000850.	2.1	303
238	Sex-induced silencing defends the genome of <i>Cryptococcus neoformans</i> via RNAi. Genes and Development, 2010, 24, 2566-2582.	2.7	134
239	Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans. Eukaryotic Cell, 2010, 9, 360-378.	3.4	72
240	Surfactant protein D binding to <i>Aspergillus fumigatus</i> hyphae is calcineurin-sensitive. Medical Mycology, 2010, 48, 580-588.	0.3	13
241	Comparative Transcriptome Analysis of the CO2 Sensing Pathway Via Differential Expression of Carbonic Anhydrase in <i>Cryptococcus neoformans</i> . Genetics, 2010, 185, 1207-1219.	1.2	36
242	Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity. PLoS Pathogens, 2010, 6, e1000953.	2.1	291
243	Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans. PLoS Genetics, 2010, 6, e1000953.	1.5	111
244	The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi. PLoS Genetics, 2010, 6, e1000961.	1.5	69
245	Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology (United Kingdom), 2010, 156, 2393-2407.	0.7	41
246	Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genetics and Biology, 2010, 47, 107-116.	0.9	75
247	Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genetics and Biology, 2010, 47, 1070-1080.	0.9	102
248	Evolution of Eukaryotic Microbial Pathogens via Covert Sexual Reproduction. Cell Host and Microbe, 2010, 8, 86-99.	5.1	142
249	Organization and Evolutionary Trajectory of the Mating Type (<i>MAT</i>) Locus in Dermatophyte and Dimorphic Fungal Pathogens. Eukaryotic Cell, 2010, 9, 46-58.	3.4	71
250	Evolution of the sex-Related Locus and Genomic Features Shared in Microsporidia and Fungi. PLoS ONE, 2010, 5, e10539.	1.1	77
251	Structure, Function, and Phylogeny of the Mating Locus in the Rhizopus oryzae Complex. PLoS ONE, 2010, 5, e15273.	1.1	72
252	Identification of <i>ENA1</i> as a Virulence Gene of the Human Pathogenic Fungus <i>Cryptococcus neoformans</i> through Signature-Tagged Insertional Mutagenesis. Eukaryotic Cell, 2009, 8, 315-326.	3.4	79

JOSEPH HEITMAN

#	Article	IF	CITATIONS
253	<i>Aspergillus fumigatus</i> Calcipressin CbpA Is Involved in Hyphal Growth and Calcium Homeostasis. Eukaryotic Cell, 2009, 8, 511-519.	3.4	41
254	Spores as Infectious Propagules of <i>Cryptococcus neoformans</i> . Infection and Immunity, 2009, 77, 4345-4355.	1.0	299
255	Dynamic duo takes down fungal villains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2971-2972.	3.3	10
256	<i>Phycomyces</i> MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7095-7100.	3.3	73
257	Spread of <i>Cryptococcus gattii</i> into Pacific Northwest Region of the United States. Emerging Infectious Diseases, 2009, 15, 1185-1191.	2.0	239
258	The Protein Kinase Tor1 Regulates Adhesin Gene Expression in Candida albicans. PLoS Pathogens, 2009, 5, e1000294.	2.1	127
259	Diploids in the Cryptococcus neoformans Serotype A Population Homozygous for the α Mating Type Originate via Unisexual Mating. PLoS Pathogens, 2009, 5, e1000283.	2.1	111
260	Phylogeny and Phenotypic Characterization of Pathogenic <i>Cryptococcus</i> Species and Closely Related Saprobic Taxa in the Tremellales. Eukaryotic Cell, 2009, 8, 353-361.	3.4	95
261	<i>Cryptococcus Gattii</i> with Bimorphic Colony Types in a Dog in Western Oregon: Additional Evidence for Expansion of the Vancouver Island Outbreak. Journal of Veterinary Diagnostic Investigation, 2009, 21, 133-136.	0.5	36
262	Molecular Evidence That the Range of the Vancouver Island Outbreak of <i>Cryptococcus gattii</i> Infection Has Expanded into the Pacific Northwest in the United States. Journal of Infectious Diseases, 2009, 199, 1081-1086.	1.9	184
263	Generation of genetic diversity in microsporidia via sexual reproduction and horizontal gene transfer. Communicative and Integrative Biology, 2009, 2, 414-417.	0.6	31
264	Remodeling of Global Transcription Patterns of <i>Cryptococcus neoformans</i> Genes Mediated by the Stress-Activated HOG Signaling Pathways. Eukaryotic Cell, 2009, 8, 1197-1217.	3.4	120
265	Surfactant Protein D Increases Phagocytosis of Hypocapsular <i>Cryptococcus neoformans</i> by Murine Macrophages and Enhances Fungal Survival. Infection and Immunity, 2009, 77, 2783-2794.	1.0	56
266	Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Current Biology, 2009, 19, 621-629.	1.8	266
267	Mechanistic Plasticity of Sexual Reproduction and Meiosis in the Candida Pathogenic Species Complex. Current Biology, 2009, 19, 891-899.	1.8	130
268	A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO Journal, 2009, 28, 1220-1233.	3.5	63
269	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
270	Love the one you're with. Nature, 2009, 460, 807-808.	13.7	10

16

#	Article	IF	CITATIONS
271	Signalling pathways in the pathogenesis of <i>Cryptococcus</i> . Cellular Microbiology, 2009, 11, 370-380.	1.1	133
272	Trimorphic stepping stones pave the way to fungal virulence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 351-352.	3.3	48
273	Loss of Allergen 1 Confers a Hypervirulent Phenotype That Resembles Mucoid Switch Variants of <i>Cryptococcus neoformans</i> . Infection and Immunity, 2009, 77, 128-140.	1.0	24
274	First Reported Case of Cryptococcus gattii in the Southeastern USA: Implications for Travel-Associated Acquisition of an Emerging Pathogen. PLoS ONE, 2009, 4, e5851.	1.1	69
275	Cryptococcus gattii outbreak expands into the Northwestern United States with fatal consequences. F1000 Biology Reports, 2009, 1, .	4.0	34
276	Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews, 2008, 32, 1010-1032.	3.9	165
277	Identification of the sex genes in an early diverged fungus. Nature, 2008, 451, 193-196.	13.7	154
278	The RGS protein Crg2 regulates both pheromone and cAMP signalling in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2008, 70, 379-395.	1.2	53
279	Microsporidia Evolved from Ancestral Sexual Fungi. Current Biology, 2008, 18, 1675-1679.	1.8	256
280	Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Current Opinion in Microbiology, 2008, 11, 517-524.	2.3	66
281	Fungal horizons: The Asilomar Fungal Genetics Conference 2007. Fungal Genetics and Biology, 2008, 45, 77-83.	0.9	6
282	<i>Evolution of Microbial Pathogens</i> . <i>Edited by</i> H StevenÂSeifert and Victor JÂDiRita. Washington (DC): ASM Press. \$119.95. xiii + 355 p; ill.; index. ISBN:1â€55581â€300â€3. 2006 Quarterly Review Biology, 2008, 83, 100-101.	v of.0	0
283	Synergistic Effect of Calcineurin Inhibitors and Fluconazole against <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 1127-1132.	1.4	205
284	Amt2 Permease Is Required To Induce Ammonium-Responsive Invasive Growth and Mating in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2008, 7, 237-246.	3.4	52
285	A Mep2-dependent Transcriptional Profile Links Permease Function to Gene Expression during Pseudohyphal Growth in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2008, 19, 3028-3039.	0.9	48
286	Transitions in Sexuality: Recapitulation of an Ancestral Tri- and Tetrapolar Mating System in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2008, 7, 1847-1855.	3.4	50
287	Isolates of <i>Cryptococcus neoformans</i> from Infected Animals Reveal Genetic Exchange in Unisexual, α Mating Type Populations. Eukaryotic Cell, 2008, 7, 1771-1780.	3.4	84
288	Impact of Mating Type, Serotype, and Ploidy on the Virulence of <i>Cryptococcus neoformans</i> . Infection and Immunity, 2008, 76, 2923-2938.	1.0	76

#	Article	IF	CITATIONS
289	Calcineurin Target CrzA Regulates Conidial Germination, Hyphal Growth, and Pathogenesis of <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 1085-1097.	3.4	163
290	Impact of Ammonium Permeases MepA, MepB, and MepC on Nitrogen-Regulated Secondary Metabolism in Fusarium fujikuroi. Eukaryotic Cell, 2008, 7, 187-201.	3.4	44
291	Calcineurin Localizes to the Hyphal Septum in Aspergillus fumigatus : Implications for Septum Formation and Conidiophore Development. Eukaryotic Cell, 2008, 7, 1606-1610.	3.4	39
292	Pulmonary Cryptococcosis in Solid Organ Transplant Recipients: Clinical Relevance of Serum Cryptococcal Antigen. Clinical Infectious Diseases, 2008, 46, e12-e18.	2.9	163
293	Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 735-738.	1.4	91
294	Signaling cascades as drug targets in model and pathogenic fungi. Current Opinion in Investigational Drugs, 2008, 9, 856-64.	2.3	27
295	Targeting the Calcineurin Pathway Enhances Ergosterol Biosynthesis Inhibitors against Trichophyton mentagrophytes In Vitro and in a Human Skin Infection Model. Antimicrobial Agents and Chemotherapy, 2007, 51, 3743-3746.	1.4	21
296	First Contemporary Case of Human Infection with Cryptococcus gattii in Puget Sound: Evidence for Spread of the Vancouver Island Outbreak. Journal of Clinical Microbiology, 2007, 45, 3086-3088.	1.8	76
297	Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans. Eukaryotic Cell, 2007, 6, 60-72.	3.4	83
298	Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase Governs Divergent Patterns of the Stress-Activated Hog1 Signaling Pathway in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2007, 6, 2278-2289.	3.4	66
299	Evolution of the Mating Type Locus: Insights Gained from the Dimorphic Primary Fungal Pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryotic Cell, 2007, 6, 622-629.	3.4	87
300	αADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness. PLoS Genetics, 2007, 3, e186.	1.5	126
301	Many Globally Isolated AD Hybrid Strains of Cryptococcus neoformans Originated in Africa. PLoS Pathogens, 2007, 3, e114.	2.1	97
302	Eca1, a Sarcoplasmic/Endoplasmic Reticulum Ca 2+ -ATPase, Is Involved in Stress Tolerance and Virulence in Cryptococcus neoformans. Infection and Immunity, 2007, 75, 3394-3405.	1.0	59
303	Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2979-2981.	1.4	96
304	Divergence of Protein Kinase A Catalytic Subunits in Cryptococcus neoformans and Cryptococcus gattii Illustrates Evolutionary Reconfiguration of a Signaling Cascade. Eukaryotic Cell, 2007, 6, 413-420.	3.4	25
305	Cryptococcus neoformans Mates on Pigeon Guano: Implications for the Realized Ecological Niche and Globalization. Eukaryotic Cell, 2007, 6, 949-959.	3.4	161
306	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157

#	Article	IF	CITATIONS
307	Unique Applications of Novel Antifungal Drug Combinations. Anti-Infective Agents in Medicinal Chemistry, 2007, 6, 3-15.	0.6	18
308	The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host and Microbe, 2007, 1, 263-273.	5.1	175
309	The Virulence of Human Pathogenic Fungi: Notes from the South of France. Cell Host and Microbe, 2007, 2, 77-83.	5.1	18
310	Sex and Virulence of Human Pathogenic Fungi. Advances in Genetics, 2007, 57, 143-173.	0.8	117
311	G protein signaling governing cell fate decisions involves opposing Gα subunits inCryptococcus neoformans. Molecular Biology of the Cell, 2007, 18, 3237-3249.	0.9	64
312	Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 2007, 5, 57-69.	13.6	331
313	Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nature Reviews Microbiology, 2007, 5, 418-430.	13.6	281
314	Fungal Pathogenesis: Gene Clusters Unveiled as Secrets within the Ustilago maydis Code. Current Biology, 2007, 17, R87-R90.	1.8	10
315	Endosymbiosis: The Evil within. Current Biology, 2007, 17, R408-R410.	1.8	14
316	The mating type-specific homeodomain genes SXI1Î \pm and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Genetics, 2007, 51, 187-195.	0.8	72
317	Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology (United Kingdom), 2006, 152, 591-604.	0.7	112
318	The Biology of theCryptococcus neoformansSpecies Complex. Annual Review of Microbiology, 2006, 60, 69-105.	2.9	368
319	The Kelch Proteins Gpb1 and Gpb2 Inhibit Ras Activity via Association with the Yeast RasGAP Neurofibromin Homologs Ira1 and Ira2. Molecular Cell, 2006, 22, 819-830.	4.5	63
320	Yeast diversity sampling on the San Juan Islands reveals no evidence for the spread of the Vancouver IslandCryptococcus gattiioutbreak to this locale. FEMS Yeast Research, 2006, 6, 620-624.	1.1	18
321	Sexual Reproduction and the Evolution of Microbial Pathogens. Current Biology, 2006, 16, R711-R725.	1.8	169
322	Virulence Attributes and Hyphal Growth of C. neoformans Are Quantitative Traits and the MATα Allele Enhances Filamentation. PLoS Genetics, 2006, 2, e187.	1.5	119
323	Recombination Hotspots Flank the Cryptococcus Mating-Type Locus: Implications for the Evolution of a Fungal Sex Chromosome. PLoS Genetics, 2006, 2, e184.	1.5	72
324	Immunotherapy with Tacrolimus (FK506) Does Not Select for Resistance to Calcineurin Inhibitors in Candida albicans Isolates from Liver Transplant Patients. Antimicrobial Agents and Chemotherapy, 2006, 50, 1573-1577.	1.4	18

#	Article	IF	CITATIONS
325	Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 1091-1103.	3.4	262
326	A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence ofCryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 3122-3135.	0.9	205
327	Calcineurin Promotes Infection of the Cornea by Candida albicans and Can Be Targeted To Enhance Fluconazole Therapy. Antimicrobial Agents and Chemotherapy, 2006, 50, 3963-3965.	1.4	34
328	Conserved Elements of the RAM Signaling Pathway Establish Cell Polarity in the BasidiomyceteCryptococcus neoformansin a Divergent Fashion from Other Fungi. Molecular Biology of the Cell, 2006, 17, 3768-3780.	0.9	68
329	The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4546-4551.	3.3	124
330	G Protein-coupled Receptor Gpr4 Senses Amino Acids and Activates the cAMP-PKA Pathway inCryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 667-679.	0.9	144
331	Antifungal Management Practices and Evolution of Infection in Organ Transplant Recipients with Cryptococcus Neoformans Infection. Transplantation, 2005, 80, 1033-1039.	0.5	70
332	Novel gene functions required for melanization of the human pathogenCryptococcus neoformans. Molecular Microbiology, 2005, 57, 1381-1396.	1.2	221
333	Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans. Nature Reviews Microbiology, 2005, 3, 753-764.	13.6	308
334	Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature, 2005, 434, 1017-1021.	13.7	381
335	Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature, 2005, 437, 1360-1364.	13.7	472
336	Carbonic Anhydrase and CO2 Sensing during Cryptococcus neoformans Growth, Differentiation, and Virulence. Current Biology, 2005, 15, 2013-2020.	1.8	188
337	Photosensing Fungi: Phytochrome in the Spotlight. Current Biology, 2005, 15, R829-R832.	1.8	46
338	Pde1 Phosphodiesterase Modulates Cyclic AMP Levels through a Protein Kinase A-Mediated Negative Feedback Loop in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1971-1981.	3.4	71
339	Light Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom. PLoS Biology, 2005, 3, e95.	2.6	272
340	CELL BIOLOGY: Enhanced: A Fungal Achilles' Heel. Science, 2005, 309, 2175-2176.	6.0	48
341	Calcium- and Calcineurin-Independent Roles for Calmodulin in Cryptococcus neoformans Morphogenesis and High-Temperature Growth. Eukaryotic Cell, 2005, 4, 1079-1087.	3.4	65
342	Chromosomal Translocation and Segmental Duplication in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 401-406.	3.4	94

#	Article	IF	CITATIONS
343	Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 17-29.	3.4	63
344	Calcineurin-Binding Protein Cbp1 Directs the Specificity of Calcineurin-Dependent Hyphal Elongation during Mating in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1526-1538.	3.4	47
345	Interaction Between Genetic Background and the Mating-Type Locus in Cryptococcus neoformans Virulence Potential. Genetics, 2005, 171, 975-983.	1.2	82
346	Clonality and Recombination in Genetically Differentiated Subgroups of Cryptococcus gattii. Eukaryotic Cell, 2005, 4, 1403-1409.	3.4	117
347	Transcriptional Network of Multiple Capsule and Melanin Genes Governed by the Cryptococcus neoformans Cyclic AMP Cascade. Eukaryotic Cell, 2005, 4, 190-201.	3.4	159
348	Chlamydospore Formation during Hyphal Growth in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1746-1754.	3.4	67
349	Sex-Specific Homeodomain Proteins Sxi1α and Sxi2 a Coordinately Regulate Sexual Development in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 526-535.	3.4	128
350	Specialization of the HOG Pathway and Its Impact on Differentiation and Virulence ofCryptococcus neoformans. Molecular Biology of the Cell, 2005, 16, 2285-2300.	0.9	258
351	Cryptococcus neoformans Gene Involved in Mammalian Pathogenesis Identified by a Caenorhabditis elegans Progeny-Based Approach. Infection and Immunity, 2005, 73, 8219-8225.	1.0	63
352	Gα Subunit Gpa2 Recruits Kelch Repeat Subunits That Inhibit Receptor-G Protein Coupling during cAMP-induced Dimorphic Transitions in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2005, 16, 4557-4571.	0.9	67
353	Cryptococcus neoformans α Strains Preferentially Disseminate to the Central Nervous System during Coinfection. Infection and Immunity, 2005, 73, 4922-4933.	1.0	133
354	Clinical and Environmental Isolates of Cryptococcus gattii from Australia That Retain Sexual Fecundity. Eukaryotic Cell, 2005, 4, 1410-1419.	3.4	76
355	Cryptococcus neoformans Gene Expression during Murine Macrophage Infection. Eukaryotic Cell, 2005, 4, 1420-1433.	3.4	184
356	Cryptococcus neoformans Isolates from Transplant Recipients Are Not Selected for Resistance to Calcineurin Inhibitors by Current Immunosuppressive Regimens. Journal of Clinical Microbiology, 2005, 43, 464-467.	1.8	24
357	Calcineurin Is Required for Candida albicans To Survive Calcium Stress in Serum. Infection and Immunity, 2005, 73, 5767-5774.	1.0	97
358	The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans. Science, 2005, 307, 1321-1324.	6.0	664
359	Cyclophilin B Escorts the Hepatitis C Virus RNA Polymerase: A Viral Achilles Heel?. Molecular Cell, 2005, 19, 145-146.	4.5	11
360	Chromosomal sex-determining regions in animals, plants and fungi. Current Opinion in Genetics and Development, 2005, 15, 645-651.	1.5	97

21

#	Article	IF	CITATIONS
361	Galleria mellonella as a Model System To Study Cryptococcus neoformans Pathogenesis. Infection and Immunity, 2005, 73, 3842-3850.	1.0	421
362	The cyclophilins. Genome Biology, 2005, 6, 226.	13.9	526
363	In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus Isolates from Transplant and Nontransplant Patients. Antimicrobial Agents and Chemotherapy, 2004, 48, 4922-4925.	1.4	58
364	In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2004, 48, 1664-1669.	1.4	120
365	A Genetic Linkage Map of Cryptococcus neoformans variety neoformans Serotype D (Filobasidiella) Tj ETQq1 1	0.784314 1.2	rgBT_/Overloc
366	Challenge of Drosophila melanogaster with Cryptococcus neoformans and Role of the Innate Immune Response. Eukaryotic Cell, 2004, 3, 413-419.	3.4	126
367	Cyclic AMP-Dependent Protein Kinase Catalytic Subunits Have Divergent Roles in Virulence Factor Production in Two Varieties of the Fungal Pathogen Cryptococcus neoformans. Eukaryotic Cell, 2004, 3, 14-26.	3.4	92
368	The α-Specific Cell Identity Factor Sxi1α Is Not Required for Virulence of Cryptococcus neoformans. Infection and Immunity, 2004, 72, 3643-3645.	1.0	27
369	The Calcineurin Target, Crz1, Functions in Azole Tolerance but Is Not Required for Virulence of Candida albicans. Infection and Immunity, 2004, 72, 7330-7333.	1.0	122
370	Identification of Cryptococcus neoformans Temperature-Regulated Genes with a Genomic-DNA Microarray. Eukaryotic Cell, 2004, 3, 1249-1260.	3.4	102
371	FKBP12 Controls Aspartate Pathway Flux in Saccharomyces cerevisiae To Prevent Toxic Intermediate Accumulation. Eukaryotic Cell, 2004, 3, 1287-1296.	3.4	46
372	Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms. PLoS Biology, 2004, 2, e384.	2.6	218
373	PAK Kinases Ste20 and Pak1 Govern Cell Polarity at Different Stages of Mating inCryptococcus neoformans. Molecular Biology of the Cell, 2004, 15, 4476-4489.	0.9	83
374	Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis. Eukaryotic Cell, 2004, 3, 420-429.	3.4	180
375	Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Molecular Microbiology, 2004, 54, 407-419.	1.2	81
376	Calcineurin: a central controller of signalling in eukaryotes. EMBO Reports, 2004, 5, 343-348.	2.0	140
377	SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Biology, 2004, 14, R743-R744.	1.8	41
378	Investigation of the basis of virulence in serotype A strains of Cryptococcus neoformans from apparently immunocompetent individuals. Current Genetics, 2004, 46, 92-102.	0.8	28

#	Article	IF	CITATIONS
379	Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence. Current Genetics, 2004, 46, 193-204.	0.8	47
380	A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Current Genetics, 2004, 46, 247-255.	0.8	35
381	Evolution of fungal sex chromosomes. Molecular Microbiology, 2004, 51, 299-306.	1.2	134
382	Adenylyl Cyclase-Associated Protein Aca1 Regulates Virulence and Differentiation of Cryptococcus neoformans via the Cyclic AMP-Protein Kinase A Cascade. Eukaryotic Cell, 2004, 3, 1476-1491.	3.4	105
383	Antifungal attributes of immunosuppressive agents: new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients1. Transplantation, 2004, 77, 795-800.	0.5	47
384	Fungal mating-type loci. Current Biology, 2003, 13, R792-R795.	1.8	77
385	Enzymes that Counteract Nitrosative Stress Promote Fungal Virulence. Current Biology, 2003, 13, 1963-1968.	1.8	174
386	The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Molecular Microbiology, 2003, 48, 1377-1387.	1.2	190
387	A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2003, 49, 469-485.	1.2	125
388	Disruption of Ergosterol Biosynthesis Confers Resistance to Amphotericin B in Candida lusitaniae. Antimicrobial Agents and Chemotherapy, 2003, 47, 2717-2724.	1.4	147
389	A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 2003, 31, 1805-1812.	6.5	634
390	Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochemical and Biophysical Research Communications, 2003, 311, 1151-1157.	1.0	155
391	Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genetics and Biology, 2003, 38, 110-121.	0.9	40
392	Evidence of Sexual Recombination among Cryptococcus neoformans Serotype A Isolates in Sub-Saharan Africa. Eukaryotic Cell, 2003, 2, 1162-1168.	3.4	153
393	Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence. Eukaryotic Cell, 2003, 2, 422-430.	3.4	177
394	Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans , Candida glabrata , and Candida krusei. Antimicrobial Agents and Chemotherapy, 2003, 47, 956-964.	1.4	246
395	Sexual Cycle of Cryptococcus neoformans var. grubii and Virulence of Congenic a and α Isolates. Infection and Immunity, 2003, 71, 4831-4841.	1.0	369
396	Phospholipid-Binding Protein Cts1 Controls Septation and Functions Coordinately with Calcineurin in Cryptococcus neoformans. Eukaryotic Cell, 2003, 2, 1025-1035.	3.4	44

#	Article	IF	CITATIONS
397	Recapitulation of the Sexual Cycle of the Primary Fungal PathogenCryptococcus neoformansvar.gattii: Implications for an Outbreak on Vancouver Island, Canada. Eukaryotic Cell, 2003, 2, 1036-1045.	3.4	280
398	Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Current Opinion in Investigational Drugs, 2003, 4, 192-9.	2.3	42
399	Protein Kinase A Operates a Molecular Switch That Governs Yeast Pseudohyphal Differentiation. Molecular and Cellular Biology, 2002, 22, 3981-3993.	1.1	172
400	Mating-Type Locus of Cryptococcus neoformans : a Step in the Evolution of Sex Chromosomes. Eukaryotic Cell, 2002, 1, 704-718.	3.4	258
401	Physical Maps for Genome Analysis of Serotype A and D Strains of the Fungal Pathogen Cryptococcus neoformans. Genome Research, 2002, 12, 1445-1453.	2.4	38
402	Nonlinear partial differential equations and applications: Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15675-15680.	3.3	300
403	Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha. Genes and Development, 2002, 16, 3046-3060.	2.7	121
404	Pheromones Stimulate Mating and Differentiation via Paracrine and Autocrine Signaling in Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 366-377.	3.4	94
405	Mating-Type-Specific and Nonspecific PAK Kinases Play Shared and Divergent Roles in Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 257-272.	3.4	119
406	Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 75-84.	3.4	196
407	FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK5061. Transplantation, 2002, 73, 1835-1838.	0.5	39
408	Genetics of Cryptococcus neoformans. Annual Review of Genetics, 2002, 36, 557-615.	3.2	235
409	The Gα Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic Gβ Subunits. Molecular Cell, 2002, 10, 163-173.	4.5	143
410	Fungal Mating: Candida albicans Flips a Switch to Get in the Mood. Current Biology, 2002, 12, R782-R784.	1.8	14
411	Good fungi gone bad: The corruption of calcineurin. BioEssays, 2002, 24, 894-903.	1.2	122
412	DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli. Molecular Microbiology, 2002, 33, 1141-1151.	1.2	32
413	Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2002, 38, 1017-1026.	1.2	66
414	Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO Journal, 2002, 21, 546-559.	3.5	302

#	Article	IF	CITATIONS
415	Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans The GenBank accession number for the RAS2 sequence of C. neoformans H99 is AF294349 Microbiology (United Kingdom), 2002, 148, 191-201.	0.7	96
416	A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology (United Kingdom), 2002, 148, 2607-2615.	0.7	290
417	Cryptococcus neoformans as a Model Fungal Pathogen. , 2002, , .		2
418	Dismantling the Cryptococcus coat. Trends in Microbiology, 2001, 9, 112-113.	3.5	46
419	Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Molecular Microbiology, 2001, 39, 835-849.	1.2	174
420	Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of <i>Cryptococcus neoformans</i> . EMBO Reports, 2001, 2, 511-518.	2.0	109
421	Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiology Reviews, 2001, 25, 349-364.	3.9	270
422	A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature, 2001, 410, 490-494.	13.7	839
423	The TOR Signal Transduction Cascade Controls Cellular Differentiation in Response to Nutrients. Molecular Biology of the Cell, 2001, 12, 4103-4113.	0.9	153
424	Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Molecular and Cellular Biology, 2001, 21, 3179-3191.	1.1	310
425	The TOR Kinases Link Nutrient Sensing to Cell Growth. Journal of Biological Chemistry, 2001, 276, 9583-9586.	1.6	318
426	Phytosphingosine as a Specific Inhibitor of Growth and Nutrient Import in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 35614-35621.	1.6	91
427	Rapamycin and Less Immunosuppressive Analogs Are Toxic to Candida albicans and Cryptococcus neoformans via FKBP12-Dependent Inhibition of TOR. Antimicrobial Agents and Chemotherapy, 2001, 45, 3162-3170.	1.4	135
428	Serotype AD Strains of Cryptococcus neoformans Are Diploid or Aneuploid and Are Heterozygous at the Mating-Type Locus. Infection and Immunity, 2001, 69, 115-122.	1.0	202
429	Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiology Reviews, 2001, 25, 349-364.	3.9	12
430	RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Molecular Microbiology, 2000, 36, 352-365.	1.2	211
431	A new face of the Rhesus antigen. Nature Genetics, 2000, 26, 258-259.	9.4	36
432	Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Mycopathologia, 2000, 149, 47-48.	1.3	1

#	Article	IF	CITATIONS
433	Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, inCryptococcus neoformans. EMBO Journal, 2000, 19, 3618-3629.	3.5	158
434	The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO Journal, 2000, 19, 3727-3738.	3.5	147
435	Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO Journal, 2000, 19, 3739-3749.	3.5	102
436	Synergistic Antifungal Activities of Bafilomycin A 1 , Fluconazole, and the Pneumocandin MK-0991/Caspofungin Acetate (L-743,873) with Calcineurin Inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2000, 44, 739-746.	1.4	159
437	Immunosuppressive and Nonimmunosuppressive Cyclosporine Analogs Are Toxic to the Opportunistic Fungal Pathogen <i>Cryptococcus neoformans</i> via Cyclophilin-Dependent Inhibition of Calcineurin. Antimicrobial Agents and Chemotherapy, 2000, 44, 143-149.	1.4	128
438	Sphingolipids Signal Heat Stress-induced Ubiquitin-dependent Proteolysis. Journal of Biological Chemistry, 2000, 275, 17229-17232.	1.6	108
439	The G-Protein β Subunit GPB1 Is Required for Mating and Haploid Fruiting in <i>Cryptococcus neoformans</i> . Molecular and Cellular Biology, 2000, 20, 352-362.	1.1	164
440	Sok2 Regulates Yeast Pseudohyphal Differentiation via a Transcription Factor Cascade That Regulates Cell-Cell Adhesion. Molecular and Cellular Biology, 2000, 20, 8364-8372.	1.1	119
441	Characterization of Alcohol-induced Filamentous Growth in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2000, 11, 183-199.	0.9	196
442	Comparison of the Roles of Calcineurin in Physiology and Virulence in Serotype D and Serotype A Strains of Cryptococcus neoformans. Infection and Immunity, 2000, 68, 982-985.	1.0	73
443	Diploid Strains of the Pathogenic Basidiomycete Cryptococcus neoformans Are Thermally Dimorphic. Fungal Genetics and Biology, 2000, 29, 153-163.	0.9	113
444	Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Current Opinion in Microbiology, 2000, 3, 567-572.	2.3	153
445	Gene Disruption by Biolistic Transformation in Serotype D Strains of Cryptococcus neoformans. Fungal Genetics and Biology, 2000, 29, 38-48.	0.9	175
446	Signal Transduction Cascades Regulating Fungal Development and Virulence. Microbiology and Molecular Biology Reviews, 2000, 64, 746-785.	2.9	815
447	The G Protein-Coupled Receptor Gpr1 Is a Nutrient Sensor That Regulates Pseudohyphal Differentiation in Saccharomyces cerevisiae. Genetics, 2000, 154, 609-622.	1.2	224
448	A STE12 Homolog Is Required for Mating but Dispensable for Filamentation in Candida lusitaniae. Genetics, 2000, 155, 17-29.	1.2	48
449	Antifungal Activities of Antineoplastic Agents: <i>Saccharomyces cerevisiae</i> as a Model System To Study Drug Action. Clinical Microbiology Reviews, 1999, 12, 583-611.	5.7	97
450	Comparison of In Vitro Activities of Camptothecin and Nitidine Derivatives against Fungal and Cancer Cells. Antimicrobial Agents and Chemotherapy, 1999, 43, 2862-2868.	1.4	64

#	Article	IF	CITATIONS
451	Paul L. Bartel and Stanley Fields, eds. The Yeast Two-Hybrid System. Mycopathologia, 1999, 146, 105-106.	1.3	1
452	The Cryptococcus neoformans genome sequencing project. Mycopathologia, 1999, 148, 1-7.	1.3	40
453	Calcineurin. Cell Biochemistry and Biophysics, 1999, 30, 115-151.	0.9	205
454	Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Current Opinion in Microbiology, 1999, 2, 358-362.	2.3	71
455	TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals. Molecular and Cellular Endocrinology, 1999, 155, 135-142.	1.6	89
456	R73A and H144Q mutants of the yeast mitochondrial cyclophilin Cpr3 exhibit a low prolyl isomerase activity in both peptide and protein-folding assays. FEBS Letters, 1999, 443, 367-369.	1.3	16
457	Molecular Analysis of the Cryptococcus neoformans ADE2 Gene, a Selectable Marker for Transformation and Gene Disruption. Fungal Genetics and Biology, 1999, 27, 36-48.	0.9	40
458	Molecular Cloning and Characterization of Aspergillus nidulans Cyclophilin B. Fungal Genetics and Biology, 1999, 27, 55-66.	0.9	31
459	On the Origins of Congenic MATα and MATa Strains of the Pathogenic Yeast Cryptococcus neoformans. Fungal Genetics and Biology, 1999, 28, 1-5.	0.9	84
460	Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs in <i>Cryptococcus neoformans</i> . Molecular and Cellular Biology, 1999, 19, 4101-4112.	1.1	159
461	Cyclic AMP-Dependent Protein Kinase Regulates Pseudohyphal Differentiation in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 4874-4887.	1.1	337
462	Hmo1p, a High Mobility Group 1/2 Homolog, Genetically and Physically Interacts With the Yeast FKBP12 Prolyl Isomerase. Genetics, 1999, 151, 935-944.	1.2	33
463	Topoisomerase I Is Essential in Cryptococcus neoformans: Role in Pathobiology and as an Antifungal Target. Genetics, 1999, 152, 167-178.	1.2	71
464	The STE12α Homolog Is Required for Haploid Filamentation But Largely Dispensable for Mating and Virulence in Cryptococcus neoformans. Genetics, 1999, 153, 1601-1615.	1.2	138
465	<i>Cryptococcus neoformans</i> Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein. Infection and Immunity, 1999, 67, 1812-1820.	1.0	61
466	Cryptococcus neoformans Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein. Infection and Immunity, 1999, 67, 1812-1820.	1.0	10
467	Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends in Biotechnology, 1998, 16, 427-433.	4.9	91
468	Signal Transduction Pathways Regulating Differentiation and Pathogenicity ofCryptococcus neoformans. Fungal Genetics and Biology, 1998, 25, 1-14.	0.9	96

#	Article	IF	CITATIONS
469	Rapamycin Induces the G _O Program of Transcriptional Repression in Yeast by Interfering with the TOR Signaling Pathway. Molecular and Cellular Biology, 1998, 18, 4463-4470.	1.1	202
470	<i>CNS1</i> Encodes an Essential p60/Sti1 Homolog in <i>Saccharomyces cerevisiae</i> That Suppresses Cyclophilin 40 Mutations and Interacts with Hsp90. Molecular and Cellular Biology, 1998, 18, 7344-7352.	1.1	88
471	Regulators of Pseudohyphal Differentiation in Saccharomyces cerevisiae Identified Through Multicopy Suppressor Analysis in Ammonium Permease Mutant Strains. Genetics, 1998, 150, 1443-1457.	1.2	137
472	STT4 Is an Essential Phosphatidylinositol 4-Kinase That Is a Target of Wortmannin in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 27671-27677.	1.6	78
473	Expression, Enzyme Activity, and Subcellular Localization of Mammalian Target of Rapamycin in Insulin-Responsive Cells. Biochemical and Biophysical Research Communications, 1997, 241, 704-709.	1.0	69
474	Temperature-sensitive mutants of the EcoRI endonuclease. Journal of Molecular Biology, 1997, 274, 722-737.	2.0	16
475	Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. FEBS Letters, 1997, 414, 69-73.	1.3	31
476	Functional Expression of the Multidrug Resistance-associated Protein in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 4154-4160.	1.6	34
477	Immunosuppressant Target Protein FKBP12 Is Required for P-Glycoprotein Function in Yeast. Journal of Biological Chemistry, 1996, 271, 18527-18534.	1.6	58
478	Regional Bivalent-Univalent Pairing <i>Versus</i> Trivalent Pairing of a Trisomic Chromosome in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 144, 957-966.	1.2	10
479	Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Current Opinion in Nephrology and Hypertension, 1995, 4, 472-477.	1.0	102
480	Myristoylation of Calcineurin B Is Not Required for Function or Interaction with Immunophilin-Immunosuppressant Complexes in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 24831-24838.	1.6	39
481	Mutations That Perturb Cyclophilin A Ligand Binding Pocket Confer Cyclosporin A Resistance in Saccharomycescerevisiae. Journal of Biological Chemistry, 1995, 270, 20997-21002.	1.6	29
482	TOR Mutations Confer Rapamycin Resistance by Preventing Interaction with FKBP12-Rapamycin. Journal of Biological Chemistry, 1995, 270, 27531-27537.	1.6	201
483	Saturation mutagenesis of His114 of EcoRI reveals relaxed-specificity mutants. Gene, 1995, 157, 295-301.	1.0	29
484	Gene disruption with PCR products in Saccharomyces cerevisiae. Gene, 1995, 158, 113-117.	1.0	285
485	Yeast as model T cells. Journal of Computer - Aided Molecular Design, 1994, 2, 103-126.	1.0	33

486 Chaperoning a pathogen. Nature, 1994, 372, 319-320.

13.7 17

#	Article	lF	CITATIONS
487	Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Molecular Microbiology, 1993, 8, 1017-1024.	1.2	21
488	Proline Isomerases in Microorganisms and Small Eukaryotes ^a . Annals of the New York Academy of Sciences, 1993, 696, 38-43.	1.8	14
489	How the EcoRI endonuclease recognizes and cleaves DNA. BioEssays, 1992, 14, 445-454.	1.2	59
490	SOS induction as an in vivo assay of enzyme-DNA interactions. Gene, 1991, 103, 1-9.	1.0	61
491	Substrate recognition by theEcoRI endonuclease. Proteins: Structure, Function and Bioinformatics, 1990, 7, 185-197.	1.5	55
492	Phage Trojan horses: a conditional expression system for lethal genes. Gene, 1989, 85, 193-197.	1.0	11
493	Melanin, Radiation, and Energy Transduction in Fungi. , 0, , 509-514.		2
494	Fungal Diversity Revisited: 2.2 to 3.8 Million Species. , 0, , 79-95.		122
495	Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.		62
496	Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. , 0, , 687-699.		32
497	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
498	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13
499	Stress Adaptation. , 0, , 463-485.		9
500	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4
501	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
502	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
503	Biologically Active Secondary Metabolites from the Fungi. , 0, , 1087-1119.		25
504	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9

29

22

#	Article	IF	CITATIONS
505	Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. , 0, , 535-548.		2
506	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
507	Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution. , 0, , 599-618.		9
508	RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.		3
509	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
510	Fungal Sex: The Basidiomycota. , 0, , 147-175.		20
511	Cell Biology of Hyphal Growth. , 0, , 231-265.		15
512	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
513	The Mycelium as a Network. , 0, , 335-367.		15
514	Fungi as a Source of Food. , 0, , 1063-1085.		9
515	Sex and the Imperfect Fungi. , 0, , 193-214.		8
516	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14
517	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts. , 0, , 143-162.		2
518	Sex, MAT, and the Evolution of Fungal Virulence. , 0, , 13-33.		5
519	Cryptococcus neoformans : a Sugar-Coated Killer. , 0, , 279-303.		6
520	Zygomycetes as Agents of Infectious Disease in Humans. , 0, , 429-440.		8
521	Evolution of Human-Pathogenic Fungi: Phylogenies and Species. , 0, , 113-P1.		5
500	The Fuglistian of the MAT via The Accomposition (0, 111)		

522 The Evolution of <i>MAT</i>: The Ascomycetes. , 0, , 1-18.

3

#	Article	IF	CITATIONS
523	MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora. , 0, , 171-188.		6
524	The Evolutionary Implications of an Asexual Lifestyle Manifested by Penicillium marneffei. , 0, , 201-212.		3
525	<i>MAT</i> , Mating, Switching, and Pathogenesis in <i>Candida albicans, Candida dubliniensis</i> , and <i>Candida glabrata</i> . , 0, , 213-234.		4
526	Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts. , 0, , 247-263.		7
527	The Origin of Multiple Mating Types in the Model Mushrooms <i>Coprinopsis cinerea</i> and <i>Schizophyllum commune</i> ., 0,, 283-300.		22
528	Pheromones and Pheromone Receptors in Schizophyllum commune Mate Recognition: Retrospective of a Half-Century of Progress and a Look Ahead. , 0, , 301-315.		5
529	Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species. , 0, , 317-331.		11
530	Evolution of the Mating-Type Locus: The Basidiomycetes. , 0, , 19-34.		25
531	Dikaryons, Diploids, and Evolution. , 0, , 333-348.		25
532	History of the Mating Types in <i>Ustilago maydis</i> ., 0, , 349-375.		5
533	Mating in the Smut Fungi: From a to b to the Downstream Cascades. , 0, , 377-387.		10
534	Bipolar and Tetrapolar Mating Systems in the Ustilaginales. , 0, , 389-404.		2
535	Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota. , 0, , 405-418.		7
536	How the Genome Is Organized in the Glomeromycota. , 0, , 419-430.		3
537	Trisporic Acid and Mating in Zygomycetes. , 0, , 431-443.		7
538	Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease. , 0, , 445-458.		21
539	Mechanisms of Homothallism in Fungi and Transitions between Heterothallism and Homothallism. , 0, , 35-57.		43

540 Why Bother with Sex? Answers from Experiments with Yeast and Other Organisms. , 0, , 489-506.

#	Article	IF	CITATIONS
541	Why Sex Is Good: On Fungi and Beyond. , 0, , 527-534.		18
542	Mating-Type Locus Control of Cell Identity. , 0, , 59-73.		5
543	Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle. , 0, , 91-121.		6
544	Sexual Reproduction and Significance of MAT in the Aspergilli. , 0, , 123-142.		12
545	The mat Genes of Schizosaccharomyces pombe: Expression, Homothallic Switch, and Silencing. , 0, , 143-157.		8
546	Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching. , 0, , 159-170.		7
547	Systematics of the Genus Cryptococcus and Its Type Species C. neoformans. , 0, , 1-15.		12
548	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective. , 0, , 139-149.		7
549	A Role for Mating in Cryptococcal Virulence. , 0, , 167-174.		3
550	Sensing Extracellular Signals in Cryptococcus neoformans. , 0, , 175-187.		2
551	Drug Resistance in <i>Cryptococcus</i> : Epidemiology and Molecular Mechanisms. , 0, , 203-216.		3
552	Signaling Cascades and Enzymes as Cryptococcus Virulence Factors. , 0, , 217-234.		2
553	Environmental Niches for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> . , 0, , 235-259.		19
554	The History of Cryptococcus and Cryptococcosis. , 0, , 17-26.		5
555	Cryptococcosis in Africa. , 0, , 269-285.		3
556	Cryptococcosis in Asia. , 0, , 287-297.		3
557	Sexual Reproduction of <i>Cryptococcus gattii</i> : a Population Genetics Perspective. , 0, , 299-311.		2
558	The Emergence of Cryptococcus gattii Infections on Vancouver Island and Expansion in the Pacific		3

Northwest. , 0, , 313-325.

3

#	Article	IF	CITATIONS
559	Hybridization and Its Importance in the Cryptococcus Species Complex. , 0, , 359-370.		2
560	Biosynthesis and Genetics of the Cryptococcus Capsule. , 0, , 27-41.		4
561	Cryptococcus Interactions with Innate Cytotoxic Lymphocytes. , 0, , 417-427.		1
562	Invasion of <i>Cryptococcus</i> into the Central Nervous System. , 0, , 465-471.		6
563	Cryptococcosis in Experimental Animals: Lessons Learned. , 0, , 473-488.		2
564	Veterinary Insights into Cryptococcosis Caused by <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> ., 0,, 489-504.		10
565	Cryptococcosis in Transplant Recipients. , 0, , 505-514.		1
566	Cryptococcosis in AIDS. , 0, , 515-525.		4
567	The Architecture and Antigenic Composition of the Polysaccharide Capsule. , 0, , 43-54.		8
568	Vaccines and Antibody Therapies from Cryptococcus neoformans to Melanoma. , 0, , 537-546.		1
569	Diagnostic Approach Based on Capsular Antigen, Capsule Detection, β-Glucan, and DNA Analysis. , 0, , 547-564.		5
570	Public Health Importance of Cryptococcal Disease: Epidemiology, Burden, and Control. , 0, , 585-593.		6
571	Clinical Perspectives on <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> : Implications for Diagnosis and Management. , 0, , 595-606.		16
572	Melanin: Structure, Function, and Biosynthesis in Cryptococcus. , 0, , 55-66.		3
573	The Cell Wall of Cryptococcus. , 0, , 67-79.		4
574	Sexual Reproduction of Cryptococcus. , 0, , 81-96.		3
575	Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii. , 0, , 97-111.		5

576 Ecology of Fungal Plant Pathogens. , 0, , 387-397.

1

#	Article	IF	CITATIONS
577	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1
578	Fungal Plant Pathogenesis Mediated by Effectors. , 0, , 767-785.		1
579	Skin Fungi from Colonization to Infection. , 0, , 855-871.		6
580	The Insect Pathogens. , 0, , 923-943.		7
581	Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom. , 0, , 97-113.		15
582	Evolution of <i>MAT</i> in the <i>Candida</i> Species Complex: Sex, Ploidy, and Complete Sexual Cycles in <i>C. lusitaniae, C. guilliermondii</i> , and <i>C. krusei</i> , 0, , 235-245.		1
583	The Cryptococcus Genomes: Tools for Comparative Genomics and Expression Analysis. , 0, , 113-126.		2
584	Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence. , 0, , 189-201.		0
585	G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus. , 0, , 151-165.		1
586	Acquired Humoral Immunity to Cryptococcus neoformans. , 0, , 397-408.		0
587	Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using Cryptococcus neoformans. , 0, , 459-475.		0
588	Management of Cryptococcal Meningoencephalitis in Both Developed and Developing Countries. , 0, , 565-584.		1
589	Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes. , 0, , 189-200.		0
590	The Interaction of Cryptococcus neoformans with Host MacroPhages and Neutrophils. , 0, , 371-385.		0
591	Pulmonary Innate and Adaptive Defenses against Cryptococcus. , 0, , 451-464.		0
592	Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses. , 0, , 127-137.		1
593	Rewiring Transcriptional Circuitry: Mating-Type Regulation in Saccharomyces cerevisiae and Candida albicans as a Model for Evolution. , 0, , 75-89.		2

594 Sex in Natural Populations of Cryptococcus gattii. , 0, , 477-488.

#	Article	IF	CITATIONS
595	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1
596	Establishment of Cell Identity in Pathogenic Fungi. , 0, , 133-141.		0
597	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 0, , 571-597.		ο
598	Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. ELife, 0, 11, .	2.8	4