Joseph Heitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655244/publications.pdf

Version: 2024-02-01

598 papers 46,206 citations

996 114 h-index 180 g-index

1036 all docs

1036 docs citations

1036 times ranked

24851 citing authors

#	Article	IF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
2	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
3	A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature, 2001, 410, 490-494.	13.7	839
4	Signal Transduction Cascades Regulating Fungal Development and Virulence. Microbiology and Molecular Biology Reviews, 2000, 64, 746-785.	2.9	815
5	The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans. Science, 2005, 307, 1321-1324.	6.0	664
6	A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 2003, 31, 1805-1812.	6.5	634
7	The cyclophilins. Genome Biology, 2005, 6, 226.	13.9	526
8	Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature, 2005, 437, 1360-1364.	13.7	472
9	Galleria mellonella as a Model System To Study Cryptococcus neoformans Pathogenesis. Infection and Immunity, 2005, 73, 3842-3850.	1.0	421
10	Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature, 2005, 434, 1017-1021.	13.7	381
11	Sexual Cycle of Cryptococcus neoformans var. grubii and Virulence of Congenic a and α Isolates. Infection and Immunity, 2003, 71, 4831-4841.	1.0	369
12	The Biology of theCryptococcus neoformansSpecies Complex. Annual Review of Microbiology, 2006, 60, 69-105.	2.9	368
13	Cyclic AMP-Dependent Protein Kinase Regulates Pseudohyphal Differentiation in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 4874-4887.	1.1	337
14	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	1.5	336
15	Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 2007, 5, 57-69.	13.6	331
16	The Evolution of Sex: a Perspective from the Fungal Kingdom. Microbiology and Molecular Biology Reviews, 2010, 74, 298-340.	2.9	326
17	The TOR Kinases Link Nutrient Sensing to Cell Growth. Journal of Biological Chemistry, 2001, 276, 9583-9586.	1.6	318
18	Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Molecular and Cellular Biology, 2001, 21, 3179-3191.	1.1	310

#	Article	lF	Citations
19	Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans. Nature Reviews Microbiology, 2005, 3, 753-764.	13.6	308
20	Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathogens, 2010, 6, e1000850.	2.1	303
21	Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO Journal, 2002, 21, 546-559.	3.5	302
22	Nonlinear partial differential equations and applications: Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15675-15680.	3 . 3	300
23	Spores as Infectious Propagules of <i>Cryptococcus neoformans </i> . Infection and Immunity, 2009, 77, 4345-4355.	1.0	299
24	Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity. PLoS Pathogens, 2010, 6, e1000953.	2.1	291
25	A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology (United Kingdom), 2002, 148, 2607-2615.	0.7	290
26	Gene disruption with PCR products in Saccharomyces cerevisiae. Gene, 1995, 158, 113-117.	1.0	285
27	Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nature Reviews Microbiology, 2007, 5, 418-430.	13.6	281
28	Recapitulation of the Sexual Cycle of the Primary Fungal PathogenCryptococcus neoformansvar.gattii: Implications for an Outbreak on Vancouver Island, Canada. Eukaryotic Cell, 2003, 2, 1036-1045.	3.4	280
29	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
30	Light Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom. PLoS Biology, 2005, 3, e95.	2.6	272
31	Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiology Reviews, 2001, 25, 349-364.	3.9	270
32	Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Current Biology, 2009, 19, 621-629.	1.8	266
33	Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 1091-1103.	3.4	262
34	Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes. Eukaryotic Cell, 2002, 1, 704-718.	3.4	258
35	Specialization of the HOG Pathway and Its Impact on Differentiation and Virulence of Cryptococcus neoformans. Molecular Biology of the Cell, 2005, 16, 2285-2300.	0.9	258
36	Sex in Fungi. Annual Review of Genetics, 2011, 45, 405-430.	3.2	257

#	Article	IF	Citations
37	Microsporidia Evolved from Ancestral Sexual Fungi. Current Biology, 2008, 18, 1675-1679.	1.8	256
38	Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrobial Agents and Chemotherapy, 2003, 47, 956-964.	1.4	246
39	Spread of <i>Cryptococcus gattii </i> into Pacific Northwest Region of the United States. Emerging Infectious Diseases, 2009, 15, 1185-1191.	2.0	239
40	Genetics of Cryptococcus neoformans. Annual Review of Genetics, 2002, 36, 557-615.	3.2	235
41	The G Protein-Coupled Receptor Gpr1 Is a Nutrient Sensor That Regulates Pseudohyphal Differentiation in Saccharomyces cerevisiae. Genetics, 2000, 154, 609-622.	1.2	224
42	Novel gene functions required for melanization of the human pathogenCryptococcus neoformans. Molecular Microbiology, 2005, 57, 1381-1396.	1.2	221
43	Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms. PLoS Biology, 2004, 2, e384.	2.6	218
44	RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Molecular Microbiology, 2000, 36, 352-365.	1.2	211
45	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	1.8	211
46	Calcineurin. Cell Biochemistry and Biophysics, 1999, 30, 115-151.	0.9	205
47	A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 3122-3135.	0.9	205
48	Synergistic Effect of Calcineurin Inhibitors and Fluconazole against <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 1127-1132.	1.4	205
49	Rapamycin Induces the G _O Program of Transcriptional Repression in Yeast by Interfering with the TOR Signaling Pathway. Molecular and Cellular Biology, 1998, 18, 4463-4470.	1.1	202
50	Serotype AD Strains of Cryptococcus neoformans Are Diploid or Aneuploid and Are Heterozygous at the Mating-Type Locus. Infection and Immunity, 2001, 69, 115-122.	1.0	202
51	TOR Mutations Confer Rapamycin Resistance by Preventing Interaction with FKBP12-Rapamycin. Journal of Biological Chemistry, 1995, 270, 27531-27537.	1.6	201
52	Fungi in the Marine Environment: Open Questions and Unsolved Problems. MBio, 2019, 10 , .	1.8	200
53	Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genetics, 2015, 11, e1005614.	1.5	198
54	Characterization of Alcohol-induced Filamentous Growth in <i>Saccharomyces cerevisiae</i> Molecular Biology of the Cell, 2000, 11, 183-199.	0.9	196

#	Article	IF	Citations
55	Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 75-84.	3.4	196
56	The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Molecular Microbiology, 2003, 48, 1377-1387.	1.2	190
57	Carbonic Anhydrase and CO2 Sensing during Cryptococcus neoformans Growth, Differentiation, and Virulence. Current Biology, 2005, 15, 2013-2020.	1.8	188
58	Cryptococcus neoformans Gene Expression during Murine Macrophage Infection. Eukaryotic Cell, 2005, 4, 1420-1433.	3.4	184
59	Molecular Evidence That the Range of the Vancouver Island Outbreak of (i) Cryptococcus gattii (i) Infection Has Expanded into the Pacific Northwest in the United States. Journal of Infectious Diseases, 2009, 199, 1081-1086.	1.9	184
60	Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7.	13.9	181
61	Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis. Eukaryotic Cell, 2004, 3, 420-429.	3.4	180
62	Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence. Eukaryotic Cell, 2003, 2, 422-430.	3.4	177
63	Gene Disruption by Biolistic Transformation in Serotype D Strains of Cryptococcus neoformans. Fungal Genetics and Biology, 2000, 29, 38-48.	0.9	175
64	The Human Fungal Pathogen Cryptococcus Can Complete Its Sexual Cycle during a Pathogenic Association with Plants. Cell Host and Microbe, 2007, 1, 263-273.	5.1	175
65	Origins of Eukaryotic Sexual Reproduction. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016154-a016154.	2.3	175
66	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
67	Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Molecular Microbiology, 2001, 39, 835-849.	1.2	174
68	Enzymes that Counteract Nitrosative Stress Promote Fungal Virulence. Current Biology, 2003, 13, 1963-1968.	1.8	174
69	Protein Kinase A Operates a Molecular Switch That Governs Yeast Pseudohyphal Differentiation. Molecular and Cellular Biology, 2002, 22, 3981-3993.	1.1	172
70	Sexual Reproduction and the Evolution of Microbial Pathogens. Current Biology, 2006, 16, R711-R725.	1.8	169
71	Cryptococcus neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host and Microbe, 2013, 13, 265-276.	5.1	167
72	Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews, 2008, 32, 1010-1032.	3.9	165

#	Article	IF	CITATIONS
73	The G-Protein \hat{I}^2 Subunit GPB1 Is Required for Mating and Haploid Fruiting in <i>Cryptococcus neoformans</i> . Molecular and Cellular Biology, 2000, 20, 352-362.	1.1	164
74	Calcineurin Target CrzA Regulates Conidial Germination, Hyphal Growth, and Pathogenesis of <i>Aspergillus fumigatus</i> Lukaryotic Cell, 2008, 7, 1085-1097.	3.4	163
75	Pulmonary Cryptococcosis in Solid Organ Transplant Recipients: Clinical Relevance of Serum Cryptococcal Antigen. Clinical Infectious Diseases, 2008, 46, e12-e18.	2.9	163
76	Cryptococcus neoformans Mates on Pigeon Guano: Implications for the Realized Ecological Niche and Globalization. Eukaryotic Cell, 2007, 6, 949-959.	3.4	161
77	Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs in <i>Cryptococcus neoformans</i>). Molecular and Cellular Biology, 1999, 19, 4101-4112.	1.1	159
78	Synergistic Antifungal Activities of Bafilomycin A 1 , Fluconazole, and the Pneumocandin MK-0991/Caspofungin Acetate (L-743,873) with Calcineurin Inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2000, 44, 739-746.	1.4	159
79	Transcriptional Network of Multiple Capsule and Melanin Genes Governed by the Cryptococcus neoformans Cyclic AMP Cascade. Eukaryotic Cell, 2005, 4, 190-201.	3.4	159
80	Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases. PLoS Pathogens, 2012, 8, e1002701.	2.1	159
81	Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, inCryptococcus neoformans. EMBO Journal, 2000, 19, 3618-3629.	3.5	158
82	Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata. PLoS Pathogens, 2012, 8, e1002718.	2.1	158
83	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157
84	Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides. MBio, 2019, 10, .	1.8	156
85	Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochemical and Biophysical Research Communications, 2003, 311, 1151-1157.	1.0	155
86	Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nature Communications, 2015, 6, 6757.	5.8	155
87	Identification of the sex genes in an early diverged fungus. Nature, 2008, 451, 193-196.	13.7	154
88	Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Current Opinion in Microbiology, 2000, 3, 567-572.	2.3	153
89	The TOR Signal Transduction Cascade Controls Cellular Differentiation in Response to Nutrients. Molecular Biology of the Cell, 2001, 12, 4103-4113.	0.9	153
90	Evidence of Sexual Recombination among Cryptococcus neoformans Serotype A Isolates in Sub-Saharan Africa. Eukaryotic Cell, 2003, 2, 1162-1168.	3.4	153

#	Article	IF	Citations
91	The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO Journal, 2000, 19, 3727-3738.	3.5	147
92	Disruption of Ergosterol Biosynthesis Confers Resistance to Amphotericin B in Candida lusitaniae. Antimicrobial Agents and Chemotherapy, 2003, 47, 2717-2724.	1.4	147
93	Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature, 2014, 513, 555-558.	13.7	147
94	Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans. PLoS Biology, 2013, 11, e1001653.	2.6	145
95	G Protein-coupled Receptor Gpr4 Senses Amino Acids and Activates the cAMP-PKA Pathway inCryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 667-679.	0.9	144
96	The $\hat{Gl}\pm$ Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic \hat{Gl}^2 Subunits. Molecular Cell, 2002, 10, 163-173.	4.5	143
97	Evolution of Eukaryotic Microbial Pathogens via Covert Sexual Reproduction. Cell Host and Microbe, 2010, 8, 86-99.	5.1	142
98	Calcineurin: a central controller of signalling in eukaryotes. EMBO Reports, 2004, 5, 343-348.	2.0	140
99	Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes and Infection, 2011, 13, 895-907.	1.0	138
100	The STE12 \hat{l}_{\pm} Homolog Is Required for Haploid Filamentation But Largely Dispensable for Mating and Virulence in Cryptococcus neoformans. Genetics, 1999, 153, 1601-1615.	1.2	138
101	Regulators of Pseudohyphal Differentiation in Saccharomyces cerevisiae Identified Through Multicopy Suppressor Analysis in Ammonium Permease Mutant Strains. Genetics, 1998, 150, 1443-1457.	1.2	137
102	Rapamycin and Less Immunosuppressive Analogs Are Toxic to Candida albicans and Cryptococcus neoformans via FKBP12-Dependent Inhibition of TOR. Antimicrobial Agents and Chemotherapy, 2001, 45, 3162-3170.	1.4	135
103	Evolution of fungal sex chromosomes. Molecular Microbiology, 2004, 51, 299-306.	1.2	134
104	Sex-induced silencing defends the genome of <i>Cryptococcus neoformans</i> via RNAi. Genes and Development, 2010, 24, 2566-2582.	2.7	134
105	Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides. PLoS Pathogens, 2013, 9, e1003625.	2.1	134
106	Population genomics and the evolution of virulence in the fungal pathogen <i>Cryptococcus neoformans</i> . Genome Research, 2017, 27, 1207-1219.	2.4	134
107	Cryptococcus neoformans α Strains Preferentially Disseminate to the Central Nervous System during Coinfection. Infection and Immunity, 2005, 73, 4922-4933.	1.0	133
108	Signalling pathways in the pathogenesis of <i>Cryptococcus </i> . Cellular Microbiology, 2009, 11, 370-380.	1.1	133

#	Article	IF	CITATIONS
109	Evolution of fungal sexual reproduction. Mycologia, 2013, 105, 1-27.	0.8	133
110	Mechanistic Plasticity of Sexual Reproduction and Meiosis in the Candida Pathogenic Species Complex. Current Biology, 2009, 19, 891-899.	1.8	130
111	Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence, 2017, 8, 186-197.	1.8	130
112	Immunosuppressive and Nonimmunosuppressive Cyclosporine Analogs Are Toxic to the Opportunistic Fungal Pathogen <i>Cryptococcus neoformans</i> via Cyclophilin-Dependent Inhibition of Calcineurin. Antimicrobial Agents and Chemotherapy, 2000, 44, 143-149.	1.4	128
113	Sex-Specific Homeodomain Proteins Sxi1α and Sxi2 a Coordinately Regulate Sexual Development in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 526-535.	3.4	128
114	Sporangiospore Size Dimorphism Is Linked to Virulence of Mucor circinelloides. PLoS Pathogens, 2011, 7, e1002086.	2.1	128
115	The Protein Kinase Tor1 Regulates Adhesin Gene Expression in Candida albicans. PLoS Pathogens, 2009, 5, e1000294.	2.1	127
116	Challenge of Drosophila melanogaster with Cryptococcus neoformans and Role of the Innate Immune Response. Eukaryotic Cell, 2004, 3, 413-419.	3.4	126
117	αADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness. PLoS Genetics, 2007, 3, e186.	1.5	126
118	A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2003, 49, 469-485.	1.2	125
119	The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4546-4551.	3.3	124
120	New facets of antifungal therapy. Virulence, 2017, 8, 222-236.	1.8	123
121	Good fungi gone bad: The corruption of calcineurin. BioEssays, 2002, 24, 894-903.	1.2	122
122	The Calcineurin Target, Crz1, Functions in Azole Tolerance but Is Not Required for Virulence of Candida albicans. Infection and Immunity, 2004, 72, 7330-7333.	1.0	122
123	Fungal Diversity Revisited: 2.2 to 3.8 Million Species. , 0, , 79-95.		122
124	Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha. Genes and Development, 2002, 16, 3046-3060.	2.7	121
125	In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2004, 48, 1664-1669.	1.4	120
126	Remodeling of Global Transcription Patterns of <i>Cryptococcus neoformans</i> Genes Mediated by the Stress-Activated HOG Signaling Pathways. Eukaryotic Cell, 2009, 8, 1197-1217.	3.4	120

#	Article	IF	CITATIONS
127	Sok2 Regulates Yeast Pseudohyphal Differentiation via a Transcription Factor Cascade That Regulates Cell-Cell Adhesion. Molecular and Cellular Biology, 2000, 20, 8364-8372.	1.1	119
128	Mating-Type-Specific and Nonspecific PAK Kinases Play Shared and Divergent Roles in Cryptococcus neoformans. Eukaryotic Cell, 2002, 1, 257-272.	3.4	119
129	Virulence Attributes and Hyphal Growth of C. neoformans Are Quantitative Traits and the MATα Allele Enhances Filamentation. PLoS Genetics, 2006, 2, e187.	1.5	119
130	Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast <i>Malassezia sympodialis</i> . MBio, 2013, 4, e00572-12.	1.8	118
131	Clonality and Recombination in Genetically Differentiated Subgroups of Cryptococcus gattii. Eukaryotic Cell, 2005, 4, 1403-1409.	3.4	117
132	Sex and Virulence of Human Pathogenic Fungi. Advances in Genetics, 2007, 57, 143-173.	0.8	117
133	Diploid Strains of the Pathogenic Basidiomycete Cryptococcus neoformans Are Thermally Dimorphic. Fungal Genetics and Biology, 2000, 29, 153-163.	0.9	113
134	Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology (United Kingdom), 2006, 152, 591-604.	0.7	112
135	Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nature Communications, 2016, 7, 12766.	5.8	112
136	RNAi is a critical determinant of centromere evolution in closely related fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3108-3113.	3.3	112
137	Diploids in the Cryptococcus neoformans Serotype A Population Homozygous for the α Mating Type Originate via Unisexual Mating. PLoS Pathogens, 2009, 5, e1000283.	2.1	111
138	Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans. PLoS Genetics, 2010, 6, e1000953.	1.5	111
139	Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of <i>Cryptococcus neoformans</i> i>. EMBO Reports, 2001, 2, 511-518.	2.0	109
140	Sphingolipids Signal Heat Stress-induced Ubiquitin-dependent Proteolysis. Journal of Biological Chemistry, 2000, 275, 17229-17232.	1.6	108
141	Unique Evolution of the UPR Pathway with a Novel bZIP Transcription Factor, Hxl1, for Controlling Pathogenicity of Cryptococcus neoformans. PLoS Pathogens, 2011, 7, e1002177.	2.1	106
142	Analysis of a Food-Borne Fungal Pathogen Outbreak: Virulence and Genome of a <i>Mucor circinelloides</i> Isolate from Yogurt. MBio, 2014, 5, e01390-14.	1.8	106
143	Calcium-Calmodulin-Calcineurin Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. Cell Host and Microbe, 2019, 26, 453-462.	5.1	106
144	Adenylyl Cyclase-Associated Protein Aca1 Regulates Virulence and Differentiation of Cryptococcus neoformans via the Cyclic AMP-Protein Kinase A Cascade. Eukaryotic Cell, 2004, 3, 1476-1491.	3.4	105

#	Article	IF	CITATIONS
145	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	1,2	105
146	Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Current Opinion in Nephrology and Hypertension, 1995, 4, 472-477.	1.0	102
147	Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO Journal, 2000, 19, 3739-3749.	3.5	102
148	Identification of Cryptococcus neoformans Temperature-Regulated Genes with a Genomic-DNA Microarray. Eukaryotic Cell, 2004, 3, 1249-1260.	3.4	102
149	Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genetics and Biology, 2010, 47, 1070-1080.	0.9	102
150	Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. MBio, 2015, 6, e00868-15.	1.8	101
151	Antifungal Activities of Antineoplastic Agents: <i>Saccharomyces cerevisiae </i> as a Model System To Study Drug Action. Clinical Microbiology Reviews, 1999, 12, 583-611.	5.7	97
152	Calcineurin Is Required for Candida albicans To Survive Calcium Stress in Serum. Infection and Immunity, 2005, 73, 5767-5774.	1.0	97
153	Chromosomal sex-determining regions in animals, plants and fungi. Current Opinion in Genetics and Development, 2005, 15, 645-651.	1.5	97
154	Many Globally Isolated AD Hybrid Strains of Cryptococcus neoformans Originated in Africa. PLoS Pathogens, 2007, 3, e114.	2.1	97
155	Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10, 803-819.	3.4	97
156	Evolution of sexual reproduction: A view from the fungal kingdom supports an evolutionary epoch with sex before sexes. Fungal Biology Reviews, 2015, 29, 108-117.	1.9	97
157	Signal Transduction Pathways Regulating Differentiation and Pathogenicity of Cryptococcus neoformans. Fungal Genetics and Biology, 1998, 25, 1-14.	0.9	96
158	Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2979-2981.	1.4	96
159	Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans The GenBank accession number for the RAS2 sequence of C. neoformans H99 is AF294349 Microbiology (United Kingdom), 2002, 148, 191-201.	0.7	96
160	Phylogeny and Phenotypic Characterization of Pathogenic <i>Cryptococcus</i> Species and Closely Related Saprobic Taxa in the Tremellales. Eukaryotic Cell, 2009, 8, 353-361.	3.4	95
161	A Diverse Population of Cryptococcus gattii Molecular Type VGIII in Southern Californian HIV/AIDS Patients. PLoS Pathogens, 2011, 7, e1002205.	2.1	95
162	RNAi function, diversity, and loss in the fungal kingdom. Chromosome Research, 2013, 21, 561-572.	1.0	95

#	Article	IF	Citations
163	Pheromones Stimulate Mating and Differentiation via Paracrine and Autocrine Signaling in Cryptococcus neoformans. Eukaryotic Cell, 2002, 1 , 366-377.	3.4	94
164	Chromosomal Translocation and Segmental Duplication in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 401-406.	3.4	94
165	Cyclic AMP-Dependent Protein Kinase Catalytic Subunits Have Divergent Roles in Virulence Factor Production in Two Varieties of the Fungal Pathogen Cryptococcus neoformans. Eukaryotic Cell, 2004, 3, 14-26.	3.4	92
166	Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends in Biotechnology, 1998, 16, 427-433.	4.9	91
167	Phytosphingosine as a Specific Inhibitor of Growth and Nutrient Import in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 35614-35621.	1.6	91
168	Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 735-738.	1.4	91
169	Estrogen Receptor Antagonists Are Anti-Cryptococcal Agents That Directly Bind EF Hand Proteins and Synergize with Fluconazole <i>In Vivo</i> . MBio, 2014, 5, e00765-13.	1.8	91
170	Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2012, 2, 675-691.	0.8	90
171	Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genetics, 2017, 13, e1006667.	1.5	90
172	TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals. Molecular and Cellular Endocrinology, 1999, 155, 135-142.	1.6	89
173	<i>CNS1</i> Encodes an Essential p60/Sti1 Homolog in <i>Saccharomyces cerevisiae</i> That Suppresses Cyclophilin 40 Mutations and Interacts with Hsp90. Molecular and Cellular Biology, 1998, 18, 7344-7352.	1.1	88
174	Evolution of the Mating Type Locus: Insights Gained from the Dimorphic Primary Fungal Pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryotic Cell, 2007, 6, 622-629.	3.4	87
175	Microbial pathogens in the fungal kingdom. Fungal Biology Reviews, 2011, 25, 48-60.	1.9	85
176	Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal. PLoS Pathogens, 2014, 10, e1004285.	2.1	85
177	On the Origins of Congenic MATα and MATa Strains of the Pathogenic Yeast Cryptococcus neoformans. Fungal Genetics and Biology, 1999, 28, 1-5.	0.9	84
178	Isolates of <i>Cryptococcus neoformans</i> from Infected Animals Reveal Genetic Exchange in Unisexual, α Mating Type Populations. Eukaryotic Cell, 2008, 7, 1771-1780.	3.4	84
179	PAK Kinases Ste20 and Pak1 Govern Cell Polarity at Different Stages of Mating inCryptococcus neoformans. Molecular Biology of the Cell, 2004, 15, 4476-4489.	0.9	83
180	Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans. Eukaryotic Cell, 2007, 6, 60-72.	3.4	83

#	Article	IF	CITATIONS
181	Interaction Between Genetic Background and the Mating-Type Locus in Cryptococcus neoformans Virulence Potential. Genetics, 2005, 171, 975-983.	1.2	82
182	Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Molecular Microbiology, 2004, 54, 407-419.	1.2	81
183	6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality., 2011,, 97-160.		81
184	Highly Recombinant VGII Cryptococcus gattii Population Develops Clonal Outbreak Clusters through both Sexual Macroevolution and Asexual Microevolution. MBio, 2014, 5, e01494-14.	1.8	81
185	Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nature Communications, 2019, 10, 4275.	5.8	80
186	Identification of <i>ENA1</i> as a Virulence Gene of the Human Pathogenic Fungus <i>Cryptococcus neoformans</i> through Signature-Tagged Insertional Mutagenesis. Eukaryotic Cell, 2009, 8, 315-326.	3.4	79
187	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	3.9	79
188	STT4 Is an Essential Phosphatidylinositol 4-Kinase That Is a Target of Wortmannin in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 27671-27677.	1.6	78
189	Fungal mating-type loci. Current Biology, 2003, 13, R792-R795.	1.8	77
190	Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2010, 75, 658-675.	1.2	77
191	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	1.8	77
192	Evolution of the sex-Related Locus and Genomic Features Shared in Microsporidia and Fungi. PLoS ONE, 2010, 5, e10539.	1,1	77
193	Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathogens, 2016, 12, e1005873.	2.1	77
194	Clinical and Environmental Isolates of Cryptococcus gattii from Australia That Retain Sexual Fecundity. Eukaryotic Cell, 2005, 4, 1410-1419.	3.4	76
195	First Contemporary Case of Human Infection with Cryptococcus gattii in Puget Sound: Evidence for Spread of the Vancouver Island Outbreak. Journal of Clinical Microbiology, 2007, 45, 3086-3088.	1.8	76
196	Impact of Mating Type, Serotype, and Ploidy on the Virulence of <i>Cryptococcus neoformans</i> Infection and Immunity, 2008, 76, 2923-2938.	1.0	76
197	Profiling a killer, the development of <i>Cryptococcus neoformans </i> . FEMS Microbiology Reviews, 2012, 36, 78-94.	3.9	76
198	Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genetics and Biology, 2010, 47, 107-116.	0.9	75

#	Article	IF	Citations
199	Genetic Circuits that Govern Bisexual and Unisexual Reproduction in Cryptococcus neoformans. PLoS Genetics, 2013, 9, e1003688.	1.5	74
200	Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host–pathogen interactions of the pathogenic mucoralean fungus ⟨scp⟩⟨i⟩M⟨ i⟩⟨ scp⟩⟨i⟩ucor circinelloides⟨ i⟩. Molecular Microbiology, 2015, 97, 844-865.	1.2	74
201	Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. ELife, 2017, 6, .	2.8	74
202	Comparison of the Roles of Calcineurin in Physiology and Virulence in Serotype D and Serotype A Strains of Cryptococcus neoformans. Infection and Immunity, 2000, 68, 982-985.	1.0	73
203	<i>Phycomyces</i> MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7095-7100.	3.3	73
204	Genetic Diversity and Genomic Plasticity of <i>Cryptococcus neoformans</i> AD Hybrid Strains. G3: Genes, Genomes, Genetics, 2012, 2, 83-97.	0.8	73
205	5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis inÂCryptococcus. Nature Communications, 2020, 11, 127.	5.8	73
206	Recombination Hotspots Flank the Cryptococcus Mating-Type Locus: Implications for the Evolution of a Fungal Sex Chromosome. PLoS Genetics, 2006, 2, e184.	1.5	72
207	The mating type-specific homeodomain genes SXI1 \hat{l} ± and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Genetics, 2007, 51, 187-195.	0.8	72
208	Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans. Eukaryotic Cell, 2010, 9, 360-378.	3.4	72
209	Structure, Function, and Phylogeny of the Mating Locus in the Rhizopus oryzae Complex. PLoS ONE, 2010, 5, e15273.	1.1	72
210	Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Current Opinion in Microbiology, 1999, 2, 358-362.	2.3	71
211	Pde1 Phosphodiesterase Modulates Cyclic AMP Levels through a Protein Kinase A-Mediated Negative Feedback Loop in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1971-1981.	3.4	71
212	Organization and Evolutionary Trajectory of the Mating Type (<i>MAT</i>) Locus in Dermatophyte and Dimorphic Fungal Pathogens. Eukaryotic Cell, 2010, 9, 46-58.	3.4	71
213	Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in Cryptococcus neoformans. PLoS Genetics, 2014, 10, e1004849.	1.5	71
214	Topoisomerase I Is Essential in Cryptococcus neoformans: Role in Pathobiology and as an Antifungal Target. Genetics, 1999, 152, 167-178.	1.2	71
215	Antifungal Management Practices and Evolution of Infection in Organ Transplant Recipients with Cryptococcus Neoformans Infection. Transplantation, 2005, 80, 1033-1039.	0.5	70
216	Expression, Enzyme Activity, and Subcellular Localization of Mammalian Target of Rapamycin in Insulin-Responsive Cells. Biochemical and Biophysical Research Communications, 1997, 241, 704-709.	1.0	69

#	Article	lF	Citations
217	The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi. PLoS Genetics, 2010, 6, e1000961.	1.5	69
218	First Reported Case of Cryptococcus gattii in the Southeastern USA: Implications for Travel-Associated Acquisition of an Emerging Pathogen. PLoS ONE, 2009, 4, e5851.	1.1	69
219	Conserved Elements of the RAM Signaling Pathway Establish Cell Polarity in the BasidiomyceteCryptococcus neoformansin a Divergent Fashion from Other Fungi. Molecular Biology of the Cell, 2006, 17, 3768-3780.	0.9	68
220	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	2.9	68
221	A Genetic Linkage Map of Cryptococcus neoformans variety neoformans Serotype D (Filobasidiella) Tj $$ ETQq 11 0	.784314 r 1.2	gBT/Overlo
222	Chlamydospore Formation during Hyphal Growth in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1746-1754.	3.4	67
223	Gî± Subunit Gpa2 Recruits Kelch Repeat Subunits That Inhibit Receptor-G Protein Coupling during cAMP-induced Dimorphic Transitions in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2005, 16, 4557-4571.	0.9	67
224	Rapamycin Exerts Antifungal Activity <i>In Vitro</i> and <i>In Vivo</i> against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor. Eukaryotic Cell, 2012, 11, 270-281.	3.4	67
225	Cryptococcosis Serotypes Impact Outcome and Provide Evidence of Cryptococcus neoformans Speciation. MBio, 2015, 6, e00311.	1.8	67
226	Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biology, 2017, 15, e2002527.	2.6	67
227	Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans. Molecular Microbiology, 2002, 38, 1017-1026.	1.2	66
228	Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase Governs Divergent Patterns of the Stress-Activated Hog1 Signaling Pathway in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2007, 6, 2278-2289.	3.4	66
229	Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Current Opinion in Microbiology, 2008, 11, 517-524.	2.3	66
230	Calcium- and Calcineurin-Independent Roles for Calmodulin in Cryptococcus neoformans Morphogenesis and High-Temperature Growth. Eukaryotic Cell, 2005, 4, 1079-1087.	3.4	65
231	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
232	Comparison of In Vitro Activities of Camptothecin and Nitidine Derivatives against Fungal and Cancer Cells. Antimicrobial Agents and Chemotherapy, 1999, 43, 2862-2868.	1.4	64
233	G protein signaling governing cell fate decisions involves opposing GÎ \pm subunits inCryptococcus neoformans. Molecular Biology of the Cell, 2007, 18 , 3237 - 3249 .	0.9	64
234	Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 17-29.	3.4	63

#	Article	IF	CITATIONS
235	Cryptococcus neoformans Gene Involved in Mammalian Pathogenesis Identified by a Caenorhabditis elegans Progeny-Based Approach. Infection and Immunity, 2005, 73, 8219-8225.	1.0	63
236	The Kelch Proteins Gpb1 and Gpb2 Inhibit Ras Activity via Association with the Yeast RasGAP Neurofibromin Homologs Ira1 and Ira2. Molecular Cell, 2006, 22, 819-830.	4.5	63
237	A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO Journal, 2009, 28, 1220-1233.	3.5	63
238	Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast <i>Trichosporon oleaginosus</i> : Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems. MBio, 2015, 6, e00918.	1.8	63
239	Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.		62
240	SOS induction as an in vivo assay of enzyme-DNA interactions. Gene, 1991, 103, 1-9.	1.0	61
241	<i>Cryptococcus neoformans</i> Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein. Infection and Immunity, 1999, 67, 1812-1820.	1.0	61
242	How the EcoRI endonuclease recognizes and cleaves DNA. BioEssays, 1992, 14, 445-454.	1.2	59
243	Eca1, a Sarcoplasmic/Endoplasmic Reticulum Ca 2+ -ATPase, Is Involved in Stress Tolerance and Virulence in Cryptococcus neoformans. Infection and Immunity, 2007, 75, 3394-3405.	1.0	59
244	Immunosuppressant Target Protein FKBP12 Is Required for P-Glycoprotein Function in Yeast. Journal of Biological Chemistry, 1996, 271, 18527-18534.	1.6	58
245	In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus Isolates from Transplant and Nontransplant Patients. Antimicrobial Agents and Chemotherapy, 2004, 48, 4922-4925.	1.4	58
246	Surfactant Protein D Increases Phagocytosis of Hypocapsular (i>Cryptococcus neoformans (i>by Murine Macrophages and Enhances Fungal Survival. Infection and Immunity, 2009, 77, 2783-2794.	1.0	56
247	Substrate recognition by the EcoRI endonuclease. Proteins: Structure, Function and Bioinformatics, 1990, 7, 185-197.	1.5	55
248	Gene Conversion Occurs within the Mating-Type Locus of Cryptococcus neoformans during Sexual Reproduction. PLoS Genetics, 2012, 8, e1002810.	1.5	54
249	Discovery of a Modified Tetrapolar Sexual Cycle in Cryptococcus amylolentus and the Evolution of MAT in the Cryptococcus Species Complex. PLoS Genetics, 2012, 8, e1002528.	1.5	54
250	Posaconazole Exhibits In Vitro and In Vivo Synergistic Antifungal Activity with Caspofungin or FK506 against Candida albicans. PLoS ONE, 2013, 8, e57672.	1.1	54
251	Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing. MBio, 2018, 9, .	1.8	54
252	The RGS protein Crg2 regulates both pheromone and cAMP signalling in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2008, 70, 379-395.	1.2	53

#	Article	IF	Citations
253	Amt2 Permease Is Required To Induce Ammonium-Responsive Invasive Growth and Mating in <i>Cryptococcus neoformans </i> Lukaryotic Cell, 2008, 7, 237-246.	3.4	52
254	Calcineurin Colocalizes with P-Bodies and Stress Granules during Thermal Stress in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10, 1396-1402.	3.4	52
255	Deletion of Cryptococcus neoformans AIF Ortholog Promotes Chromosome Aneuploidy and Fluconazole-Resistance in a Metacaspase-Independent Manner. PLoS Pathogens, 2011, 7, e1002364.	2.1	52
256	Calcineurin Controls Hyphal Growth, Virulence, and Drug Tolerance of Candida tropicalis. Eukaryotic Cell, 2014, 13, 844-854.	3.4	52
257	Transitions in Sexuality: Recapitulation of an Ancestral Tri- and Tetrapolar Mating System in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2008, 7, 1847-1855.	3.4	50
258	A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genetics, 2017, 13, e1006686.	1.5	50
259	Calcineurin Is Required for Pseudohyphal Growth, Virulence, and Drug Resistance in Candida lusitaniae. PLoS ONE, 2012, 7, e44192.	1.1	49
260	CELL BIOLOGY: Enhanced: A Fungal Achilles' Heel. Science, 2005, 309, 2175-2176.	6.0	48
261	A Mep2-dependent Transcriptional Profile Links Permease Function to Gene Expression during Pseudohyphal Growth in <i>Saccharomyces cerevisiae</i> 3028-3039.	0.9	48
262	Trimorphic stepping stones pave the way to fungal virulence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 351-352.	3.3	48
263	Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii. G3: Genes, Genomes, Genetics, 2013, 3, 527-539.	0.8	48
264	Whole-Genome Analysis Illustrates Global Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen <i>Trichophyton rubrum</i> . Genetics, 2018, 208, 1657-1669.	1.2	48
265	An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease. Cell Host and Microbe, 2018, 24, 308-323.e6.	5.1	48
266	A STE12 Homolog Is Required for Mating but Dispensable for Filamentation in Candida lusitaniae. Genetics, 2000, 155, 17-29.	1.2	48
267	Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence. Current Genetics, 2004, 46, 193-204.	0.8	47
268	Antifungal attributes of immunosuppressive agents: new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients1. Transplantation, 2004, 77, 795-800.	0.5	47
269	Calcineurin-Binding Protein Cbp1 Directs the Specificity of Calcineurin-Dependent Hyphal Elongation during Mating in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 1526-1538.	3.4	47
270	Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Research, 2017, 45, gkx006.	6.5	47

#	Article	IF	Citations
271	Phylogenetic and Phylogenomic Definition of <i>Rhizopus</i> Species. G3: Genes, Genomes, Genetics, 2018, 8, 2007-2018.	0.8	47
272	Centromere scission drives chromosome shuffling and reproductive isolation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7917-7928.	3.3	47
273	Dismantling the Cryptococcus coat. Trends in Microbiology, 2001, 9, 112-113.	3.5	46
274	FKBP12 Controls Aspartate Pathway Flux in Saccharomyces cerevisiae To Prevent Toxic Intermediate Accumulation. Eukaryotic Cell, 2004, 3, 1287-1296.	3.4	46
275	Photosensing Fungi: Phytochrome in the Spotlight. Current Biology, 2005, 15, R829-R832.	1.8	46
276	Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genetics, 2019, 15, e1007957.	1.5	46
277	Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013, 9, e1003771.	1.5	45
278	Sexual Reproduction of Human Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019281-a019281.	2.9	45
279	Loss of centromere function drives karyotype evolution in closely related Malassezia species. ELife, 2020, 9, .	2.8	45
280	Phospholipid-Binding Protein Cts1 Controls Septation and Functions Coordinately with Calcineurin in Cryptococcus neoformans. Eukaryotic Cell, 2003, 2, 1025-1035.	3.4	44
281	Impact of Ammonium Permeases MepA, MepB, and MepC on Nitrogen-Regulated Secondary Metabolism in Fusarium fujikuroi. Eukaryotic Cell, 2008, 7, 187-201.	3.4	44
282	Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen <i>Malassezia</i> Genus. MBio, 2016, 7, .	1.8	44
283	<i>In Vitro</i> and <i>In Vivo</i> Assessment of FK506 Analogs as Novel Antifungal Drug Candidates. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	44
284	Transgene Induced Co-Suppression during Vegetative Growth in Cryptococcus neoformans. PLoS Genetics, 2012, 8, e1002885.	1.5	43
285	Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genetics and Biology, 2015, 78, 65-75.	0.9	43
286	Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex. PLoS Genetics, 2016, 12, e1005868.	1.5	43
287	Mechanisms of Homothallism in Fungi and Transitions between Heterothallism and Homothallism. , 0, , 35-57.		43
288	PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genetics, 2017, 13, e1007113.	1.5	43

#	Article	IF	Citations
289	Function of Cryptococcus neoformans KAR7 (<i>SEC66</i>) in Karyogamy during Unisexual and Opposite-Sex Mating. Eukaryotic Cell, 2012, 11, 783-794.	3.4	42
290	Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia, 2013, 105, 1374-1390.	0.8	42
291	Ordered Kinetochore Assembly in the Human-Pathogenic Basidiomycetous Yeast Cryptococcus neoformans. MBio, 2013, 4, e00614-13.	1.8	42
292	Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Current Opinion in Investigational Drugs, 2003, 4, 192-9.	2.3	42
293	SXI1 $\hat{i}\pm$ controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Biology, 2004, 14, R743-R744.	1.8	41
294	<i>Aspergillus fumigatus</i> Calcipressin CbpA Is Involved in Hyphal Growth and Calcium Homeostasis. Eukaryotic Cell, 2009, 8, 511-519.	3.4	41
295	Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology (United Kingdom), 2010, 156, 2393-2407.	0.7	41
296	Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus. PLoS ONE, 2017, 12, e0171695.	1.1	41
297	Nutrient and Stress Sensing in Pathogenic Yeasts. Frontiers in Microbiology, 2019, 10, 442.	1.5	41
298	The Cryptococcus neoformans genome sequencing project. Mycopathologia, 1999, 148, 1-7.	1.3	40
299	Molecular Analysis of the Cryptococcus neoformans ADE2 Gene, a Selectable Marker for Transformation and Gene Disruption. Fungal Genetics and Biology, 1999, 27, 36-48.	0.9	40
300	Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genetics and Biology, 2003, 38, 110-121.	0.9	40
301	Myristoylation of Calcineurin B Is Not Required for Function or Interaction with Immunophilin-Immunosuppressant Complexes in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 24831-24838.	1.6	39
302	FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK5061. Transplantation, 2002, 73, 1835-1838.	0.5	39
303	Calcineurin Localizes to the Hyphal Septum in Aspergillus fumigatus: Implications for Septum Formation and Conidiophore Development. Eukaryotic Cell, 2008, 7, 1606-1610.	3.4	39
304	Cryptococcus gattii, No Longer an Accidental Pathogen?. Current Fungal Infection Reports, 2012, 6, 245-256.	0.9	39
305	Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350.	1.5	39
306	Physical Maps for Genome Analysis of Serotype A and D Strains of the Fungal Pathogen Cryptococcus neoformans. Genome Research, 2002, 12, 1445-1453.	2.4	38

#	Article	IF	Citations
307	Identification of the Mating-Type (<i>MAT</i>) Locus That Controls Sexual Reproduction of Blastomyces dermatitidis. Eukaryotic Cell, 2013, 12, 109-117.	3.4	38
308	A Flucytosine-Responsive Mbp1/Swi4-Like Protein, Mbs1, Plays Pleiotropic Roles in Antifungal Drug Resistance, Stress Response, and Virulence of Cryptococcus neoformans. Eukaryotic Cell, 2012, 11, 53-67.	3.4	37
309	Generators of Phenotypic Diversity in the Evolution of Pathogenic Microorganisms. PLoS Pathogens, 2013, 9, e1003181.	2.1	37
310	Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to <i>Cryptococcus</i> Pathogens. MBio, 2019, 10, .	1.8	37
311	HGT in the human and skin commensal <i>Malassezia</i> : A bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15884-15894.	3.3	37
312	The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Diversity, 2021, 109, 27-55.	4.7	37
313	A new face of the Rhesus antigen. Nature Genetics, 2000, 26, 258-259.	9.4	36
314	<i>Cryptococcus Gattii</i> with Bimorphic Colony Types in a Dog in Western Oregon: Additional Evidence for Expansion of the Vancouver Island Outbreak. Journal of Veterinary Diagnostic Investigation, 2009, 21, 133-136.	0.5	36
315	Comparative Transcriptome Analysis of the CO2 Sensing Pathway Via Differential Expression of Carbonic Anhydrase in <i>Cryptococcus neoformans</i>). Genetics, 2010, 185, 1207-1219.	1.2	36
316	Epigenetic mechanisms of drug resistance in fungi. Fungal Genetics and Biology, 2019, 132, 103253.	0.9	36
317	A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Current Genetics, 2004, 46, 247-255.	0.8	35
318	On the Roles of Calcineurin in Fungal Growth and Pathogenesis. Current Fungal Infection Reports, 2010, 4, 244-255.	0.9	35
319	Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen <i>Cryptococcus neoformans</i> . Genetics, 2017, 205, 201-219.	1.2	35
320	Functional Expression of the Multidrug Resistance-associated Protein in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 4154-4160.	1.6	34
321	Calcineurin Promotes Infection of the Cornea by Candida albicans and Can Be Targeted To Enhance Fluconazole Therapy. Antimicrobial Agents and Chemotherapy, 2006, 50, 3963-3965.	1.4	34
322	Morphological and Genomic Characterization of Filobasidiella depauperata: A Homothallic Sibling Species of the Pathogenic Cryptococcus Species Complex. PLoS ONE, 2010, 5, e9620.	1.1	34
323	Calcofluor White Combination Antifungal Treatments for Trichophyton rubrum and Candida albicans. PLoS ONE, 2012, 7, e39405.	1.1	34
324	A High-Resolution Map of Meiotic Recombination in <i>Cryptococcus deneoformans</i> Demonstrates Decreased Recombination in Unisexual Reproduction. Genetics, 2018, 209, 567-578.	1.2	34

#	Article	IF	Citations
325	<i>Cryptococcus neoformans</i> Mating and Genetic Crosses. Current Protocols in Microbiology, 2019, 53, e75.	6.5	34
326	Cryptococcus gattii outbreak expands into the Northwestern United States with fatal consequences. F1000 Biology Reports, 2009, 1 , .	4.0	34
327	Yeast as model T cells. Journal of Computer - Aided Molecular Design, 1994, 2, 103-126.	1.0	33
328	Surfactant Protein D Facilitates Cryptococcus neoformans Infection. Infection and Immunity, 2012, 80, 2444-2453.	1.0	33
329	Hmo1p, a High Mobility Group 1/2 Homolog, Genetically and Physically Interacts With the Yeast FKBP12 Prolyl Isomerase. Genetics, 1999, 151, 935-944.	1.2	33
330	DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli. Molecular Microbiology, 2002, 33, 1141-1151.	1.2	32
331	Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi., 0,, 687-699.		32
332	Transposon mobilization in the human fungal pathogen <i>Cryptococcus</i> is mutagenic during infection and promotes drug resistance in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9973-9980.	3.3	32
333	Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. FEBS Letters, 1997, 414, 69-73.	1.3	31
334	Molecular Cloning and Characterization of Aspergillus nidulans Cyclophilin B. Fungal Genetics and Biology, 1999, 27, 55-66.	0.9	31
335	Generation of genetic diversity in microsporidia via sexual reproduction and horizontal gene transfer. Communicative and Integrative Biology, 2009, 2, 414-417.	0.6	31
336	Unisexual Reproduction. Advances in Genetics, 2014, 85, 255-305.	0.8	31
337	Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Scientific Reports, 2015, 5, 8767.	1.6	31
338	Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genetics, 2019, 15, e1008365.	1.5	31
339	Advances in understanding the evolution of fungal genome architecture. F1000Research, 2020, 9, 776.	0.8	31
340	Is sex necessary?. BMC Biology, 2011, 9, 56.	1.7	30
341	A Unique Chromosomal Rearrangement in the Cryptococcus neoformans var. <i>grubii</i> Type Strain Enhances Key Phenotypes Associated with Virulence. MBio, 2012, 3, .	1.8	30
342	Dissecting the Roles of the Calcineurin Pathway in Unisexual Reproduction, Stress Responses, and Virulence in <i>Cryptococcus deneoformans</i>). Genetics, 2018, 208, 639-653.	1.2	30

#	Article	IF	Citations
343	The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annual Review of Genetics, 2019, 53, 417-444.	3.2	30
344	A Novel Mycovirus Evokes Transcriptional Rewiring in the Fungus $\langle i \rangle$ Malassezia $\langle i \rangle$ and Stimulates Beta Interferon Production in Macrophages. MBio, 2020, 11, .	1.8	30
345	Mutations That Perturb Cyclophilin A Ligand Binding Pocket Confer Cyclosporin A Resistance in Saccharomycescerevisiae. Journal of Biological Chemistry, 1995, 270, 20997-21002.	1.6	29
346	Saturation mutagenesis of His114 of EcoRI reveals relaxed-specificity mutants. Gene, 1995, 157, 295-301.	1.0	29
347	Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function. MBio, 2016, 7, e00492-16.	1.8	29
348	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
349	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	1.5	29
350	A Novel Resistance Pathway for Calcineurin Inhibitors in the Human-Pathogenic Mucorales Mucor circinelloides. MBio, 2020, 11 , .	1.8	29
351	Investigation of the basis of virulence in serotype A strains of Cryptococcus neoformans from apparently immunocompetent individuals. Current Genetics, 2004, 46, 92-102.	0.8	28
352	Pseudohyphal Growth of Cryptococcus neoformans Is a Reversible Dimorphic Transition in Response to Ammonium That Requires Amt1 and Amt2 Ammonium Permeases. Eukaryotic Cell, 2012, 11, 1391-1398.	3.4	28
353	Sex-Induced Silencing Operates During Opposite-Sex and Unisexual Reproduction in <i>Cryptococcus neoformans</i> . Genetics, 2013, 193, 1163-1174.	1.2	28
354	Endolysosomal Membrane Trafficking Complexes Drive Nutrient-Dependent TORC1 Signaling to Control Cell Growth in <i>Saccharomyces cerevisiae</i>). Genetics, 2014, 196, 1077-1089.	1.2	28
355	$\mbox{\sc i}\mbox{\sc Mucor circinelloides}\mbox{\sc /i}\mbox{\sc Thrives inside the Phagosome through an Atf-Mediated Germination Pathway. MBio, 2019, 10, .}$	1.8	28
356	<i>Cryptococcus deuterogattii</i> VGIIa Infection Associated with Travel to the Pacific Northwest Outbreak Region in an Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibody-Positive Patient in the United States. MBio, 2019, 10, .	1.8	28
357	The \hat{l}_{\pm} -Specific Cell Identity Factor Sxi1 \hat{l}_{\pm} Is Not Required for Virulence of Cryptococcus neoformans. Infection and Immunity, 2004, 72, 3643-3645.	1.0	27
358	Sexual Reproduction in Dermatophytes. Mycopathologia, 2017, 182, 45-55.	1.3	27
359	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
360	Signaling cascades as drug targets in model and pathogenic fungi. Current Opinion in Investigational Drugs, 2008, 9, 856-64.	2.3	27

#	Article	IF	CITATIONS
361	Should Y stay or should Y go: The evolution of nonâ€recombining sex chromosomes. BioEssays, 2012, 34, 938-942.	1.2	26
362	Unisexual Reproduction Enhances Fungal Competitiveness by Promoting Habitat Exploration via Hyphal Growth and Sporulation. Eukaryotic Cell, 2013, 12, 1155-1159.	3.4	26
363	Fungal pathogens. Current Biology, 2020, 30, R1163-R1169.	1.8	26
364	Divergence of Protein Kinase A Catalytic Subunits in Cryptococcus neoformans and Cryptococcus gattii Illustrates Evolutionary Reconfiguration of a Signaling Cascade. Eukaryotic Cell, 2007, 6, 413-420.	3.4	25
365	Molecular and Genetic Evidence for a Tetrapolar Mating System in the Basidiomycetous Yeast Kwoniella mangrovensis and Two Novel Sibling Species. Eukaryotic Cell, 2013, 12, 746-760.	3.4	25
366	Unisexual Reproduction Reverses Muller's Ratchet. Genetics, 2014, 198, 1059-1069.	1.2	25
367	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25
368	Biologically Active Secondary Metabolites from the Fungi. , 0, , 1087-1119.		25
369	Evolution of the Mating-Type Locus: The Basidiomycetes. , 0, , 19-34.		25
370	Dikaryons, Diploids, and Evolution., 0,, 333-348.		25
371	Cryptococcus neoformans Isolates from Transplant Recipients Are Not Selected for Resistance to Calcineurin Inhibitors by Current Immunosuppressive Regimens. Journal of Clinical Microbiology, 2005, 43, 464-467.	1.8	24
372	Loss of Allergen 1 Confers a Hypervirulent Phenotype That Resembles Mucoid Switch Variants of <i>Cryptococcus neoformans</i> . Infection and Immunity, 2009, 77, 128-140.	1.0	24
373	Cryptococcus gattii Genotype VGI Infection in New England. Pediatric Infectious Disease Journal, 2011, 30, 1111-1114.	1.1	24
374	Unisexual Reproduction Drives Evolution of Eukaryotic Microbial Pathogens. PLoS Pathogens, 2013, 9, e1003674.	2.1	23
375	Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species. PLoS ONE, 2014, 9, e108633.	1.1	22
376	Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales <i>Mucor circinelloides </i> i> G3: Genes, Genomes, Genetics, 2017, 7, 2047-2054.	0.8	22
377	Plant Pathogenic Fungi., 2017,, 701-726.		22
378	Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nature Communications, 2020, 11 , 4212 .	5.8	22

#	Article	IF	CITATIONS
379	The Evolution of <i>MAT </i> : The Ascomycetes., 0,, 1-18.		22
380	The Origin of Multiple Mating Types in the Model Mushrooms <i>Coprinopsis cinerea</i> and <i>Schizophyllum commune</i> ., 0, , 283-300.		22
381	Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions. ELife, 2020, 9, .	2.8	22
382	Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Molecular Microbiology, 1993, 8, 1017-1024.	1.2	21
383	Targeting the Calcineurin Pathway Enhances Ergosterol Biosynthesis Inhibitors against Trichophyton mentagrophytes In Vitro and in a Human Skin Infection Model. Antimicrobial Agents and Chemotherapy, 2007, 51, 3743-3746.	1.4	21
384	Sex in the Mucoralean Fungi. Mycoses, 2014, 57, 18-24.	1.8	21
385	Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease. , 0, , 445-458.		21
386	Synthesis and antifungal activities of miltefosine analogs. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4828-4831.	1.0	20
387	Fungal Sex: The Basidiomycota., 0,, 147-175.		20
388	Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics. PLoS ONE, 2011, 6, e25280.	1.1	20
389	Unisexual Reproduction of Cryptococcus gattii. PLoS ONE, 2014, 9, e111089.	1.1	20
390	The Skin Commensal Yeast Malassezia globosa Thwarts Bacterial Biofilms to Benefit the Host. Journal of Investigative Dermatology, 2018, 138, 1026-1029.	0.3	19
391	Advancing Functional Genetics Through < i>Agrobacterium < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Malassezia < /i>-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast < i>Mediated Insertional Mutagenesis < i Advanced Translational Mutagenesis < i Advanced Translat	1.2	19
392	The Pheromone and Pheromone Receptor Mating-Type Locus Is Involved in Controlling Uniparental Mitochondrial Inheritance in <i>Cryptococcus</i> . Genetics, 2020, 214, 703-717.	1.2	19
393	Environmental Niches for <i>Cryptococcus neoformans </i> 235-259.		19
394	Yeast diversity sampling on the San Juan Islands reveals no evidence for the spread of the Vancouver IslandCryptococcus gattiioutbreak to this locale. FEMS Yeast Research, 2006, 6, 620-624.	1.1	18
395	Immunotherapy with Tacrolimus (FK506) Does Not Select for Resistance to Calcineurin Inhibitors in Candida albicans Isolates from Liver Transplant Patients. Antimicrobial Agents and Chemotherapy, 2006, 50, 1573-1577.	1.4	18
396	Unique Applications of Novel Antifungal Drug Combinations. Anti-Infective Agents in Medicinal Chemistry, 2007, 6, 3-15.	0.6	18

#	Article	IF	Citations
397	The Virulence of Human Pathogenic Fungi: Notes from the South of France. Cell Host and Microbe, 2007, 2, 77-83.	5.1	18
398	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
399	Gastrointestinal microbiota alteration induced by Mucor circinelloides in a murine model. Journal of Microbiology, 2019, 57, 509-520.	1.3	18
400	Why Sex Is Good: On Fungi and Beyond., 0,, 527-534.		18
401	Chaperoning a pathogen. Nature, 1994, 372, 319-320.	13.7	17
402	Epidemiology and Evolution of Fungal Pathogens in Plants and Animals., 2011,, 59-132.		17
403	Cryptococcus neoformans Hyperfilamentous Strain Is Hypervirulent in a Murine Model of Cryptococcal Meningoencephalitis. PLoS ONE, 2014, 9, e104432.	1.1	17
404	From two to one: Unipolar sexual reproduction. Fungal Biology Reviews, 2015, 29, 118-125.	1.9	17
405	Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization. PLoS ONE, 2013, 8, e69804.	1.1	17
406	Temperature-sensitive mutants of the EcoRI endonuclease. Journal of Molecular Biology, 1997, 274, 722-737.	2.0	16
407	R73A and H144Q mutants of the yeast mitochondrial cyclophilin Cpr3 exhibit a low prolyl isomerase activity in both peptide and protein-folding assays. FEBS Letters, 1999, 443, 367-369.	1.3	16
408	Comparative analysis of calcineurin signaling between Candida dubliniensis and Candida albicans. Communicative and Integrative Biology, 2012, 5, 122-126.	0.6	16
409	Had1 Is Required for Cell Wall Integrity and Fungal Virulence in <i>Cryptococcus neoformans</i> Cenes, Genomes, Genetics, 2018, 8, 643-652.	0.8	16
410	Application of an optimized annotation pipeline to the <i>Cryptococcus deuterogattii</i> genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	16
411	Clinical Perspectives on <i>Cryptococcus neoformans </i> and <i>Cryptococcus gattii </i> Implications for Diagnosis and Management., 0,, 595-606.		16
412	Cell Biology of Hyphal Growth. , 0, , 231-265.		15
413	The Mycelium as a Network., 0,, 335-367.		15
414	Genetic and genomic evolution of sexual reproduction: echoes from LECA to the fungal kingdom. Current Opinion in Genetics and Development, 2019, 58-59, 70-75.	1.5	15

#	Article	IF	Citations
415	Uniparental nuclear inheritance following bisexual mating in fungi. ELife, 2021, 10, .	2.8	15
416	Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom., 0,, 97-113.		15
417	Fungal Mating: Candida albicans Flips a Switch to Get in the Mood. Current Biology, 2002, 12, R782-R784.	1.8	14
418	Proline Isomerases in Microorganisms and Small Eukaryotes ^a . Annals of the New York Academy of Sciences, 1993, 696, 38-43.	1.8	14
419	Endosymbiosis: The Evil within. Current Biology, 2007, 17, R408-R410.	1.8	14
420	The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10, 1714-1723.	3.4	14
421	Parallels in Intercellular Communication in Oomycete and Fungal Pathogens of Plants and Humans. PLoS Pathogens, 2012, 8, e1003028.	2.1	14
422	FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in $\langle i \rangle$ Malassezia $\langle i \rangle$. MBio, 2017, 8, .	1.8	14
423	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14
424	Approaches for Genetic Discoveries in the Skin Commensal and Pathogenic Malassezia Yeasts. Frontiers in Cellular and Infection Microbiology, 2020, 10, 393.	1.8	14
425	Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genetics, 2021, 17, e1009313.	1.5	14
426	Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs. MBio, 2021, 12, e0300021.	1.8	14
427	Surfactant protein D binding to <i>Aspergillus fumigatus</i> hyphae is calcineurin-sensitive. Medical Mycology, 2010, 48, 580-588.	0.3	13
428	Antifungal Drugs: The Current Armamentarium and Development of New Agents., 0,, 903-922.		13
429	Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genetics, 2021, 17, e1008871.	1.5	13
430	Cryptococcus neoformans: Latency and Disease. , 2014, , 429-439.		12
431	Cryptococcus neoformans Recovered From Olive Trees (Olea europaea) in Turkey Reveal Allopatry With African and South American Lineages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 384.	1.8	12
432	The necessity for molecular classification of basidiomycetous biocontrol yeasts. BioControl, 2020, 65, 489-500.	0.9	12

#	Article	IF	Citations
433	Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiology Reviews, 2001, 25, 349-364.	3.9	12
434	Microbe Profile: Cryptococcus neoformans species complex. Microbiology (United Kingdom), 2020, 166, 797-799.	0.7	12
435	Sexual Reproduction and Significance of MAT in the Aspergilli. , 0, , 123-142.		12
436	Systematics of the Genus Cryptococcus and Its Type Species C. neoformans. , 0, , 1-15.		12
437	On the Discovery of TOR As the Target of Rapamycin. PLoS Pathogens, 2015, 11, e1005245.	2.1	12
438	Pearls collections: What we can learn about infectious disease and cancer. PLoS Pathogens, 2018, 14, e1006915.	2.1	12
439	Phage Trojan horses: a conditional expression system for lethal genes. Gene, 1989, 85, 193-197.	1.0	11
440	Cyclophilin B Escorts the Hepatitis C Virus RNA Polymerase: A Viral Achilles Heel?. Molecular Cell, 2005, 19, 145-146.	4.5	11
441	Evolutionarily Conserved and Divergent Roles of Unfolded Protein Response (UPR) in the Pathogenic Cryptococcus Species Complex. Scientific Reports, 2018, 8, 8132.	1.6	11
442	Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species. , 0, , 317-331.		11
443	Fungal Pathogenesis: Gene Clusters Unveiled as Secrets within the Ustilago maydis Code. Current Biology, 2007, 17, R87-R90.	1.8	10
444	Dynamic duo takes down fungal villains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2971-2972.	3.3	10
445	Love the one you're with. Nature, 2009, 460, 807-808.	13.7	10
446	Pleiotropic Roles of the Msi1-Like Protein Msl1 in Cryptococcus neoformans. Eukaryotic Cell, 2012, 11, 1482-1495.	3.4	10
447	Distinct and redundant roles of exonucleases in Cryptococcus neoformans: Implications for virulence and mating. Fungal Genetics and Biology, 2014, 73, 20-28.	0.9	10
448	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases., 2017,, 35-56.		10
449	Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. MBio, 2020, 11 , .	1.8	10
450	Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Applied and Environmental Microbiology, 2021, 87, .	1.4	10

#	Article	IF	Citations
451	Regional Bivalent-Univalent Pairing <i>Versus</i> Trivalent Pairing of a Trisomic Chromosome in <i>Saccharomyces cerevisiae</i> Genetics, 1996, 144, 957-966.	1.2	10
452	Mating in the Smut Fungi: From a to b to the Downstream Cascades. , 0, , 377-387.		10
453	Veterinary Insights into Cryptococcosis Caused by <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> ., 0, , 489-504.		10
454	Cryptococcus neoformans Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein. Infection and Immunity, 1999, 67, 1812-1820.	1.0	10
455	Stress Adaptation. , 0, , 463-485.		9
456	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9
457	Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution. , 0, , 599-618.		9
458	Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi., 2017,, 215-229.		9
459	Fungi as a Source of Food., 0,, 1063-1085.		9
460	The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potentialâ€"Phaffia australis sp. nov. and Phaffia tasmanica sp. nov Microorganisms, 2020, 8, 1651.	1.6	9
461	Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLoS Genetics, 2021, 17, e1009935.	1.5	9
462	Multiple Hybridization Events Punctuate the Evolutionary Trajectory of <i>Malassezia furfur </i> MBio, 2022, 13, e0385321.	1.8	9
463	Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Human Molecular Genetics, 2016, 25, 3524-3538.	1.4	8
464	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
465	Fungi that Infect Humans. , 2017, , 811-843.		8
466	Sex and the Imperfect Fungi., 0,, 193-214.		8
467	MTL genotypes, phenotypic switching, and susceptibility profiles of Candida parapsilosis species group compared to Lodderomyces elongisporus. PLoS ONE, 2017, 12, e0182653.	1.1	8
468	Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genetics, 2019, 15, e1008394.	1.5	8

#	Article	IF	CITATIONS
469	Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genetics, 2021, 17, e1009743.	1.5	8
470	Zygomycetes as Agents of Infectious Disease in Humans. , 0, , 429-440.		8
471	The mat Genes of Schizosaccharomyces pombe: Expression, Homothallic Switch, and Silencing. , 0, , 143-157.		8
472	The Architecture and Antigenic Composition of the Polysaccharide Capsule. , 0, , 43-54.		8
473	Structure-Guided Synthesis of FK506 and FK520 Analogs with Increased Selectivity Exhibit <i>In Vivo</i> Therapeutic Efficacy against Cryptococcus. MBio, 2022, 13, .	1.8	8
474	Evolution of Sex: Mating Rituals of a Pre-Metazoan. Current Biology, 2013, 23, R1006-R1008.	1.8	7
475	Cryptococcal Osteomyelitis in an Adolescent Survivor of T-Cell Acute Lymphoblastic Leukemia. Pediatric Infectious Disease Journal, 2015, 34, 662-666.	1.1	7
476	Mating-System Evolution: All Roads Lead to Selfing. Current Biology, 2019, 29, R743-R746.	1.8	7
477	Pbp1-Interacting Protein Mkt1 Regulates Virulence and Sexual Reproduction in Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2019, 9, 355.	1.8	7
478	Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts. , 0, , 247-263.		7
479	Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota. , 0, , 405-418.		7
480	Trisporic Acid and Mating in Zygomycetes., 0,, 431-443.		7
481	Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching. , 0, , 159-170.		7
482	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective., 0,, 139-149.		7
483	The Insect Pathogens. , 0, , 923-943.		7
484	Genetic and epigenetic engines of diversity in pathogenic microbes. PLoS Pathogens, 2017, 13, e1006468.	2.1	7
485	On Fruits and Fungi: A Risk of Antifungal Usage in Food Storage and Distribution in Driving Drug Resistance in Candida auris. MBio, 2022, 13, e0073922.	1.8	7
486	Fungal horizons: The Asilomar Fungal Genetics Conference 2007. Fungal Genetics and Biology, 2008, 45, 77-83.	0.9	6

#	Article	IF	CITATIONS
487	Validation of <i>Kwoniella heveanensis</i> , teleomorph of the basidiomycetous yeast <i>Cryptococcus heveanensis</i> . Mycotaxon, 2011, 116, 227-229.	0.1	6
488	Unseen sex in ancient virgin fungi. New Phytologist, 2014, 201, 3-5.	3.5	6
489	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
490	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi., 0,, 727-747.		6
491	Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. , 2017, , 981-1004.		6
492	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
493	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
494	Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in <i>Cryptococcus neoformans</i> . Genetics, 2020, 214, 635-649.	1.2	6
495	Cryptococcus neoformans : a Sugar-Coated Killer. , 0, , 279-303.		6
496	MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora., 0, , 171-188.		6
497	Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle., 0,, 91-121.		6
498	Invasion of <i>Cryptococcus</i> into the Central Nervous System. , 0, , 465-471.		6
499	Public Health Importance of Cryptococcal Disease: Epidemiology, Burden, and Control., 0,, 585-593.		6
500	Skin Fungi from Colonization to Infection., 0,, 855-871.		6
501	Epistatic genetic interactions govern morphogenesis during sexual reproduction and infection in a global human fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
502	Expression of a Malassezia Codon Optimized mCherry Fluorescent Protein in a Bicistronic Vector. Frontiers in Cellular and Infection Microbiology, 2020, 10, 367.	1.8	5
503	FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2020, 526, 48-54.	1.0	5
504	Multiple Pathways to Homothallism in Closely Related Yeast Lineages in the Basidiomycota. MBio, 2021, 12, .	1.8	5

#	Article	IF	CITATIONS
505	Sex, MAT, and the Evolution of Fungal Virulence. , 0, , 13-33.		5
506	Evolution of Human-Pathogenic Fungi: Phylogenies and Species. , 0, , 113-P1.		5
507	Pheromones and Pheromone Receptors in Schizophyllum commune Mate Recognition: Retrospective of a Half-Century of Progress and a Look Ahead., 0,, 301-315.		5
508	History of the Mating Types in <i>Ustilago maydis </i> ., 0, , 349-375.		5
509	Mating-Type Locus Control of Cell Identity. , 0, , 59-73.		5
510	The History of Cryptococcus and Cryptococcosis. , 0, , 17-26.		5
511	Diagnostic Approach Based on Capsular Antigen, Capsule Detection, \hat{l}^2 -Glucan, and DNA Analysis. , 0, , 547-564.		5
512	Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii., 0,, 97-111.		5
513	Fungal Sex: The <i>Ascomycota </i> ., 0, , 115-145.		4
514	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
515	Nematode-Trapping Fungi., 2017,, 963-974.		4
516	She Loves Me, She Loves Me Not: On the Dualistic Asexual/Sexual Nature of Dermatophyte Fungi. Mycopathologia, 2019, 185, 87-101.	1.3	4
517	Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genetics and Biology, 2019, 124, 29-38.	0.9	4
518	The Rise of Fungi: A Report on the CIFAR Program <i>Fungal Kingdom: Threats & Deportunities </i> Inaugural Meeting. G3: Genes, Genomes, Genetics, 2020, 10, 1837-1842.	0.8	4
519	<i>MAT</i> , Mating, Switching, and Pathogenesis in <i>Candida albicans, Candida dubliniensis</i> , and <i>Candida glabrata</i> , 0, , 213-234.		4
520	Biosynthesis and Genetics of the Cryptococcus Capsule. , 0, , 27-41.		4
521	Cryptococcosis in AIDS. , 0, , 515-525.		4
522	The Cell Wall of Cryptococcus. , 0, , 67-79.		4

#	Article	IF	CITATIONS
523	Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex. ELife, $0,11,.$	2.8	4
524	Dynamics of parasitophorous vacuoles formed by the microsporidian pathogen Encephalitozoon cuniculi. Fungal Genetics and Biology, 2017, 107, 20-23.	0.9	3
525	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
526	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity., 0,, 635-655.		3
527	RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.		3
528	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
529	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
530	Clonal evolution in serially passaged <i>Cryptococcus neoformans</i> Å— <i>deneoformans</i> hybrids reveals a heterogenous landscape of genomic change. Genetics, 2022, 220, .	1.2	3
531	The Evolutionary Implications of an Asexual Lifestyle Manifested by Penicillium marneffei., 0,, 201-212.		3
532	How the Genome Is Organized in the Glomeromycota. , 0, , 419-430.		3
533	Why Bother with Sex? Answers from Experiments with Yeast and Other Organisms. , 0, , 489-506.		3
534	A Role for Mating in Cryptococcal Virulence. , 0, , 167-174.		3
535	Drug Resistance in <i>Cryptococcus</i> : Epidemiology and Molecular Mechanisms. , 0, , 203-216.		3
536	Cryptococcosis in Africa., 0,, 269-285.		3
537	Cryptococcosis in Asia., 0,, 287-297.		3
538	The Emergence of Cryptococcus gattii Infections on Vancouver Island and Expansion in the Pacific Northwest., 0,, 313-325.		3
539	Melanin: Structure, Function, and Biosynthesis in Cryptococcus. , 0, , 55-66.		3
540	Sexual Reproduction of Cryptococcus. , 0, , 81-96.		3

#	Article	IF	CITATIONS
541	Ecology of Fungal Plant Pathogens. , 0, , 387-397.		3
542	Cloning the Mating-Type Genes of Schizophyllum commune: A Historical Perspective. , 2014, , 265-282.		2
543	Eukaryotic Sexual Reproduction Evoked "with a Little Help from My Friends― Cell, 2017, 170, 1059-1061.	13.5	2
544	Melanin, Radiation, and Energy Transduction in Fungi., 0,, 509-514.		2
545	Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host., 2017,, 975-980.		2
546	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
547	Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. , 0, , 535-548.		2
548	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts., 0,, 143-162.		2
549	Bipolar and Tetrapolar Mating Systems in the Ustilaginales. , 0, , 389-404.		2
550	Sensing Extracellular Signals in Cryptococcus neoformans. , 0, , 175-187.		2
551	Signaling Cascades and Enzymes as Cryptococcus Virulence Factors. , 0, , 217-234.		2
552	Sexual Reproduction of <i>Cryptococcus gattii</i> : a Population Genetics Perspective. , 0, , 299-311.		2
553	Hybridization and Its Importance in the Cryptococcus Species Complex. , 0, , 359-370.		2
554	Cryptococcosis in Experimental Animals: Lessons Learned. , 0, , 473-488.		2
555	Cryptococcus neoformans as a Model Fungal Pathogen. , 2002, , .		2
556	The Cryptococcus Genomes: Tools for Comparative Genomics and Expression Analysis. , 0, , 113-126.		2
557	Rewiring Transcriptional Circuitry: Mating-Type Regulation in Saccharomyces cerevisiae and Candida albicans as a Model for Evolution. , 0, , 75-89.		2
558	Identification of Mucormycosis by Fluorescence In Situ Hybridization Targeting Ribosomal RNA in Tissue Samples. Journal of Fungi (Basel, Switzerland), 2022, 8, 289.	1.5	2

#	Article	IF	CITATIONS
559	Paul L. Bartel and Stanley Fields, eds. The Yeast Two-Hybrid System. Mycopathologia, 1999, 146, 105-106.	1.3	1
560	Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Mycopathologia, 2000, 149, 47-48.	1.3	1
561	A Case of Cryptococcus gattii in Western Florida. Infectious Diseases in Clinical Practice, 2015, 23, 105-108.	0.1	1
562	The Geomycology of Elemental Cycling and Transformations in the Environment., 2017,, 369-386.		1
563	Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. , 2017, , 399-416.		1
564	Fungal Recognition and Host Defense Mechanisms. , 2017, , 887-902.		1
565	E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics, 2019, 213, 1-7.	1.2	1
566	On a Special Collection in MMBR on Sex in Fungi: Molecular Mechanisms and Evolutionary Implications. Microbiology and Molecular Biology Reviews, 2021, 85, e0009421.	2.9	1
567	Cryptococcus Interactions with Innate Cytotoxic Lymphocytes. , 0, , 417-427.		1
568	Cryptococcosis in Transplant Recipients. , 0, , 505-514.		1
569	Vaccines and Antibody Therapies from Cryptococcus neoformans to Melanoma. , 0, , 537-546.		1
570	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1
571	Fungal Plant Pathogenesis Mediated by Effectors. , 0, , 767-785.		1
572	Evolution of <i>MAT </i> in the <i>Candida </i> Species Complex: Sex, Ploidy, and Complete Sexual Cycles in <i>C. lusitaniae, C. guilliermondii </i> , and <i>C. krusei </i> , 0, , 235-245.		1
573	G-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus. , 0, , 151-165.		1
574	Management of Cryptococcal Meningoencephalitis in Both Developed and Developing Countries. , 0, , 565-584.		1
575	Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses., 0,, 127-137.		1
576	Sex in Natural Populations of Cryptococcus gattii., 0,, 477-488.		1

#	Article	IF	CITATIONS
577	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1
578	<i>Evolution of Microbial Pathogens</i> . <i>Edited by</i> H StevenÂSeifert and Victor JÂDiRita. Washington (DC): ASM Press. \$119.95. xiii + 355 p; ill.; index. ISBN:1â€55581â€300â€3. 2006 Quarterly Review Biology, 2008, 83, 100-101.	voof.o	0
579	Diversity in the realm of eukaryotic microbe form and function. Current Opinion in Microbiology, 2011, 14, 631-633.	2.3	0
580	How Fungi Sense Sugars, Alcohols, and Amino Acids. , 2014, , 467-479.		0
581	Cryptococcus neoformans: Budding Yeast and Dimorphic Filamentous Fungus. , 2014, , 717-735.		0
582	Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. , 2017, , 549-570.		0
583	The Complexity of Fungal Vision. , 2017, , 441-461.		0
584	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
585	Amyloid Prions in Fungi. , 2017, , 673-685.		0
586	Showcasing Fungal Genetics & Genomics with the Genetics Society of America. Genetics, 2021, 217, .	1.2	0
587	Showcasing Fungal Genetics & Cenomics with the Genetics Society of America. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
588	Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathogens, 2021, 17, e1009912.	2.1	0
589	Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence., 0,, 189-201.		0
590	Acquired Humoral Immunity to Cryptococcus neoformans. , 0, , 397-408.		0
591	Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using Cryptococcus neoformans., 0,, 459-475.		0
592	Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes. , 0, , 189-200.		0
593	The Interaction of Cryptococcus neoformans with Host MacroPhages and Neutrophils. , 0, , 371-385.		0
594	Pulmonary Innate and Adaptive Defenses against Cryptococcus. , 0, , 451-464.		0

#	Article	IF	CITATIONS
595	Establishment of Cell Identity in Pathogenic Fungi. , 0, , 133-141.		O
596	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi., 0,, 571-597.		0
597	Joseph Heitman. Current Biology, 2022, 32, R106-R109.	1.8	O
598	Exploring Space via Astromycology: A Report on the CIFAR Programs $\langle i \rangle$ Earth $4D \langle i \rangle$ and $\langle i \rangle$ Fungal Kingdom $\langle i \rangle$ Inaugural Joint Meeting. Astrobiology, 2022, , .	1.5	0