Max A Seibold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551798/publications.pdf

Version: 2024-02-01

75 papers 7,719 citations

34 h-index 71 g-index

84 all docs

84 docs citations

84 times ranked 14800 citing authors

#	Article	IF	CITATIONS
1	Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology. Nature Communications, 2022, 13, 1632.	12.8	24
2	IL-13 \hat{a} e"programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCl Insight, 2022, 7, .	5.0	19
3	Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: AÂprospective surveillance study. Journal of Allergy and Clinical Immunology, 2022, 150, 302-311.	2.9	20
4	SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Science Translational Medicine, $2022,14,.$	12.4	55
5	Influenza virus infection increases ACE2 expression and shedding in human small airway epithelial cells. European Respiratory Journal, 2021, 58, 2003988.	6.7	38
6	Single-Cell RNA Sequencing Reveals a Unique Monocyte Population in Bronchoalveolar Lavage Cells of Mice Challenged With Afghanistan Particulate Matter and Allergen. Toxicological Sciences, 2021, 182, 297-309.	3.1	7
7	The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. Journal of Experimental Medicine, 2021, 218, .	8.5	31
8	Single cell analysis of host response to helminth infection reveals the clonal breadth, heterogeneity, and tissue-specific programming of the responding CD4+ T cell repertoire. PLoS Pathogens, 2021, 17, e1009602.	4.7	7
9	Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight, 2021, 6, .	5.0	29
10	Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. The Lancet Child and Adolescent Health, 2021, 5, 862-872.	5.6	10
11	Tollip Inhibits ST2 Signaling in Airway Epithelial Cells Exposed to Type 2 Cytokines and Rhinovirus. Journal of Innate Immunity, 2020, 12, 103-115.	3.8	14
12	Identification of CFTR variants in Latino patients with cystic fibrosis from the Dominican Republic and Puerto Rico. Pediatric Pulmonology, 2020, 55, 533-540.	2.0	5
13	Atopic dermatitis, race, and genetics. Journal of Allergy and Clinical Immunology, 2020, 145, 108-110.	2.9	5
14	Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nature Communications, 2020, 11, 5139.	12.8	131
15	Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma. Cell Reports, 2020, 32, 107872.	6.4	78
16	Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand <i>KITLG/SCF </i> and Gene-By-Air-Pollution Interaction. Genetics, 2020, 215, 869-886.	2.9	11
17	Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nature Communications, 2020, 11, 2485.	12.8	166
18	Differential asthma odds following respiratory infection in children from three minority populations. PLoS ONE, 2020, 15, e0231782.	2.5	8

#	Article	IF	CITATIONS
19	Whole-Genome Sequencing Identifies Novel Functional Loci Associated with Lung Function in Puerto Rican Youth. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 962-972.	5.6	11
20	The Molecular and Epigenetic Mechanisms of Innate Lymphoid Cells (ILCs) Memory and its Relevance for Asthma. Journal of Allergy and Clinical Immunology, 2020, 145, AB1.	2.9	1
21	Expression of SMARCD1 interacts with age in association with asthma control on inhaled corticosteroid therapy. Respiratory Research, 2020, 21, 31.	3.6	6
22	Diagnosis and Management of T2-High Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 442-450.	3.8	51
23	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
24	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	28.9	1,956
25	Genome-Wide Analysis Reveals Mucociliary Remodeling of the Nasal Airway Epithelium Induced by Urban PM _{2.5} . American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 172-184.	2.9	32
26	Title is missing!. , 2020, 15, e0231782.		0
27	Title is missing!. , 2020, 15, e0231782.		0
28	Title is missing!. , 2020, 15, e0231782.		0
29	Title is missing!. , 2020, 15, e0231782.		0
30	A multi-omics evaluation of the non-lesional skin surface identifies atopic dermatitis with food allergy (AD FA+) as a unique endotype. Journal of Allergy and Clinical Immunology, 2019, 143, AB125.	2.9	2
31	Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. Journal of Allergy and Clinical Immunology, 2019, 144, 962-971.	2.9	63
32	CD11c+ Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 99.	4.8	21
33	The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Science Translational Medicine, $2019,11,$.	12.4	159
34	A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans with asthma. Pharmacogenomics Journal, 2019, 19, 249-259.	2.0	54
35	Expression and function of the ectopic olfactory receptor OR10G7 in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 143, 1838-1848.e4.	2.9	25
36	An admixture mapping meta-analysis implicates genetic variation at 18q21 with asthma susceptibility in Latinos. Journal of Allergy and Clinical Immunology, 2019, 143, 957-969.	2.9	33

#	Article	IF	CITATIONS
37	A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 465-477.	5.6	98
38	Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight, 2019, 4, .	5.0	167
39	The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium. JCI Insight, 2019, 4, .	5.0	23
40	Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1552-1564.	5.6	102
41	Interleukin-13 Stimulation Reveals the Cellular and Functional Plasticity of the Airway Epithelium. Annals of the American Thoracic Society, 2018, 15, S98-S102.	3.2	51
42	Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9. Methods in Molecular Biology, 2018, 1706, 267-292.	0.9	12
43	Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2–high atopic dermatitis disease endotype. Journal of Allergy and Clinical Immunology, 2018, 141, 1298-1309.	2.9	85
44	Utilization of Air–Liquid Interface Cultures as an In Vitro Model to Assess Primary Airway Epithelial Cell Responses to the Type 2 Cytokine Interleukin-13. Methods in Molecular Biology, 2018, 1799, 419-432.	0.9	12
45	Computational Analysis of RNA-Seq Data from Airway Epithelial Cells for Studying Lung Disease. Methods in Molecular Biology, 2018, 1809, 203-235.	0.9	0
46	ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biology, 2018, $19, 36$.	8.8	42
47	Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight, 2018, 3, .	5.0	172
48	Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome. Genome Biology, 2017, 18, 12.	8.8	59
49	Meta-analysis of peripheral blood gene expression modules for COPD phenotypes. PLoS ONE, 2017, 12, e0185682.	2.5	17
50	Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. ELife, 2017, 6, .	6.0	153
51	IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1, e87871.	5.0	42
52	Airway Progenitor Clone Formation Is Enhanced by Y-27632–Dependent Changes in the Transcriptome. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 323-336.	2.9	97
53	Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8765-8770.	7.1	139
54	Is the Road to Precision Medicine in Chronic Lung Disease Paved with Degraded Chitin?. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 107-108.	5.6	2

#	Article	IF	CITATIONS
55	Air Pollution and Lung Function in Minority Youth with Asthma in the GALA II (Genes–Environments) Tj ETQq1 1	0.784314 5.6	ł rgBT /Ove 54
56	Association of a PAI-1 Gene Polymorphism and Early Life Infections with Asthma Risk, Exacerbations, and Reduced Lung Function. PLoS ONE, 2016, 11, e0157848.	2.5	5
57	The landscape of genomic imprinting across diverse adult human tissues. Genome Research, 2015, 25, 927-936.	5.5	216
58	Airway molecular endotypes of asthma. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 163-168.	2.3	27
59	Pooled Sequencing of Candidate Genes Implicates Rare Variants in the Development of Asthma Following Severe RSV Bronchiolitis in Infancy. PLoS ONE, 2015, 10, e0142649.	2.5	10
60	Genome Reference and Sequence Variation in the Large Repetitive Central Exon of Human <i>MUC5AC</i> . American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 223-232.	2.9	32
61	Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. Journal of Allergy and Clinical Immunology, 2014, 133, 670-678.e12.	2.9	204
62	P2X ₇ -Regulated Protection from Exacerbations and Loss of Control Is Independent of Asthma Maintenance Therapy. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 28-33.	5.6	16
63	Human Tracheobronchial Basal Cells. Normal versus Remodeling/Repairing Phenotypes <i>In Vivo</i> and <i>In Vitro</i> . American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 1127-1134.	2.9	53
64	Association Between the MUC5B Promoter Polymorphism and Survival in Patients With Idiopathic Pulmonary Fibrosis. JAMA - Journal of the American Medical Association, 2013, 309, 2232.	7.4	395
65	Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax, 2013, 68, 1114-1121.	5.6	195
66	The Idiopathic Pulmonary Fibrosis Honeycomb Cyst Contains A Mucocilary Pseudostratified Epithelium. PLoS ONE, 2013, 8, e58658.	2.5	214
67	The Lung: The Natural Boundary Between Nature and Nurture. Annual Review of Physiology, 2011, 73, 457-478.	13.1	25
68	A Common <i>MUC5B</i> Promoter Polymorphism and Pulmonary Fibrosis. New England Journal of Medicine, 2011, 364, 1503-1512.	27.0	986
69	Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences. PLoS ONE, 2011, 6, e23714.	2.5	46
70	The H Antigen at Epithelial Surfaces Is Associated with Susceptibility to Asthma Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 189-194.	5.6	30
71	Genetic Ancestry in Lung-Function Predictions. New England Journal of Medicine, 2010, 363, 321-330.	27.0	230
72	Factors predicting inhaled corticosteroid responsiveness in African American patients with asthma. Journal of Allergy and Clinical Immunology, 2010, 126, 1131-1138.	2.9	36

#	Article	IF	CITATIONS
73	Differential Enzymatic Activity of Common Haplotypic Versions of the Human Acidic Mammalian Chitinase Protein. Journal of Biological Chemistry, 2009, 284, 19650-19658.	3.4	54
74	Differences in allergic sensitization by self-reported race and genetic ancestry. Journal of Allergy and Clinical Immunology, 2008, 122, 820-827.e9.	2.9	60
75	An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity. Human Molecular Genetics, 2008, 17, 2681-2690.	2.9	64