
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551388/publications.pdf Version: 2024-02-01

HONCMINL

#	Article	IF	CITATIONS
1	Inteins as Drug Targets and Therapeutic Tools. Frontiers in Molecular Biosciences, 2022, 9, 821146.	3.5	10
2	Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens, 2022, 11, 293.	2.8	16
3	Editorial of Special Column on Antiviral Drug Discovery and Pharmacology. Acta Pharmaceutica Sinica B, 2022, 12, 1540-1541.	12.0	0
4	Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Research, 2022, 205, 105381.	4.1	23
5	The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery. Life Sciences, 2021, 282, 118754.	4.3	8
6	Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Medicinal Research Reviews, 2021, 41, 1375-1426.	10.5	28
7	Small-molecule inhibitors for the Prp8 intein as antifungal agents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
8	Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment. European Journal of Medicinal Chemistry, 2021, 215, 113273.	5.5	6
9	An alternative domain-swapped structure of the Pyrococcus horikoshii Polll mini-intein. Scientific Reports, 2021, 11, 11680.	3.3	1
10	In vitro and in vivo characterization of erythrosin B and derivatives against Zika virus. Acta Pharmaceutica Sinica B, 2021, , .	12.0	10
11	Methylene blue is a potent and broad-spectrum inhibitor against Zika virus <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2020, 9, 2404-2416.	6.5	26
12	Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research, 2020, 288, 198141.	2.2	116
13	Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. MBio, 2020, 11, .	4.1	16
14	Targeting Crucial Host Factors of SARS-CoV-2. ACS Infectious Diseases, 2020, 6, 2844-2865.	3.8	28
15	JMX0207, a Niclosamide Derivative with Improved Pharmacokinetics, Suppresses Zika Virus Infection Both <i>In Vitro</i> and <i>In Vivo</i> . ACS Infectious Diseases, 2020, 6, 2616-2628.	3.8	32
16	Crystal structure and transient dimerization for the FKBP12 protein from the pathogenic fungus Candida auris. Biochemical and Biophysical Research Communications, 2020, 525, 1103-1108.	2.1	1
17	Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential. ACS Infectious Diseases, 2020, 6, 909-915.	3.8	252
18	Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biology, 2019, 17, e3000104.	5.6	28

#	Article	IF	CITATIONS
19	General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing. Journal of the American Chemical Society, 2019, 141, 18380-18384.	13.7	6
20	Cisplatin protects mice from challenge of <i>Cryptococcus neoformans</i> by targeting the Prp8 intein. Emerging Microbes and Infections, 2019, 8, 895-908.	6.5	20
21	Contributions of Hepatic and Intestinal Metabolism to the Disposition of Niclosamide, a Repurposed Drug with Poor Bioavailability. Drug Metabolism and Disposition, 2019, 47, 756-763.	3.3	24
22	Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature Communications, 2019, 10, 701.	12.8	57
23	Analysis of Proteinâ€Protein Interactions by Split Luciferase Complementation Assay. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 82, e90.	1.1	10
24	Structure of an engineered intein reveals thiazoline ring and provides mechanistic insight. Biotechnology and Bioengineering, 2019, 116, 709-721.	3.3	1
25	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	4.1	61
26	Mycobacterial DnaB helicase intein as oxidative stress sensor. Nature Communications, 2018, 9, 4363.	12.8	26
27	Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Research, 2017, 27, 1046-1064.	12.0	153
28	Flavivirus NS2B/NS3 Protease: Structure, Function, and Inhibition. , 2017, , 163-188.		13
29	A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathogens, 2017, 13, e1006411.	4.7	116
30	Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy. Journal of Biological Chemistry, 2016, 291, 22661-22670.	3.4	32
31	Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase. PLoS ONE, 2015, 10, e0130062.	2.5	58
32	Coupling of Conformational Transitions in the N-terminal Domain of the 51-kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins. Journal of Biological Chemistry, 2015, 290, 15746-15757.	3.4	18
33	Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity, 2015, 43, 354-368.	14.3	137
34	Identification and Characterization of Novel Broad-Spectrum Inhibitors of the Flavivirus Methyltransferase. ACS Infectious Diseases, 2015, 1, 340-349.	3.8	51
35	Zinc Inhibits Hedgehog Autoprocessing. Journal of Biological Chemistry, 2015, 290, 11591-11600.	3.4	15
36	5′-Silylated 3′-1,2,3-triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. Journal of Medicinal Chemistry, 2015, 58, 4016-4028.	6.4	67

#	Article	IF	CITATIONS
37	Refolding of a fully functional flavivirus methyltransferase revealed that Sâ€edenosyl methionine but not Sâ€edenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Science, 2015, 24, 117-128.	7.6	14
38	Structural basis of conformational transitions in the active site and 80′s loop in the FK506-binding protein FKBP12. Biochemical Journal, 2014, 458, 525-536.	3.7	15
39	Crystal structure and conformational flexibility of the unligated FK506-binding protein FKBP12.6. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 636-646.	2.5	5
40	Inexpensive electronics and software for photon statistics and correlation spectroscopy. American Journal of Physics, 2014, 82, 712-722.	0.7	7
41	The HECTD3 E3 Ubiquitin Ligase Suppresses Cisplatin-Induced Apoptosis via Stabilizing MALT1. Neoplasia, 2013, 15, 39-IN15.	5.3	36
42	Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Research, 2013, 97, 232-239.	4.1	51
43	The flavivirus protease as a target for drug discovery. Virologica Sinica, 2013, 28, 326-336.	3.0	47
44	Pfit Is a Structurally Novel Crohn's Disease-Associated Superantigen. PLoS Pathogens, 2013, 9, e1003837.	4.7	4
45	Analysing the visible conformational substates of the FK506-binding protein FKBP12. Biochemical Journal, 2013, 453, 371-380.	3.7	19
46	The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death and Disease, 2013, 4, e935-e935.	6.3	45
47	S-Adenosyl-Homocysteine Is a Weakly Bound Inhibitor for a Flaviviral Methyltransferase. PLoS ONE, 2013, 8, e76900.	2.5	18
48	Functional Interaction of CD154 Protein with α5β1 Integrin Is Totally Independent from Its Binding to αIIbβ3 Integrin and CD40 Molecules. Journal of Biological Chemistry, 2012, 287, 18055-18066.	3.4	29
49	Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Frontiers in Biology, 2010, 5, 286-303.	0.7	62
50	Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase. Journal of Biological Chemistry, 2010, 285, 32586-32595.	3.4	52
51	Crystal Structure of the Mycoplasma arthritidis-Derived Mitogen in Apo Form Reveals a 3D Domain-Swapped Dimer. Journal of Molecular Biology, 2010, 399, 367-376.	4.2	3
52	Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2′-O methylations of viral RNA cap. Virology, 2008, 377, 1-6.	2.4	33
53	West Nile Virus Methyltransferase Catalyzes Two Methylations of the Viral RNA Cap through a Substrate-Repositioning Mechanism. Journal of Virology, 2008, 82, 4295-4307.	3.4	105
54	Structure and Function of Flavivirus NS5 Methyltransferase. Journal of Virology, 2007, 81, 3891-3903.	3.4	324

#	Article	IF	CITATIONS
55	Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen. Journal of Biological Chemistry, 2007, 282, 5991-6000.	3.4	17
56	Distinct RNA Elements Confer Specificity to Flavivirus RNA Cap Methylation Events. Journal of Virology, 2007, 81, 4412-4421.	3.4	109
57	Mutagenesis, biochemical, and biophysical characterization of Mycoplasma arthritidis-derived mitogen. Molecular Immunology, 2007, 44, 763-773.	2.2	6
58	NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin. BMC Structural Biology, 2007, 7, 81.	2.3	1
59	Crystal structure of a complete ternary complex of TCR, superantigen and peptide-MHC. Nature Structural and Molecular Biology, 2007, 14, 169-171.	8.2	39
60	A single point mutation changes the crystallization behavior ofMycoplasma arthritidis-derived mitogen. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 238-241.	0.7	4
61	West Nile Virus 5′-Cap Structure Is Formed by Sequential Guanine N-7 and Ribose 2′-O Methylations by Nonstructural Protein 5. Journal of Virology, 2006, 80, 8362-8370.	3.4	329
62	Crystal structures of T cell receptor β chains related to rheumatoid arthritis. Protein Science, 2005, 14, 3025-3038.	7.6	10
63	The Structure of the Candida albicans Ess1 Prolyl Isomerase Reveals a Well-Ordered Linker that Restricts Domain Mobility,. Biochemistry, 2005, 44, 6180-6189.	2.5	46
64	Crystal Structure of Mycoplasma arthritidis Mitogen Complexed with HLA-DR1 Reveals a Novel Superantigen Fold and a Dimerized Superantigen-MHC Complex. Structure, 2004, 12, 277-288.	3.3	20
65	Crystallization and preliminary crystallographic analysis ofMycoplasma arthritidis-derived mitogen complexed with peptide/MHC class II antigen. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 353-356.	2.5	5
66	X-ray snapshots of the maturation of an antibody response to a protein antigen. Nature Structural and Molecular Biology, 2003, 10, 482-488.	8.2	151
67	Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 1.8Ã resolution. Journal of Structural Biology, 2003, 141, 171-178.	2.8	16
68	Immunoassay Targeting Nonstructural Protein 5 To Differentiate West Nile Virus Infection from Dengue and St. Louis Encephalitis Virus Infections and from Flavivirus Vaccination. Journal of Clinical Microbiology, 2003, 41, 4217-4223.	3.9	113
69	The Human Polymeric Immunoglobulin Receptor Binds to Streptococcus pneumoniae via Domains 3 and 4. Journal of Biological Chemistry, 2003, 278, 48178-48187.	3.4	65
70	Conservation of Nonpeptide Antigen Recognition by Rhesus Monkey Vγ2Vδ2 T Cells. Journal of Immunology, 2003, 170, 3696-3706.	0.8	52
71	Three-dimensional Structure of Human γ-Glutamyl Hydrolase. Journal of Biological Chemistry, 2002, 277, 24522-24529.	3.4	28
72	Structures of Two Streptococcal Superantigens Bound to TCR Î ² Chains Reveal Diversity in the Architecture of T Cell Signaling Complexes. Structure, 2002, 10, 687-699.	3.3	116

#	Article	IF	CITATIONS
73	Involvement of zinc in the binding ofMycoplasma arthritidis-derived mitogen to the proximity of the HLA-DR binding groove regardless of histidine 81 of the β chain. European Journal of Immunology, 2002, 32, 50-58.	2.9	17
74	Crystal Structure of a Superantigen Bound to the High-Affinity, Zinc-Dependent Site on MHC Class II. Immunity, 2001, 14, 93-104.	14.3	134
75	Superantigen Recognition by $\hat{I}^{3}\hat{I}$ T Cells. Immunity, 2001, 14, 331-344.	14.3	50
76	Structural Features of Nonpeptide Prenyl Pyrophosphates That Determine Their Antigenicity for Human Î ³ δT Cells. Journal of Immunology, 2001, 167, 36-41.	0.8	74
77	Crystal structure determination of a neutral neurotoxin BmK M4 fromButhus martensii Karsch at 0.20 nm. Science in China Series C: Life Sciences, 2000, 43, 39-46.	1.3	1
78	Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. Journal of Molecular Biology, 2000, 304, 177-188.	4.2	131
79	Three-Dimensional Structures of the Free and Antigen-Bound Fab from Monoclonal Antilysozyme Antibody HyHEL-63â€,‡. Biochemistry, 2000, 39, 6296-6309.	2.5	94
80	A series of bioactivity-variant neurotoxins from scorpionButhus martensiiKarsch: purification, crystallization and crystallographic analysis. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 341-344.	2.5	9
81	Structure of an insulin dimer in an orthorhombic crystal: the structure analysis of a human insulin mutant (B9 Ser→Glu). Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1524-1532.	2.5	29
82	THE STRUCTURAL BASIS OF T CELL ACTIVATION BY SUPERANTIGENS. Annual Review of Immunology, 1999, 17, 435-466.	21.8	294
83	Crystal structures of two α-like scorpion toxins: non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 292, 125-135.	4.2	81
84	Structure of the Vδ domain of a human Î ³ δ T-cell antigen receptor. Nature, 1998, 391, 502-506.	27.8	121
85	Imperfect interfaces. Nature Structural Biology, 1998, 5, 412-414.	9.7	31
86	Structure-function studies of T-cell receptor-superantigen interactions. Immunological Reviews, 1998, 163, 177-186.	6.0	48
87	Crystal structure of pokeweed antiviral protein from seeds ofPhytolacca americana at 0.25 nm. Science in China Series C: Life Sciences, 1998, 41, 413-418.	1.3	0
88	Crystallization and preliminary crystallographic analyses of pokeweed antiviral protein from seeds. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 137-139.	2.5	5
89	Three-Dimensional Structure of the Complex between a T Cell Receptor β Chain and the Superantigen Staphylococcal Enterotoxin B. Immunity, 1998, 9, 807-816.	14.3	188
90	Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Journal of Molecular Biology, 1998, 283, 179-191.	4.2	71

#	Article	IF	CITATIONS
91	A Mutational Analysis of Binding Interactions in an Antigenâ^'Antibody Proteinâ^'Protein Complexâ€. Biochemistry, 1998, 37, 7981-7991.	2.5	157
92	A Mutational Analysis of the Binding of Staphylococcal Enterotoxins B and C3 to the T Cell Receptor β Chain and Major Histocompatibility Complex Class II. Journal of Experimental Medicine, 1998, 187, 823-833.	8.5	145
93	Dual conformations of a T cell receptor Vα homodimer: implications for variability in VαVβ domain association 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1997, 269, 385-394.	4.2	18
94	Crystal Structure of an Acidic Neurotoxin from ScorpionButhus martensiiKarsch at 1.85 Ã Resolution. Journal of Molecular Biology, 1996, 261, 415-431.	4.2	89
95	Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature, 1996, 384, 188-192.	27.8	295