List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6551173/publications.pdf Version: 2024-02-01

LITTIN IIN

1Insight coal.2Effect Instit3Pyroly Total4ZIF-de Journ	hts into effect of Ca(OH)2 on pyrolysis behaviors and products distribution of Hongshaquan Fuel, 2022, 307, 121791. t of Fe components in red mud on catalytic pyrolysis of low rank coal. Journal of the Energy ute, 2022, 100, 1-9. ysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating. Science of the Environment, 2022, 806, 151287. erived hierarchical pore carbons as high-performance catalyst for methane decomposition. al of the Energy Institute, 2022, 100, 197-205. ysis behaviors and product distributions of coal flotation sample separated by float and sink Fuel, 2022, 312, 122923. ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.	 6.4 5.3 8.0 5.3 6.4 	20 40 19 8 6
2 Effect Instit 3 Pyroly Total 4 ZIF-de Journ	t of Fe components in red mud on catalytic pyrolysis of low rank coal. Journal of the Energy ute, 2022, 100, 1-9. ysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating. Science of the Environment, 2022, 806, 151287. erived hierarchical pore carbons as high-performance catalyst for methane decomposition. al of the Energy Institute, 2022, 100, 197-205. ysis behaviors and product distributions of coal flotation sample separated by float and sink Fuel, 2022, 312, 122923. ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.	5.38.05.36.4	40 19 8 6
3 Pyroly Total 4 ZIF-de Journ	ysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating. Science of the Environment, 2022, 806, 151287. erived hierarchical pore carbons as high-performance catalyst for methane decomposition. al of the Energy Institute, 2022, 100, 197-205. ysis behaviors and product distributions of coal flotation sample separated by float and sink Fuel, 2022, 312, 122923. ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.	8.05.36.4	19 8 6
4 ZIF-de Journ	erived hierarchical pore carbons as high-performance catalyst for methane decomposition. al of the Energy Institute, 2022, 100, 197-205. ysis behaviors and product distributions of coal flotation sample separated by float and sink Fuel, 2022, 312, 122923. ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.	5.3 6.4	8
	ysis behaviors and product distributions of coal flotation sample separated by float and sink Fuel, 2022, 312, 122923. ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.	6.4	6
5 Pyroly test.	ytic upgrading of ex-situ heavy coal tar over modified activated carbon. Fuel, 2022, 312, 122912.		
6 Catal		6.4	5
7 Proce carbc	ess parameter optimization for integrated process of coal pyrolysis with dry reforming of low on alkane over Ni/La2O3–ZrO2. Journal of the Energy Institute, 2022, 102, 54-59.	5.3	4
8 Mode and p	eling char surface area during coal pyrolysis: Validation of relationship between pore structure polymer network. AICHE Journal, 2022, 68, .	3.6	2
9 Insigh withc	nt into synergistic effect of co-pyrolysis of low-rank coal and waste polyethylene with or out additives using rapid infrared heating. Journal of the Energy Institute, 2022, 102, 384-394.	5.3	18
10 In-situ 2022	u catalytic upgrading of coal pyrolysis volatiles over red mud-supported nickel catalysts. Fuel, , 324, 124742.	6.4	16
11 Effect coal p	t of red mud-based additives on the formation characteristics of tar and gas produced during pyrolysis. Journal of the Energy Institute, 2022, 104, 1-11.	5.3	9
12 Co-py spect	rrolysis behaviors of low-rank coal and polystyrene with in-situ pyrolysis time-of-flight mass rometry. Fuel, 2021, 286, 119461.	6.4	14
13 Effect coal a	t of kaolinites modified with Zr and transition metals on the pyrolysis behaviors of low-rank and its model compound. Journal of the Energy Institute, 2021, 95, 41-51.	5.3	7
14 Integ with o	rated process of coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3-ZrO2 different La/Zr ratio. Fuel, 2021, 292, 120412.	6.4	9
15 Nove doub	l detection of primary and secondary volatiles from cedar pyrolysis using in-situ pyrolysis le ionization time-of-flight mass spectrometry. Chemical Engineering Science, 2021, 236, 116545.	3.8	15
16 Maxir Ni-xC	nizing production of high-quality tar from catalytic upgrading of lignite pyrolysis volatiles over e/Y under CH4/CO2 atmosphere. Fuel, 2021, 297, 120767.	6.4	6
17 Insigh ioniza	nt to pyrolysis behavior of three aromatic ethers by pyrolysis coupled with single-photon ation molecular-beam mass spectrometry. Fuel, 2021, 298, 120821.	6.4	6
18 Study spect	on pyrolysis behavior of long-chain n-alkanes with photoionization molecular-beam mass rometer. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105324.	5.5	4

#	Article	IF	CITATIONS
19	Insight into co-pyrolysis interactions of Pingshuo coal and high-density polyethylene via in-situ Py-TOF-MS and EPR. Fuel, 2021, 303, 121199.	6.4	17
20	Enhanced co-pyrolysis synergies between cedar and Naomaohu coal volatiles for tar production. Journal of Analytical and Applied Pyrolysis, 2021, 160, 105355.	5.5	7
21	CO 2 Reforming of Methane over Feâ€Modified Niâ€Based Catalyst for Syngas Production. Energy Technology, 2020, 8, 1900231.	3.8	0
22	Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites. Fuel, 2020, 259, 116234.	6.4	40
23	Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry. Fuel, 2020, 260, 116322.	6.4	46
24	Effect of hydrogen addition on formation of hydrogen and carbon from methane decomposition over Ni/Al ₂ O ₃ . Canadian Journal of Chemical Engineering, 2020, 98, 536-543.	1.7	8
25	Modeling the influence of changes in aliphatic structure on char surface area during coal pyrolysis. AICHE Journal, 2020, 66, e16834.	3.6	8
26	Catalytic cracking of coal-tar model compounds over ZrO2/Al2O3 and Ni-Ce/Al2O3 catalysts under steam atmosphere. Fuel, 2020, 263, 116763.	6.4	24
27	Mechanism of methane decomposition with hydrogen addition over activated carbon via in-situ pyrolysis-electron impact ionization time-of-flight mass spectrometry. Fuel, 2020, 263, 116734.	6.4	10
28	Enhanced production of light tar from integrated process of in-situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y. Fuel, 2020, 279, 118533.	6.4	20
29	In-situ detection of initial products from lignite pyrolysis over modified Y-type zeolites by pyrolysis photoionization time-of-flight mass spectrometry. Chemical Engineering Science: X, 2020, 8, 100081.	1.5	0
30	In-situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon based catalyst. Fuel Processing Technology, 2020, 209, 106551.	7.2	16
31	Oxidative Catalytic Cracking and Reforming of Coal Pyrolysis Volatiles over NiO. Energy & Fuels, 2020, 34, 6928-6937.	5.1	11
32	<i>In situ</i> study on interactions between hydroxyl groups in kaolinite and re-adsorption water. RSC Advances, 2020, 10, 16949-16958.	3.6	6
33	Integrated coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3 to improve tar yield. Fuel, 2020, 266, 117092.	6.4	15
34	Co-pyrolysis of Baiyinhua lignite and pine in an infrared-heated fixed bed to improve tar yield. Fuel, 2020, 272, 117739.	6.4	21
35	In‧itu Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al ₂ O ₃ Catalysts. ChemistrySelect, 2020, 5, 4905-4912.	1.5	6
36	Novel insight into pyrolysis behaviors of lignin using in-situ pyrolysis-double ionization time-of-flight mass spectrometry combined with electron paramagnetic resonance spectroscopy. Bioresource Technology, 2020, 312, 123555.	9.6	23

#	Article	IF	CITATIONS
37	Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating. Energy Conversion and Management, 2020, 205, 112442.	9.2	50
38	Effect of different acid-leached USY zeolites on in-situ catalytic upgrading of lignite tar. Fuel, 2020, 266, 117089.	6.4	32
39	Effect of reducibility of transition metal oxides on in-situ oxidative catalytic cracking of tar. Energy Conversion and Management, 2019, 197, 111871.	9.2	43
40	Integrated process for partial oxidation of heavy oil and in-situ reduction of red mud. Applied Catalysis B: Environmental, 2019, 258, 117944.	20.2	28
41	Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor. Bioresource Technology, 2019, 290, 121739.	9.6	25
42	Integrated process of coal tar upgrading and in-situ reduction of Fe2O3. Fuel Processing Technology, 2019, 191, 20-28.	7.2	18
43	Integrated process of coal pyrolysis with catalytic reforming of simulated coal gas for improving tar yield. Fuel, 2019, 255, 115797.	6.4	17
44	Effect of mineral in coal on preparation of activated carbon for methane decomposition to hydrogen. Fuel, 2019, 258, 116138.	6.4	42
45	In-situ catalytic upgrading of coal pyrolysis tar over activated carbon supported nickel in CO2 reforming of methane. Fuel, 2019, 250, 203-210.	6.4	28
46	Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides. Fuel, 2019, 239, 764-773.	6.4	24
47	Pyrolytic behavior of coal-related model compounds connected with C–C bridged linkages by in-situ pyrolysis vacuum ultraviolet photoionization mass spectrometry. Fuel, 2019, 241, 533-541.	6.4	27
48	Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a subbituminous coal. Fuel, 2019, 241, 1129-1137.	6.4	60
49	Upgrading of Heavy Oil with Chemical Looping Partial Oxidation over M ²⁺ Doped Fe ₂ O ₃ . Energy & Fuels, 2019, 33, 257-265.	5.1	6
50	Structural Features and Pyrolysis Behaviors of Extracts from Microwave-Assisted Extraction of a Low-Rank Coal with Different Solvents. Energy & Fuels, 2019, 33, 106-114.	5.1	22
51	Steam catalytic cracking of coal tar over ironâ€containing mixed metal oxides. Canadian Journal of Chemical Engineering, 2019, 97, 702-708.	1.7	7
52	Ni/MgO Al2O3 catalyst derived from modified [Ni,Mg,Al]-LDH with NaOH for CO2 reforming of methane. International Journal of Hydrogen Energy, 2018, 43, 2689-2698.	7.1	25
53	In Situ Analysis of Catalytic Effect of Calcium Nitrate on Shenmu Coal Pyrolysis with Pyrolysis Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2018, 32, 1061-1069.	5.1	34
54	Effect of Ca(NO3)2 addition in coal on properties of activated carbon for methane decomposition to hydrogen. Fuel Processing Technology, 2018, 176, 85-90.	7.2	31

#	Article	IF	CITATIONS
55	Preparation of Ce–Mn/Fe ₂ O ₃ Catalysts for Steam Catalytic Cracking of Coal Tar. ChemistrySelect, 2018, 3, 12537-12543.	1.5	2
56	Integrated Process of Coal Pyrolysis with Steam Reforming of Ethane for Improving the Tar Yield. Energy & Fuels, 2018, 32, 12268-12276.	5.1	15
57	In-situ analysis of catalytic pyrolysis of Baiyinhua coal with pyrolysis time-of-flight mass spectrometry. Fuel, 2018, 227, 386-393.	6.4	26
58	In-situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts. Fuel Processing Technology, 2018, 177, 119-128.	7.2	32
59	Effect of hydrogen additive on methane decomposition to hydrogen and carbon over activated carbon catalyst. International Journal of Hydrogen Energy, 2018, 43, 17611-17619.	7.1	28
60	Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3. Energy, 2018, 162, 542-553.	8.8	27
61	Online analysis of initial volatile products of Shenhua coal and its macerals with pyrolysis vacuum ultraviolet photoionization mass spectrometry. Fuel Processing Technology, 2017, 163, 67-74.	7.2	22
62	Preparation of carbon-Ni/MgO-Al2O3 composite catalysts for CO2 reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 5047-5055.	7.1	25
63	Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts. Fuel, 2017, 210, 803-810.	6.4	32
64	<i>In Situ</i> Catalytic Upgrading of Coal Pyrolysis Tar over Carbon-Based Catalysts Coupled with CO ₂ Reforming of Methane. Energy & amp; Fuels, 2017, 31, 9356-9362.	5.1	24
65	Preparation of Fe-Doped Carbon Catalyst for Methane Decomposition to Hydrogen. Industrial & Engineering Chemistry Research, 2017, 56, 11021-11027.	3.7	42
66	Integrated process of coal pyrolysis and CO ₂ reforming of methane with and without using dielectric barrier discharge plasma. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 613-620.	2.3	6
67	Interaction between Hydrogen-Donor and Nondonor Solvents in Direct Liquefaction of Bulianta Coal. Energy & Fuels, 2016, 30, 10260-10267.	5.1	23
68	In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor. Fuel Processing Technology, 2016, 147, 41-46.	7.2	85
69	Pyrolysis of Huolinhe lignite extract by in-situ pyrolysis-time of flight mass spectrometry. Fuel Processing Technology, 2015, 135, 52-59.	7.2	52
70	Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 575-584.	1.7	20
71	Integrated Process of Coal Pyrolysis with Steam Reforming of Methane for Improving the Tar Yield. Energy & Fuels, 2014, 28, 7377-7384.	5.1	30
72	Experimental and Theoretical Investigation on Three α,ï‰-Diarylalkane Pyrolysis. Energy & Fuels, 2014, 28, 6905-6910.	5.1	13

#	Article	IF	CITATIONS
73	Experimental and Theoretical Study on the Pyrolysis Mechanism of Three Coal-Based Model Compounds. Energy & Fuels, 2014, 28, 980-986.	5.1	41
74	Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition. International Journal of Hydrogen Energy, 2013, 38, 8732-8740.	7.1	41
75	Preparation of activated carbon supported Fe–Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. International Journal of Hydrogen Energy, 2013, 38, 10373-10380.	7.1	68
76	Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield. Fuel, 2013, 114, 187-190.	6.4	51
77	Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon, 2013, 55, 221-232.	10.3	134
78	Preparation and applications of hierarchical porous carbons from direct coal liquefaction residue. Fuel, 2013, 109, 2-8.	6.4	32
79	Analysis of coal tar derived from pyrolysis at different atmospheres. Fuel, 2013, 104, 14-21.	6.4	156
80	Mesoporous carbon prepared from direct coal liquefaction residue for methane decomposition. Carbon, 2012, 50, 952-959.	10.3	54
81	Effect of composition in coal liquefaction residue on catalytic activity of the resultant carbon for methane decomposition. Fuel, 2012, 96, 462-468.	6.4	23
82	Integrated Process of Coal Pyrolysis with CO ₂ Reforming of Methane by Dielectric Barrier Discharge Plasma. Energy & Fuels, 2011, 25, 4036-4042.	5.1	21
83	Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO 2 or SBA-15. International Journal of Hydrogen Energy, 2011, 36, 8978-8984.	7.1	33
84	Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG–MS and in a fixed bed reactor. Fuel Processing Technology, 2011, 92, 780-786.	7.2	106
85	Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield. Fuel Processing Technology, 2010, 91, 419-423.	7.2	67
86	lsotope Analysis for Understanding the Tar Formation in the Integrated Process of Coal Pyrolysis with CO ₂ Reforming of Methane. Energy & Fuels, 2010, 24, 4402-4407.	5.1	35
87	Pyrolysis Behavior of Macerals from Weakly Reductive Coals. Energy & Fuels, 2010, 24, 6314-6320.	5.1	26
88	Synthesis and modification of zeolite NaA adsorbents for separation of hydrogen and methane. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 666-671.	1.5	10
89	Pyrolysis Behavior of Weakly Reductive Coals from Northwest China. Energy & Fuels, 2009, 23, 870-875.	5.1	44
90	Role of Iron-Based Catalyst and Hydrogen Transfer in Direct Coal Liquefaction. Energy & Fuels, 2008, 22, 1126-1129.	5.1	65