Federico Ferreres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6550170/publications.pdf

Version: 2024-02-01

281 papers

17,511 citations

71 h-index 20358 116 g-index

284 all docs

284 docs citations

times ranked

284

16285 citing authors

#	Article	IF	CITATIONS
1	HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Research International, 2022, 155, 111082.	6.2	5
2	Comparative Study of Metabolomic Profile and Antioxidant Content of Adult and In Vitro Leaves of Aristotelia chilensis. Plants, 2022, 11, 37.	3 . 5	2
3	Valorisation of the industrial waste of Chukrasia tabularis A.Juss.: Characterization of the leaves phenolic constituents and antidiabetic-like effects. Industrial Crops and Products, 2022, 185, 115100.	5.2	1
4	Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chemistry, 2021, 342, 128323.	8.2	10
5	Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Research International, 2021, 141, 110121.	6.2	13
6	Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1Âcells and inhibit eicosanoid-metabolizing enzymes. Journal of Ethnopharmacology, 2021, 269, 113746.	4.1	7
7	Impact of Abiotic Stresses (Nitrogen Reduction and Salinity Conditions) on Phenolic Compounds and Antioxidant Activity of Strawberries. Processes, 2021, 9, 1044.	2.8	2
8	Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study. Nutrients, 2021, 13, 2399.	4.1	5
9	Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated <i>In Vitro</i> Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 14165-14175.	5.2	4
10	Gustavia gracillima Miers. flowers effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MS. Food Research International, 2020, 137, 109694.	6.2	2
11	Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. Journal of Agricultural and Food Chemistry, 2020, 68, 8915-8924.	5.2	14
12	Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchemical Journal, 2020, 157, 105083.	4.5	7
13	Seed Oil from Mediterranean Aromatic and Medicinal Plants of the Lamiaceae Family as a Source of Bioactive Components with Nutritional. Antioxidants, 2020, 9, 510.	5.1	17
14	Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. Journal of Agricultural and Food Chemistry, 2020, 68, 7789-7799.	5 . 2	9
15	In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chemistry, 2020, 333, 127456.	8.2	26
16	Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chemistry, 2019, 272, 227-234.	8.2	29
17	The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. European Journal of Lipid Science and Technology, 2019, 121, 1800484.	1.5	17
18	Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules, 2019, 9, 400.	4.0	23

#	Article	IF	Citations
19	Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chemistry, 2019, 280, 231-239.	8.2	20
20	HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chemistry, 2019, 278, 424-433.	8.2	17
21	Potential of <scp><i>Physalis peruviana</i></scp> calyces as a lowâ€cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 2019, 99, 2194-2204.	3.5	34
22	Chemical findings and in vitro biological studies to uphold the use of Ficus exasperata Vahl leaf and stem bark. Food and Chemical Toxicology, 2018, 112, 134-144.	3.6	14
23	Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Research International, 2018, 107, 619-628.	6.2	28
24	In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. Journal of Ethnopharmacology, 2018, 211, 247-255.	4.1	20
25	<i>Aronia</i> àê" <i>citrus</i> juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food and Function, 2018, 9, 463-475.	4.6	33
26	Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD-ESI/MS and UPLC-ESI-QTOF/MS. Algal Research, 2018, 29, 113-120.	4.6	63
27	Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants, 2018, 7, 165.	5.1	26
28	Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food and Chemical Toxicology, 2018, 118, 430-438.	3.6	27
29	Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chemistry, 2018, 265, 233-241.	8.2	26
30	The chemical composition on fingerprint of Glandora diffusa and its biological properties. Arabian Journal of Chemistry, 2017, 10, 583-595.	4.9	11
31	Snapshot situation of oxidative degradation of the nervous system, kidney, and adrenal glands biomarkers-neuroprostane and dihomo-isoprostanes-urinary biomarkers from infancy to elderly adults. Redox Biology, 2017, 11, 586-591.	9.0	14
32	Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 2017, 168, 78-88.	3.8	37
33	Potential applications of lipid peroxidation products – F4-neuroprostanes, F3-neuroprostanesn-6 DPA, F2-dihomo-isoprostanes and F2-isoprostanes ―in the evaluation of the allograft function in renal transplantation. Free Radical Biology and Medicine, 2017, 104, 178-184.	2.9	10
34	Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 2017, 229, 1-8.	8.2	63
35	Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species. Food Chemistry, 2017, 233, 85-95.	8.2	16
36	Inhibition of \hat{l}_{\pm} -glucosidase and \hat{l}_{\pm} -amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	8.2	54

#	Article	IF	CITATIONS
37	Anti-inflammatory properties of the stem bark from the herbal drug Vitex peduncularis Wall. ex Schauer and characterization of its polyphenolic profile. Food and Chemical Toxicology, 2017, 106, 8-16.	3.6	16
38	Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food and Chemical Toxicology, 2017, 106, 466-476.	3.6	25
39	Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chemistry, 2017, 230, 463-474.	8.2	67
40	Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food and Function, 2017, 8, 64-74.	4.6	16
41	Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease. Plant Physiology and Biochemistry, 2017, 112, 45-52.	5.8	31
42	Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food and Function, 2017, 8, 3745-3757.	4.6	15
43	Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Research, 2017, 28, 1-8.	4.6	41
44	Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 46
45	Phenolic Profile and Biological Activities of the Pepino (Solanum muricatum) Fruit and Its Wild Relative S. caripense. International Journal of Molecular Sciences, 2016, 17, 394.	4.1	20
46	Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules, 2016, 21, 1333.	3.8	15
47	Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers. Food and Function, 2016, 7, 4781-4796.	4.6	14
48	DNA catabolites in triathletes: effects of supplementation with an aronia–citrus juice (polyphenols-rich juice). Food and Function, 2016, 7, 2084-2093.	4.6	13
49	Lipidomic approach in young adult triathletes: effect of supplementation with a polyphenols-rich juice on neuroprostane and F ₂ -dihomo-isoprostane markers. Food and Function, 2016, 7, 4343-4355.	4.6	12
50	Antiepileptic drugs affect lipid oxidative markers- neuroprostanes and F2-dihomo-isoprostanes- in patients with epilepsy: differences among first-, second-, and third-generation drugs by UHPLC-QqQ-MS/MS. RSC Advances, 2016, 6, 82969-82976.	3.6	4
51	Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 2016, 67, 779-788.	2.8	33
52	Comprehensive characterization and antioxidant activities of the main biflavonoids of Garcinia madruno: A novel tropical species for developing functional products. Journal of Functional Foods, 2016, 27, 503-516.	3.4	20
53	Effect of the season on the free phytoprostane content in Cornicabra extra virgin olive oil from deficitâ€irrigated olive trees. Journal of the Science of Food and Agriculture, 2016, 96, 1585-1592.	3.5	19
54	Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training. Free Radical Research, 2016, 50, 485-494.	3.3	13

#	Article	IF	CITATIONS
55	Phytoprostanes. Lipid Technology, 2015, 27, 127-130.	0.3	29
56	Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Marine Drugs, 2015, 13, 3182-3230.	4.6	155
57	Radish sproutsâ€"Characterization and elicitation of novel varieties rich in anthocyanins. Food Research International, 2015, 69, 305-312.	6.2	36
58	New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chemistry, 2015, 178, 212-220.	8.2	51
59	Dihomo-isoprostanesâ€"nonenzymatic metabolites of AdAâ€"are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatographyâ€"triple quadrupoleâ€"tandem mass spectrometry method. Free Radical Biology and Medicine, 2015, 79, 154-163.	2.9	33
60	Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season. Journal of Agricultural and Food Chemistry, 2015, 63, 1673-1681.	5.2	62
61	Nonenzymatic \hat{l}_{\pm} -Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	5.2	40
62	The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology, 2015, 64, 997-1003.	5.2	34
63	Determination of interglycosidic linkages in <i>O</i> â€glycosyl flavones by highâ€performance liquid chromatography/photodiodeâ€array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to <i>Tetragonula carbonaria</i> honey from Australia. Rapid Communications in Mass Spectrometry, 2015, 29, 948-954.	1.5	19
64	Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radical Research, 2015, 49, 973-983.	3.3	26
65	Effect of Fermentation and Subsequent Pasteurization Processes on Amino Acids Composition of Orange Juice. Plant Foods for Human Nutrition, 2015, 70, 153-159.	3.2	22
66	Water Deficit during Pit Hardening Enhances Phytoprostanes Content, a Plant Biomarker of Oxidative Stress, in Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2015, 63, 3784-3792.	5.2	27
67	Effect of Water Stress and Storage Time on Anthocyanins and Other Phenolics of Different Genotypes of Fresh Sweet Basil. Journal of Agricultural and Food Chemistry, 2015, 63, 9223-9231.	5.2	19
68	Comparing the phenolic profile of Pilocarpus pennatifolius Lem. by HPLC–DAD–ESI/MS n with respect to authentication and enzyme inhibition potential. Industrial Crops and Products, 2015, 77, 391-401.	5.2	23
69	Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. Journal of Agricultural and Food Chemistry, 2015, 63, 9022-9028.	5.2	26
70	Pennyroyal and gastrointestinal cells: multi-target protection of phenolic compounds against t-BHP-induced toxicity. RSC Advances, 2015, 5, 41576-41584.	3.6	14
71	The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chemistry, 2015, 173, 1187-1194.	8.2	39
72	Beverages of lemon juice and exotic noni and papaya with potential for anticholinergic effects. Food Chemistry, 2015, 170, 16-21.	8.2	21

#	Article	IF	CITATIONS
73	Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea. Frontiers in Plant Science, 2015, 6, 1240.	3.6	15
74	Alcoholic fermentation induces melatonin synthesis in orange juice. Journal of Pineal Research, 2014, 56, 31-38.	7.4	59
75	HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 163-172.	2.8	21
76	Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. Journal of Steroid Biochemistry and Molecular Biology, 2014, 140, 106-115.	2.5	53
77	Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 157-161.	2.8	15
78	<i>Piper betle</i> Leaves: Profiling Phenolic Compounds by HPLC/DAD–ESI/MS <i>ⁿ</i> and Anti holinesterase Activity. Phytochemical Analysis, 2014, 25, 453-460.	2.4	26
79	Box–Behnken factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L Talanta, 2014, 130, 128-136.	5. 5	34
80	A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chemistry, 2014, 143, 132-138.	8.2	46
81	Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases. Marine Drugs, 2014, 12, 2539-2589.	4.6	29
82	Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Macedonian Journal of Chemistry and Chemical Engineering, 2014, 33, 105.	0.6	31
83	Phenolic compounds from Jacaranda caroba (Vell.) A. DC.: Approaches to neurodegenerative disorders. Food and Chemical Toxicology, 2013, 57, 91-98.	3.6	17
84	Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice. Food Chemistry, 2013, 136, 938-946.	8.2	28
85	In vitro studies of \hat{l}_{\pm} -glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) D.C. Thomas infusion. Food Chemistry, 2013, 136, 1390-1398.	8.2	17
86	The effects of the intake of plant foods on the human metabolome. TrAC - Trends in Analytical Chemistry, 2013, 52, 88-99.	11.4	18
87	Ellagic Acid and Derivatives from <i>Cochlospermum angolensis</i> Welw. Extracts: HPLC–DAD–ESI/MS <i>ⁿ</i> Profiling, Quantification and <i>In Vitro</i> Antiâ€depressant, Antiâ€cholinesterase and Antiâ€oxidant Activities. Phytochemical Analysis, 2013, 24, 534-540.	2.4	43
88	Fermented Orange Juice: Source of Higher Carotenoid and Flavanone Contents. Journal of Agricultural and Food Chemistry, 2013, 61, 8773-8782.	5. 2	84
89	Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice. Journal of the Science of Food and Agriculture, 2013, 93, 1922-1927.	3 . 5	49
90	Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chemistry, 2013, 141, 3480-3485.	8.2	33

#	Article	IF	Citations
91	Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. Journal of Pharmacy and Pharmacology, 2013, 65, 1681-1700.	2.4	84
92	Flavonoids in Stingless-Bee and Honey-Bee Honeys. , 2013, , 461-474.		6
93	Phenolic Compounds in Catharanthus roseus. , 2013, , 2093-2106.		0
94	Effect of Water Deficit and Domestic Storage on the Procyanidin Profile, Size, and Aggregation Process in Pear-Jujube (<i>Z. jujuba)</i> Fruits. Journal of Agricultural and Food Chemistry, 2013, 61, 6187-6197.	5.2	28
95	A New Iced Tea Base Herbal Beverage with Spergularia rubra Extract: Metabolic Profile Stability and In Vitro Enzyme Inhibition. Journal of Agricultural and Food Chemistry, 2013, 61, 8650-8656.	5.2	6
96	Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE, 2013, 8, e59131.	2.5	85
97	Brassica oleracea L. Var. costata DC and Pieris brassicae L. Aqueous Extracts Reduce Methyl Methanesulfonate-Induced DNA Damage in V79 Hamster Lung Fibroblasts. Journal of Agricultural and Food Chemistry, 2012, 60, 5380-5387.	5.2	4
98	Further Knowledge on the Phenolic Profile of <i>Colocasia esculenta</i> (L.) Shott. Journal of Agricultural and Food Chemistry, 2012, 60, 7005-7015.	5.2	36
99	Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosaL.) inflorescences. Food Chemistry, 2012, 135, 756-763.	8.2	38
100	Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chemistry, 2012, 135, 748-755.	8.2	30
101	Physical activity increases the bioavailability of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chemistry, 2012, 135, 2133-2137.	8.2	25
102	New Beverages of Lemon Juice Enriched with the Exotic Berries Maqui, AÃSaıÌ; and Blackthorn: Bioactive Components and in Vitro Biological Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 6571-6580.	5.2	62
103	Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins and Other Lipid Mediators, 2012, 99, 79-86.	1.9	47
104	Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Marine Drugs, 2012, 10, 2766-2781.	4.6	180
105	Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide. Molecules, 2012, 17, 5269-5288.	3.8	11
106	A ultraâ€pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet. Rapid Communications in Mass Spectrometry, 2012, 26, 1249-1257.	1.5	72
107	Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chemistry, 2012, 134, 775-782.	8.2	78
108	Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chemistry, 2012, 134, 894-904.	8.2	97

#	Article	IF	Citations
109	Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential. Food Chemistry, 2012, 134, 2090-2096.	8.2	62
110	Influence of preharvest application of fungicides on the postharvest quality of tomato (Solanum) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50
111	Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: changes in phenolic production, oxidative state and expression of defence-related genes. European Journal of Plant Pathology, 2012, 132, 133-146.	1.7	20
112	Flavonoids., 2012,, 289-316.		1
113	Phenolic Metabolism in Grafted versus Nongrafted Cherry Tomatoes under the Influence of Water Stress. Journal of Agricultural and Food Chemistry, 2011, 59, 8839-8846.	5.2	19
114	Dietary Burden of Phenolics per Serving of "Mountain Tea―(<i>Sideritis</i>) from Macedonia and Correlation to Antioxidant Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	12
115	Brassica Seeds. , 2011, , 83-91.		1
116	STEROL PROFILES IN 18 MACROALGAE OF THE PORTUGUESE COAST ¹ . Journal of Phycology, 2011, 47, 1210-1218.	2.3	80
117	Liquid chromatography–tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys. Journal of Chromatography A, 2011, 1218, 7601-7607.	3.7	51
118	Phytochemical fingerprinting of vegetable <i>Brassica oleracea</i> and <i>Brassica napus</i> by simultaneous identification of glucosinolates and phenolics. Phytochemical Analysis, 2011, 22, 144-152.	2.4	122
119	Approach to the study of <i>C</i> â€glycosyl flavones acylated with aliphatic and aromatic acids from <i>Spergularia rubra</i> by highâ€performance liquid chromatographyâ€photodiode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 700-712.	1.5	45
120	Highâ€performance liquid chromatographyâ€diode array detectionâ€electrospray ionization multiâ€stage mass spectrometric screening of an insect/plant system: the case of <i>Spodoptera littoralis</i> Lycopersicon esculentum phenolics and alkaloids. Rapid Communications in Mass Spectrometry, 2011, 25, 1972-1980.	1.5	21
121	Structural characterization of phenolics and betacyanins in <i>Gomphrena globosa ⟨i⟩ by highâ€performance liquid chromatographyâ€diode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3441-3446.</i>	1.5	15
122	Iron deficiency enhances bioactive phenolics in lemon juice. Journal of the Science of Food and Agriculture, 2011, 91, n/a-n/a.	3.5	15
123	In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chemistry, 2011, 129, 454-462.	8.2	98
124	Potential bioactive phenolics of Macedonian Sideritis species used for medicinal "Mountain Tea― Food Chemistry, 2011, 125, 13-20.	8.2	57
125	Differential responses of five cherry tomato varieties to water stress: Changes on phenolic metabolites and related enzymes. Phytochemistry, 2011, 72, 723-729.	2.9	211
126	Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair?. Journal of Experimental Botany, 2011, 62, 2841-2854.	4.8	157

#	Article	IF	CITATIONS
127	Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17, 646-652.	5.3	82
128	HPLCâ€PADâ€atmospheric pressure chemical ionizationâ€MS metabolite profiling of cytotoxic carotenoids from the echinoderm <i>Marthasterias glacialis</i> (spiny seaâ€star). Journal of Separation Science, 2010, 33, 2250-2257.	2.5	15
129	Improving the knowledge on <i>Piper betle</i> : Targeted metabolite analysis and effect on acetylcholinesterase. Journal of Separation Science, 2010, 33, 3168-3176.	2.5	20
130	Simple and reproducible HPLC–DAD–ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 65-69.	2.8	45
131	Acylated anthocyanins in broccoli sprouts. Food Chemistry, 2010, 123, 358-363.	8.2	89
132	Exploiting Catharanthus roseus roots: Source of antioxidants. Food Chemistry, 2010, 121, 56-61.	8.2	36
133	First report of non-coloured flavonoids inEchium plantagineumbee pollen: differentiation of isomers by liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 801-806.	1.5	32
134	Identification of Botanical Biomarkers in Argentinean Diplotaxis Honeys: Flavonoids and Glucosinolates. Journal of Agricultural and Food Chemistry, 2010, 58, 12678-12685.	5.2	43
135	Chemical Assessment and <i>in Vitro</i> Antioxidant Capacity of <i>Ficus carica</i> Latex. Journal of Agricultural and Food Chemistry, 2010, 58, 3393-3398.	5 . 2	53
136	Tomato (Lycopersicon esculentum) Seeds: New Flavonols and Cytotoxic Effect. Journal of Agricultural and Food Chemistry, 2010, 58, 2854-2861.	5.2	74
137	<i>Lycopersicon esculentum</i> Seeds: An Industrial Byproduct as an Antimicrobial Agent. Journal of Agricultural and Food Chemistry, 2010, 58, 9529-9536.	5.2	63
138	Screening of Antioxidant Phenolic Compounds Produced by In Vitro Shoots of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 230-240.	1.1	12
139	Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. Journal of Chromatography A, 2009, 1216, 6611-6619.	3.7	147
140	Liquid chromatography–tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. Journal of Chromatography A, 2009, 1216, 7241-7248.	3.7	72
141	Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chemistry, 2009, 114, 1019-1027.	8.2	123
142	Metabolic and Bioactivity Insights into Brassica oleracea var. <i>acephala</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 8884-8892.	5.2	50
143	Targeted Metabolite Analysis and Biological Activity of <i>Pieris brassicae</i> Fed with <ibrassica i="" rapa<=""> var. <i>rapa</i>). Journal of Agricultural and Food Chemistry, 2009, 57, 483-489.</ibrassica>	5 . 2	13
144	Pieris brassicae Inhibits Xanthine Oxidase. Journal of Agricultural and Food Chemistry, 2009, 57, 2288-2294.	5.2	11

#	Article	lF	CITATIONS
145	Use of Quinoline Alkaloids as Markers of the Floral Origin of Chestnut Honey. Journal of Agricultural and Food Chemistry, 2009, 57, 5680-5686.	5.2	45
146	Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var.) Tj ETQq0 0 0	orgBT /Ove	erlock 10 Tf 5
147	Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food and Chemical Toxicology, 2009, 47, 1349-1354.	3.6	36
148	In Vitro Cultures of Brassica oleracea L. var.costataDC: Potential Plant Bioreactor for Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2009, 57, 1247-1252.	5. 2	36
149	Phenolics Metabolism in Insects: <i>Pieris brassicae</i> oleraceavar. <i>costata</i> Ecological Duo. Journal of Agricultural and Food Chemistry, 2009, 57, 9035-9043.	5.2	21
150	Free Water-Soluble Phenolics Profiling in Barley (Hordeum vulgare L.). Journal of Agricultural and Food Chemistry, 2009, 57, 2405-2409.	5. 2	47
151	Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chemistry, 2008, 110, 953-961.	8.2	50
152	Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 2008, 1182, 56-64.	3.7	102
153	Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 2008, 108, 1028-1038.	8.2	427
154	Nectar Flavonol Rhamnosides Are Floral Markers of Acacia (<i>Robinia pseudacacia</i>) Honey. Journal of Agricultural and Food Chemistry, 2008, 56, 8815-8824.	5. 2	79
155	Tronchuda Cabbage (Brassica oleracea L. var. <i>costata</i> DC): Scavenger of Reactive Nitrogen Species. Journal of Agricultural and Food Chemistry, 2008, 56, 4205-4211.	5.2	38
156	New Phenolic Compounds and Antioxidant Potential of <i>Catharanthus roseus</i> Journal of Agricultural and Food Chemistry, 2008, 56, 9967-9974.	5 . 2	93
157	A Comparative Study of Flavonoid Compounds, Vitamin C, and Antioxidant Properties of Baby Leaf <i>Brassicaceae</i> Species. Journal of Agricultural and Food Chemistry, 2008, 56, 2330-2340.	5.2	162
158	Multivariate Analysis of Tronchuda Cabbage (Brassica oleracea L. var.costataDC) Phenolics: Influence of Fertilizers. Journal of Agricultural and Food Chemistry, 2008, 56, 2231-2239.	5. 2	58
159	Targeted Metabolite Analysis and Antioxidant Potential of <i>Rumex induratus </i> . Journal of Agricultural and Food Chemistry, 2008, 56, 8184-8194.	5.2	15
160	HPLC-DAD-MS/MS-ESI Screening of Phenolic Compounds in Pieris brassicae L. Reared on Brassica rapa var. <i>rapa</i> L. Journal of Agricultural and Food Chemistry, 2008, 56, 844-853.	5.2	73
161	Recent Trends in High Throughput Analysis and Antioxidant Potential Screening for Phenolics. Current Pharmaceutical Analysis, 2008, 4, 137-150.	0.6	11
162	Screening of Antioxidant Compounds During Sprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 377-386.	1.1	30

#	Article	IF	Citations
163	Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 2007, 45, 2287-2295.	3.6	356
164	New <i>C</i> -Deoxyhexosyl Flavones and Antioxidant Properties of <i>Passiflora edulis</i> -Extract. Journal of Agricultural and Food Chemistry, 2007, 55, 10187-10193.	5.2	71
165	Identification of New Flavonoid Glycosides and Flavonoid Profiles To Characterize Rocket Leafy Salads (Eruca vesicariaandDiplotaxis tenuifolia). Journal of Agricultural and Food Chemistry, 2007, 55, 1356-1363.	5.2	64
166	Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential. Food Chemistry, 2007, 101, 549-558.	8.2	59
167	Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1161, 214-223.	3.7	189
168	Homo-monoterpenic compounds as chemical markers for Cydonia oblonga Miller. Food Chemistry, 2007, 100, 331-338.	8.2	7
169	Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chemistry, 2007, 100, 445-450.	8.2	136
170	Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 2007, 105, 1018-1025.	8.2	64
171	Tronchuda cabbage flavonoids uptake by Pieris brassicae. Phytochemistry, 2007, 68, 361-367.	2.9	22
172	<i>Rumex induratus</i> Leaves:  Interesting Dietary Source of Potential Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 5782-5789.	5.2	33
173	Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid. Food Chemistry, 2006, 98, 416-425.	8.2	66
174	Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry, 2006, 67, 149-155.	2.9	87
175	Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. European Food Research and Technology, 2006, 222, 88-98.	3.3	81
176	Controlled atmosphere preserves quality and phytonutrients in wild rocket (Diplotaxis tenuifolia). Postharvest Biology and Technology, 2006, 40, 26-33.	6.0	91
177	Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biology and Technology, 2006, 42, 86-97.	6.0	165
178	Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 2005, 89, 561-568.	8.2	281
179	Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 2005, 90, 157-167.	8.2	279
180	Functionalisation of commercial chicken soup with enriched polyphenol extract from vegetable by-products. European Food Research and Technology, 2005, 220, 31-36.	3.3	21

#	Article	IF	Citations
181	Characterisation of the phenolic profile ofBoerhaavia diffusa L. by HPLC-PAD-MS/MS as a tool for quality control. Phytochemical Analysis, 2005, 16, 451-458.	2.4	42
182	Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea Europaea L.) leaf cultivars. Natural Product Research, 2005, 19, 189-195.	1.8	111
183	Phenolic Compounds in External Leaves of Tronchuda Cabbage (Brassica oleracea L. var. costata DC). Journal of Agricultural and Food Chemistry, 2005, 53, 2901-2907.	5.2	88
184	Composition of Quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Natural Product Research, 2005, 19, 275-281.	1.8	70
185	Influence of Two Fertilization Regimens on the Amounts of Organic Acids and Phenolic Compounds of Tronchuda Cabbage (Brassica oleraceal. Var.costataDC). Journal of Agricultural and Food Chemistry, 2005, 53, 9128-9132.	5.2	60
186	Quince (Cydonia oblongaMiller) Fruit Characterization Using Principal Component Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 111-122.	5.2	81
187	Phenolic profile of hazelnut (Corylus Avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 2005, 19, 157-163.	1.8	46
188	Neuroprotective effect of H. perforatum extracts on \hat{l}^2 -amyloid-induced neurotoxicity. Neurotoxicity Research, 2004, 6, 119-130.	2.7	57
189	Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 312-321.	1.6	246
190	Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 2004, 88, 373-379.	8.2	130
191	Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. Journal of Chromatography A, 2004, 1054, 181-193.	3.7	193
192	Lettuce and Chicory Byproducts as a Source of Antioxidant Phenolic Extracts. Journal of Agricultural and Food Chemistry, 2004, 52, 5109-5116.	5.2	145
193	Effect of the Rootstock and Interstock Grafted in Lemon Tree (Citrus limon (L.) Burm.) on the Flavonoid Content of Lemon Juice. Journal of Agricultural and Food Chemistry, 2004, 52, 324-331.	5.2	100
194	Quince (Cydonia oblongaMiller) Fruit (Pulp, Peel, and Seed) and Jam:Â Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2004, 52, 4705-4712.	5.2	282
195	Characterization and Quantitation of Antioxidant Constituents of Sweet Pepper (Capsicum annuumL.). Journal of Agricultural and Food Chemistry, 2004, 52, 3861-3869.	5.2	417
196	Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chemistry, 2003, 81, 159-168.	8.2	207
197	Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga). Phytochemical Analysis, 2003, 14, 352-359.	2.4	290
198	Assessment of the Antioxidant Properties During Storage of a Dessert Made from Grape, Cherry, and Berries. Journal of Food Science, 2003, 68, 1525-1530.	3.1	22

#	Article	IF	CITATIONS
199	HPLC-DAD-MS/MS ESI Characterization of Unusual Highly Glycosylated Acylated Flavonoids from Cauliflower (Brassica oleraceal.var.botrytis) Agroindustrial Byproducts. Journal of Agricultural and Food Chemistry, 2003, 51, 3895-3899.	5.2	146
200	Influence of Industrial Processing on Orange Juice Flavanone Solubility and Transformation to Chalcones under Gastrointestinal Conditions. Journal of Agricultural and Food Chemistry, 2003, 51, 3024-3028.	5.2	65
201	Valorization of Cauliflower (Brassica oleraceaL. var.botrytis) By-Products as a Source of Antioxidant Phenolics. Journal of Agricultural and Food Chemistry, 2003, 51, 2181-2187.	5.2	118
202	Effect of Processing Techniques at Industrial Scale on Orange Juice Antioxidant and Beneficial Health Compounds. Journal of Agricultural and Food Chemistry, 2002, 50, 5107-5114.	5.2	171
203	Phenolic Profile of Quince Fruit (Cydonia oblongaMiller) (Pulp and Peel). Journal of Agricultural and Food Chemistry, 2002, 50, 4615-4618.	5.2	114
204	Artichoke (Cynara scolymusL.) Byproducts as a Potential Source of Health-Promoting Antioxidant Phenolics. Journal of Agricultural and Food Chemistry, 2002, 50, 3458-3464.	5.2	219
205	Influence of modified atmosphere packaging on quality, vitamin C and phenolic content of artichokes (Cynara scolymus L.). European Food Research and Technology, 2002, 215, 21-27.	3.3	34
206	Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus idaeus) Jams. Journal of Agricultural and Food Chemistry, 2001, 49, 3651-3655.	5.2	270
207	Xanthone production in calli and suspended cells of Hypericum perforatum. Journal of Plant Physiology, 2001, 158, 821-827.	3.5	35
208	Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of Ethnopharmacology, 2001, 74, 105-112.	4.1	347
209	The effect of storage temperatures on vitamin C and phenolics content of artichoke (Cynara scolymus) Tj ETQq1 I	l 0.78431	4 ₅ gBT /Ov∈
210	Phenolic fingerprint of peppermint leaves. Food Chemistry, 2001, 73, 307-311.	8.2	135
211	HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of the Science of Food and Agriculture, 2001, 81, 485-496.	3.5	246
212	Analysis of phenolic compounds in Spanish Albrari $\tilde{A}\pm o$ and Portuguese Alvarinho and Loureiro wines by capillary zone electrophoresis and high-performance liquid chromatography. Electrophoresis, 2001, 22, 1568-1572.	2.4	36
213	In Vitro Availability of Flavonoids and Other Phenolics in Orange Juice. Journal of Agricultural and Food Chemistry, 2001, 49, 1035-1041.	5.2	239
214	Evalution of Phenolic Compounds in Brazilian Propolis from Different Geographic Regions. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 76-81.	1.4	57
215	Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Science, 2000, 150, 93-101.	3.6	46
216	Flavonoids in MonospecificEucalyptusHoneys from Australia. Journal of Agricultural and Food Chemistry, 2000, 48, 4744-4748.	5.2	124

#	Article	IF	Citations
217	Flavonoids and Phenolic Acids of Sage:  Influence of Some Agricultural Factors. Journal of Agricultural and Food Chemistry, 2000, 48, 6081-6084.	5.2	76
218	Identification of Flavonoid Markers for the Botanical Origin of Eucalyptus Honey. Journal of Agricultural and Food Chemistry, 2000, 48, 1498-1502.	5.2	163
219	Effect of Postharvest Storage and Processing on the Antioxidant Constituents (Flavonoids and) Tj ETQq1 1 0.784	314 rgBT / 5.2	lOverlock 10 340
220	Analysis of Vervain Flavonoids by HPLC/Diode Array Detector Method. Its Application to Quality Control. Journal of Agricultural and Food Chemistry, 1999, 47, 4579-4582.	5.2	63
221	ANALYSIS OF HYDROXYCINNAMIC ACIDS OF COFFEE: A COMPARISON OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY AND CAPILLARY ZONE ELECTROPHORESIS. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 513-521.	1.0	10
222	Analysis of non-coloured phenolics in port wines by capillary zone electrophoresis. European Food Research and Technology, 1998, 206, 161-164.	0.6	27
223	Modified-atmosphere packaging of minimally processed "Lollo Rosso" (Lactuca sativa). European Food Research and Technology, 1998, 206, 350-354.	0.6	33
224	Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry, 1998, 48, 1165-1168.	2.9	74
225	Effect of Modified Atmosphere Packaging on the Flavonoids and Vitamin C Content of Minimally Processed Swiss Chard (Beta vulgarisSubspeciescycla). Journal of Agricultural and Food Chemistry, 1998, 46, 2007-2012.	5.2	104
226	Analysis of Honey Phenolic Acids by HPLC, Its Application to Honey Botanical Characterization. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 2281-2288.	1.0	119
227	Phenolic Metabolites in Red Pigmented Lettuce (Lactuca sativa). Changes with Minimal Processing and Cold Storage. Journal of Agricultural and Food Chemistry, 1997, 45, 4249-4254.	5.2	163
228	Flavonoid Composition of Tunisian Honeys and Propolis. Journal of Agricultural and Food Chemistry, 1997, 45, 2824-2829.	5.2	139
229	Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chemistry, 1997, 60, 79-84.	8.2	116
230	Methoxylated aurones from cyperus capitatus. Phytochemistry, 1997, 45, 839-840.	2.9	28
231	Acylated flavonol glycosides from spinach leaves (Spinacia oleracea). Phytochemistry, 1997, 45, 1701-1705.	2.9	68
232	Natural Occurrence of Abscisic Acid in Heather Honey and Floral Nectar. Journal of Agricultural and Food Chemistry, 1996, 44, 2053-2056.	5. 2	111
233	Anthocyanins and flavonoids from shredded red onion and changes during storage in perforated films. Food Research International, 1996, 29, 389-395.	6.2	60
234	Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 40-44.	0.6	91

#	Article	IF	Citations
235	Stability of the intense sweetener neohesperidine dihydrochalcone in blackcurrant jams. Food Chemistry, 1995, 52, 263-265.	8.2	21
236	Acylated flavonol sophorotriosides from pea shoots. Phytochemistry, 1995, 39, 1443-1446.	2.9	33
237	Plant Phenolic Metabolites and Floral Origin of Rosemary Honey. Journal of Agricultural and Food Chemistry, 1995, 43, 2833-2838.	5.2	121
238	Micellar Electrokinetic Capillary Chromatography of Methylated Flavone Aglycones. Journal of Liquid Chromatography and Related Technologies, 1995, 18, 3007-3019.	1.0	15
239	A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. Journal of the Science of Food and Agriculture, 1994, 65, 371-372.	3.5	84
240	Separation of honey flavonoids by micellar electrokinetic capillary chromatography. Journal of Chromatography A, 1994, 669, 268-274.	3.7	65
241	Flavonoids from Portuguese heather honey. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 32-37.	0.6	71
242	Influence of variety, maturity and processing on phenolic compounds of apricot juices and jams. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 433-436.	0.6	29
243	A simple extractive technique for honey flavonoid HPLC analysis. Apidologie, 1994, 25, 21-30.	2.0	75
244	Hesperetin: A marker of the floral origin of citrus honey. Journal of the Science of Food and Agriculture, 1993, 61, 121-123.	3.5	139
245	Dihydrochalcones from apple juices and jams. Food Chemistry, 1993, 46, 33-36.	8.2	36
246	High-performance liquid chromatography of honey flavonoids. Journal of Chromatography A, 1993, 634, 41-46.	3.7	38
247	Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry, 1993, 34, 191-196.	2.9	149
248	Distribution of flavonoid aglycones and glycosides in Sideritis species from the canary islands and madeira. Phytochemistry, 1993, 34, 227-232.	2.9	26
249	Distribution of 8-Hydroxyflavone glycosides and flavonoid aglycones in some Spanish Sideritis species. Biochemical Systematics and Ecology, 1993, 21, 487-497.	1.3	12
250	Determination of citrus jams genuineness by flavonoid analysis. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 255-259.	0.6	13
251	Flavonoids in honey of different geographical origin. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 196, 38-44.	0.6	68
252	Phenolic compounds analysis in the determination of fruit jam genuineness. Journal of Agricultural and Food Chemistry, 1992, 40, 1800-1804.	5.2	56

#	Article	IF	CITATIONS
253	A comparative study of different amberlite XAD resins in flavonoid analysis. Phytochemical Analysis, 1992, 3, 178-181.	2.4	65
254	Flavonoid p-coumaroylglucosides and 8-hydroxyflavone allosylglucosides in some labiatae. Phytochemistry, 1992, 31, 3097-3102.	2.9	71
255	Flavonoids of ?La Alcarria? honey A study of their botanical origin. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1992, 194, 139-143.	0.6	59
256	Correlations between flavonoid composition and infrageneric taxonomy of some european Galeopsis species. Phytochemistry, 1991, 30, 3311-3314.	2.9	12
257	An HPLc technique for flavonoid analysis in honey. Journal of the Science of Food and Agriculture, 1991, 56, 49-56.	3.5	109
258	Infrasectional systematics of the genus Sideritis L. section Sideritis (Lamiaceae). Botanical Journal of the Linnean Society, 1990, 103, 325-349.	1.6	11
259	A chemotaxonomical study of some portuguese Sideritis species. Biochemical Systematics and Ecology, 1990, 18, 245-249.	1.3	3
260	Flavonol glycosides from waste broad bean aerial parts. Biological Wastes, 1990, 34, 167-170.	0.2	2
261	Trans-coniferyl alcohol 4-o-sulphate and flavonoid sulphates from some Tamarix species. Phytochemistry, 1990, 29, 3050-3051.	2.9	13
262	Biochemical Identification of Sideritis serrata X S. bourgaeana Hybrids by HPLC Analyses of Flavonoids. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 568-572.	1.4	7
263	Flavonoids as biochemical markers of the plant origin of bee pollen. Journal of the Science of Food and Agriculture, 1989, 47, 337-340.	3.5	47
264	8-methoxykaempferol 3-sophoroside, a yellow pigment from almond pollen. Phytochemistry, 1989, 28, 1901-1903.	2.9	26
265	Verification of Sideritis incana X S. angustifolia hybrids by flavonoid analysis. Phytochemistry, 1989, 28, 2141-2143.	2.9	11
266	Some flavonoids and the diterpene borjatriol from some spanish Sideritis species. Biochemical Systematics and Ecology, 1988, 16, 33-42.	1.3	17
267	Flavonoid Compounds from Ballota hirsuta. Journal of Natural Products, 1986, 49, 554-555.	3.0	32
268	Flavonoids from phlomis lychnitys. Phytochemistry, 1986, 25, 1253-1254.	2.9	31
269	Electron impact mass spectrometric differentiation of 5,6-dihydroxy-7,8-dimethoxy- and 5,8-dihydroxy-6,7-dimethoxyflavones. Phytochemistry, 1986, 25, 923-925.	2.9	17
270	5,6,4′-trihydroxy-7,8-dimethoxyflavone from Thymus membranaceus. Phytochemistry, 1985, 24, 1869-1871.	2.9	25

#	Article	IF	CITATIONS
271	Tlc, uv and acidic treatment in the differentiation of 5,6- and 5,8-dihydroxyflavones, 3-methoxyflavones and flavonols. Tetrahedron, 1985, 41, 5733-5740.	1.9	33
272	Reversed-phase high-performance liquid chromatography of 5-hydroxyflavones bearing tri- or tetrasubstituted A rings. Journal of Chromatography A, 1985, 347, 443-446.	3.7	19
273	Highly Methylated 6-Hydroxyflavones and Other Flavonoids fromThymus piperella. Planta Medica, 1985, 51, 452-454.	1.3	37
274	Flavonoid Diglycosides from Myoporum tenuifolium. Journal of Natural Products, 1985, 48, 506-507.	3.0	11
275	Flavonoid Aglycones and Glycosides from Teucrium gnaphalodes. Journal of Natural Products, 1985, 48, 859-860.	3.0	23
276	Isoscutellarein-7-O-[allosyl (1â†'2) Glucoside] from Sideritis leucantha. Journal of Natural Products, 1985, 48, 28-32.	3.0	24
277	Thin-layer chromatographic behaviour and chemical structure of 6- and 8-methoxy-5-hydroxyflavones. Journal of Chromatography A, 1984, 315, 101-109.	3.7	14
278	Structural determination of 6-C-diglycosyl-8-C-glycosyl-flavones and 6-C-glycosyl-8-C-diglycosylflavones by mass spectrometry of their permethyl ethers. Phytochemistry, 1984, 23, 2653-2657.	2.9	38
279	Two flavone glycosides from Sideritis leucantha. Phytochemistry, 1984, 23, 2112-2113.	2.9	28
280	6-C-glucosylnaringenin from flowers of Acacia retinoide. Phytochemistry, 1982, 21, 1461-1462.	2.9	7
281	Two flavone glucosides from Sideritis leucantha. Phytochemistry, 1980, 19, 2039-2040.	2.9	13