
Fiona H Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6549685/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. Journal of Biological Chemistry, 2003, 278, 11312-11319.	3.4	1,866
2	Heterodimerization is required for the formation of a functional GABAB receptor. Nature, 1998, 396, 679-682.	27.8	1,104
3	International Union of Pharmacology. XXXIII. Mammalian gamma -Aminobutyric AcidB Receptors: Structure and Function. Pharmacological Reviews, 2002, 54, 247-264.	16.0	523
4	Structure of the Adenosine A2A Receptor in Complex with ZM241385 and the Xanthines XAC and Caffeine. Structure, 2011, 19, 1283-1293.	3.3	505
5	Molecular Identification of High and Low Affinity Receptors for Nicotinic Acid. Journal of Biological Chemistry, 2003, 278, 9869-9874.	3.4	473
6	Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 2015, 36, 22-31.	8.7	387
7	Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 2013, 499, 438-443.	27.8	378
8	Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 2014, 511, 557-562.	27.8	378
9	GABAB receptors – the first 7TM heterodimers. Trends in Pharmacological Sciences, 1999, 20, 396-399.	8.7	324
10	Discovery of 1,2,4-Triazine Derivatives as Adenosine A _{2A} Antagonists using Structure Based Drug Design. Journal of Medicinal Chemistry, 2012, 55, 1898-1903.	6.4	296
11	Insights into the structure of class B GPCRs. Trends in Pharmacological Sciences, 2014, 35, 12-22.	8.7	218
12	CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain, 2002, 96, 253-260.	4.2	213
13	Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2011, 54, 4283-4311.	6.4	203
14	A Bioluminescent Assay for Agonist Activity at Potentially Any G-Protein-Coupled Receptor. Analytical Biochemistry, 1997, 252, 115-126.	2.4	201
15	Intracellular allosteric antagonism of the CCR9 receptor. Nature, 2016, 540, 462-465.	27.8	192
16	Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 2017, 545, 112-115.	27.8	192
17	Extra-helical binding site of a glucagon receptor antagonist. Nature, 2016, 533, 274-277.	27.8	190
18	Structures of Human A 1 and A 2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. Structure, 2017, 25, 1275-1285.e4.	3.3	178

2

#	Article	IF	CITATIONS
19	The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13967-13972.	7.1	166
20	New insights from structural biology into the druggability of G protein-coupled receptors. Trends in Pharmacological Sciences, 2012, 33, 249-260.	8.7	158
21	Biophysical Fragment Screening of the β ₁ -Adrenergic Receptor: Identification of High Affinity Arylpiperazine Leads Using Structure-Based Drug Design. Journal of Medicinal Chemistry, 2013, 56, 3446-3455.	6.4	155
22	Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature, 2017, 546, 254-258.	27.8	155
23	Controlling the Dissociation of Ligands from the Adenosine A _{2A} Receptor through Modulation of Salt Bridge Strength. Journal of Medicinal Chemistry, 2016, 59, 6470-6479.	6.4	151
24	Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu ₅ Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). Journal of Medicinal Chemistry, 2015, 58, 6653-6664.	6.4	150
25	The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology, 2011, 60, 36-44.	4.1	148
26	Therapeutic antibodies directed at G protein-coupled receptors. MAbs, 2010, 2, 594-606.	5.2	143
27	RAMPs: accessory proteins for seven transmembrane domain receptors. Trends in Pharmacological Sciences, 1999, 20, 184-187.	8.7	142
28	Identification of Novel Adenosine A _{2A} Receptor Antagonists by Virtual Screening. Journal of Medicinal Chemistry, 2012, 55, 1904-1909.	6.4	131
29	Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nature Reviews Drug Discovery, 2017, 16, 787-810.	46.4	125
30	The impact of GPCR structures on pharmacology and structureâ€based drug design. British Journal of Pharmacology, 2010, 159, 986-996.	5.4	123
31	Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discovery Today, 2015, 20, 1355-1364.	6.4	120
32	G16 as a universal G protein adapter: implications for agonist screening strategies. Trends in Pharmacological Sciences, 1996, 17, 235-237.	8.7	114
33	Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature, 2018, 553, 111-114.	27.8	110
34	Biophysical Mapping of the Adenosine A _{2A} Receptor. Journal of Medicinal Chemistry, 2011, 54, 4312-4323.	6.4	107
35	Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. Trends in Pharmacological Sciences, 2017, 38, 837-847.	8.7	106
36	Protein-Protein Interaction and Not Glycosylation Determines the Binding Selectivity of Heterodimers between the Calcitonin Receptor-like Receptor and the Receptor Activity-modifying Proteins. Journal of Biological Chemistry, 2001, 276, 29575-29581.	3.4	103

#	Article	IF	CITATIONS
37	Fragment Screening of Stabilized G-Protein-Coupled Receptors Using Biophysical Methods. Methods in Enzymology, 2011, 493, 115-136.	1.0	103
38	Structure of <scp>C</scp> lass <scp>B GPCRs</scp> : new horizons for drug discovery. British Journal of Pharmacology, 2014, 171, 3132-3145.	5.4	96
39	Advances in the molecular understanding of GABAB receptors. Trends in Neurosciences, 2001, 24, 277-282.	8.6	90
40	Calcium sensing properties of the GABAB receptor. Neuropharmacology, 1999, 38, 1647-1656.	4.1	83
41	Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology, 2007, 52, 405-414.	4.1	83
42	From G Protein-coupled Receptor Structure Resolution to Rational Drug Design. Journal of Biological Chemistry, 2015, 290, 19489-19495.	3.4	81
43	Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals. Scientific Reports, 2018, 8, 41.	3.3	79
44	Fragment Screening of GPCRs Using Biophysical Methods: Identification of Ligands of the Adenosine A _{2A} Receptor with Novel Biological Activity. ACS Chemical Biology, 2012, 7, 2064-2073.	3.4	77
45	The pharmacology of GR203040, a novel, potent and selective nonâ€peptide tachykinin NK ₁ receptor antagonist. British Journal of Pharmacology, 1995, 116, 3149-3157.	5.4	73
46	High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. In Silico Pharmacology, 2013, 1, .	3.3	72
47	Pharmacological profile of GR117289 <i>in vitro</i> : a novel, potent and specific nonâ€peptide angiotensin AT ₁ receptor antagonist. British Journal of Pharmacology, 1992, 107, 1173-1180.	5.4	71
48	Pharmacology and Structure of Isolated Conformations of the Adenosine A2A Receptor Define Ligand Efficacy. Molecular Pharmacology, 2013, 83, 949-958.	2.3	69
49	GABAB receptor heterodimer-component localisation in human brain. Molecular Brain Research, 2000, 77, 111-124.	2.3	67
50	Cellular and sub-cellular localisation of GABAB1 and GABAB2 receptor proteins in the rat cerebellum. Molecular Brain Research, 2000, 83, 72-80.	2.3	67
51	Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu ₅) X-ray Structures. Journal of Medicinal Chemistry, 2019, 62, 207-222.	6.4	67
52	Biacore analysis with stabilized G-protein-coupled receptors. Analytical Biochemistry, 2011, 409, 267-272.	2.4	66
53	Structurally Enabled Discovery of Adenosine A _{2A} Receptor Antagonists. Chemical Reviews, 2017, 117, 21-37.	47.7	64
54	Structure-Based Drug Design for G Protein-Coupled Receptors. Progress in Medicinal Chemistry, 2014, 53, 1-63.	10.4	62

#	Article	IF	CITATIONS
55	Binding kinetics differentiates functional antagonism of orexinâ€2 receptor ligands. British Journal of Pharmacology, 2014, 171, 351-363.	5.4	55
56	Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells. European Journal of Pharmacology, 2001, 430, 203-210.	3.5	54
57	Comparison of Orexin 1 and Orexin 2 Ligand Binding Modes Using X-ray Crystallography and Computational Analysis. Journal of Medicinal Chemistry, 2020, 63, 1528-1543.	6.4	46
58	Heterodimerization of G-protein-coupled receptors in the CNS. Current Opinion in Pharmacology, 2001, 1, 40-44.	3.5	45
59	From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184, 5886-5901.e22.	28.9	44
60	Development of Tolerance in Mice to the Sedative Effects of the Neuroactive Steroid Minaxolone Following Chronic Exposure. Pharmacology Biochemistry and Behavior, 1997, 58, 1-8.	2.9	43
61	Characterization of [3 H]-CGP54626A binding to heterodimeric GABAB receptors stably expressed in mammalian cells. British Journal of Pharmacology, 2000, 131, 1766-1774.	5.4	41
62	The Use of GPCR Structures in Drug Design. Advances in Pharmacology, 2011, 62, 1-36.	2.0	38
63	Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Scientific Reports, 2015, 5, 13869.	3.3	38
64	Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology, 2006, 189, 369-385.	3.1	36
65	Atomoxetine produces changes in cortico-basal thalamic loop circuits: Assessed by phMRI BOLD contrast. Neuropharmacology, 2007, 52, 812-826.	4.1	36
66	GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1–2 September 2014. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 883-903.	3.0	34
67	Is the GABA _B Heterodimer a Good Drug Target?. Journal of Molecular Neuroscience, 2005, 26, 169-176.	2.3	33
68	GABAB receptor subunits, R1 and R2, in brainstem catecholamine and serotonin neurons. Brain Research, 2003, 970, 35-46.	2.2	32
69	DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Gut chemosensing and the regulation of nutrient absorption and energy supply1. Journal of Animal Science, 2013, 91, 1932-1945.	0.5	32
70	Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. MAbs, 2014, 6, 246-261.	5.2	31
71	Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Current Opinion in Pharmacology, 2015, 20, 1-7.	3.5	29
72	Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal Structures. Current Molecular Pharmacology, 2017, 10, 334-344.	1.5	25

#	Article	IF	CITATIONS
73	Characterization of [³ H]â€prostaglandin E ₂ binding to prostaglandin EP ₄ receptors expressed with Semliki Forest virus. British Journal of Pharmacology, 1997, 121, 1673-1678.	5.4	21
74	Differential effects of the d- and l- isomers of amphetamine on pharmacological MRI BOLD contrast in the rat. Psychopharmacology, 2007, 193, 11-30.	3.1	20
75	Heterodimerization of the GABAB Receptor—Implications for GPCR Signaling and Drug Discovery. Advances in Pharmacology, 2010, 58, 63-91.	2.0	20
76	Studies of a ubiquitous receptor family. Nature, 2012, 492, 57-57.	27.8	18
77	The Role of GABAB Receptors in the Regulation of Excitatory Neurotransmission. , 2008, 44, 87-98.		16
78	Mapping the central effects of methylphenidate in the rat using pharmacological MRI BOLD contrast. Neuropharmacology, 2009, 57, 653-664.	4.1	15
79	Conformational thermostabilisation of corticotropin releasing factor receptor 1. Scientific Reports, 2015, 5, 11954.	3.3	15
80	Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. MedChemComm, 2015, 6, 947-955.	3.4	15
81	Binding of angiotensin antagonists to rat liver and brain membranes measured <i>ex vivo</i> . British Journal of Pharmacology, 1993, 109, 760-764.	5.4	13
82	Purification of Stabilized GPCRs for Structural and Biophysical Analyses. Methods in Molecular Biology, 2015, 1335, 1-15.	0.9	12
83	Preparation of purified GPCRs for structural studies. Biochemical Society Transactions, 2013, 41, 185-190.	3.4	11
84	Heterodimerization of $\hat{\rm I}^3$ -aminobutyric acid B receptor subunits as revealed by the yeast two-hybrid system. Methods, 2002, 27, 301-310.	3.8	10
85	Temperature and agonist dependency of tachykinin NK1 receptor antagonist potencies in rat isolated superior cervical ganglion. European Journal of Pharmacology, 1995, 294, 163-171.	3.5	9
86	Visualizing GPCR â€ ⁻ Megaplexes' Which Enable Sustained Intracellular Signaling. Trends in Biochemical Sciences, 2016, 41, 985-986.	7.5	9
87	Implications of metabotropic glutamate receptor structures for drug discovery in neurotherapeutics. Expert Review of Neurotherapeutics, 2015, 15, 123-125.	2.8	7
88	Identification of a novel allosteric GLP-1R antagonist HTL26119 using structure-based drug design. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126611.	2.2	5
89	Heterodimerisation of GABAB receptors. Biochemical Society Transactions, 1999, 27, A70-A70.	3.4	0
90	A Summary and Conclusions From the Meeting. Journal of Molecular Neuroscience, 2005, 26, 295-298.	2.3	0