List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548965/publications.pdf Version: 2024-02-01

		30070	22832
124	13,514	54	112
papers	citations	h-index	g-index
129	129	129	13976
all docs	docs citations	times ranked	citing authors

Η Ρεςιτ ΔκΔέδλκλγλ

#	Article	IF	CITATIONS
1	Over half of threatened species require targeted recovery actions to avert humanâ€induced extinction. Frontiers in Ecology and the Environment, 2023, 21, 64-70.	4.0	19
2	Processâ€explicit models reveal pathway to extinction for woolly mammoth using patternâ€oriented validation. Ecology Letters, 2022, 25, 125-137.	6.4	22
3	Inter-specific variability in demographic processes affects abundance-occupancy relationships. Oecologia, 2022, 198, 153-165.	2.0	2
4	Climate change, land cover change, and overharvesting threaten a widely used medicinal plant in <scp>S</scp> outh <scp>A</scp> frica. Ecological Applications, 2022, 32, e2545.	3.8	7
5	Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.	8.7	58
6	Fecundity and density dependence can be estimated from mark–recapture data for making population projections. Condor, 2022, 124, .	1.6	1
7	Unsustainable harvest of water frogs in southern Turkey for the European market. Oryx, 2021, 55, 364-372.	1.0	11
8	Calculating population reductions of invertebrate species for IUCN Red List assessments. Journal of Insect Conservation, 2021, 25, 377-382.	1.4	8
9	Testing a global standard for quantifying species recovery and assessing conservation impact. Conservation Biology, 2021, 35, 1833-1849.	4.7	51
10	Building robust, practicable counterfactuals and scenarios to evaluate the impact of species conservation interventions using inferential approaches. Biological Conservation, 2021, 261, 109259.	4.1	7
11	IUCN launches Green Status of Species: a new standard for species recovery. Oryx, 2021, 55, 651-652.	1.0	4
12	Assessing ecological function in the context of species recovery. Conservation Biology, 2020, 34, 561-571.	4.7	35
13	Generation lengths of the world's birds and their implications for extinction risk. Conservation Biology, 2020, 34, 1252-1261.	4.7	162
14	Defining the indigenous ranges of species to account for geographic and taxonomic variation in the history of human impacts: reply to Sanderson 2019. Conservation Biology, 2019, 33, 1211-1213.	4.7	12
15	Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends in Ecology and Evolution, 2019, 34, 977-986.	8.7	181
16	Plan S and publishing: reply to LehtomÃki etÂal. 2019. Conservation Biology, 2019, 33, 1203-1204.	4.7	0
17	Using historical and palaeoecological data to inform ambitious species recovery targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190297. 	4.0	36
18	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	8.1	255

#	Article	IF	CITATIONS
19	Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conservation Biology, 2018, 32, 1128-1138.	4.7	167
20	Scaling range sizes to threats for robust predictions of risks to biodiversity. Conservation Biology, 2018, 32, 322-332.	4.7	31
21	Using global sensitivity analysis of demographic models for ecological impact assessment. Conservation Biology, 2017, 31, 116-125.	4.7	9
22	Inferring extinctions I: A structured method using information on threats. Biological Conservation, 2017, 214, 320-327.	4.1	26
23	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	7.8	131
24	Inferring extinctions III: A cost-benefit framework for listing extinct species. Biological Conservation, 2017, 214, 336-342.	4.1	40
25	Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil. PLoS ONE, 2016, 11, e0167372.	2.5	24
26	Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conservation Biology, 2016, 30, 362-370.	4.7	67
27	Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Scientific Data, 2016, 3, 160007.	5.3	67
28	Conservation status of polar bears (<i>Ursus maritimus</i>) in relation to projected sea-ice declines. Biology Letters, 2016, 12, 20160556.	2.3	111
29	Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biology Letters, 2016, 12, 20150843.	2.3	137
30	Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Climate Change, 2016, 6, 909-916.	18.8	42
31	Potential breeding distributions of U.S. birds predicted with both shortâ€ŧerm variability and longâ€ŧerm average climate data. Ecological Applications, 2016, 26, 2720-2731.	3.8	34
32	Developing population models with data from marked individuals. Biological Conservation, 2016, 197, 190-199.	4.1	11
33	An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere, 2016, 7, e01238.	2.2	55
34	Inferring the nature of anthropogenic threats from longâ€ŧerm abundance records. Conservation Biology, 2015, 29, 238-249.	4.7	7
35	The importance of range edges for an irruptive species during extreme weather events. Landscape Ecology, 2015, 30, 1095-1110.	4.2	30
36	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	18.8	856

#	Article	IF	CITATIONS
37	Maternal age effects on Atlantic cod recruitment and implications for future population trajectories. ICES Journal of Marine Science, 2015, 72, 1769-1778.	2.5	34
38	Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa. Biological Conservation, 2015, 192, 247-257.	4.1	52
39	Warning times for species extinctions due to climate change. Global Change Biology, 2015, 21, 1066-1077.	9.5	75
40	Preventing species extinctions resulting from climate change. Nature Climate Change, 2014, 4, 1048-1049.	18.8	46
41	Detecting Extinction Risk from Climate Change by IUCN Red List Criteria. Conservation Biology, 2014, 28, 810-819.	4.7	77
42	How interactions between animal movement and landscape processes modify local range dynamics and extinction risk. Biology Letters, 2014, 10, 20140198.	2.3	25
43	Effects of prey metapopulation structure on the viability of blackâ€footed ferrets in plagueâ€impacted landscapes: a metamodelling approach. Journal of Applied Ecology, 2014, 51, 735-745.	4.0	21
44	Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change, 2014, 4, 217-221.	18.8	341
45	Fire Management, Managed Relocation, and Land Conservation Options for Longâ€Lived Obligate Seeding Plants under Global Changes in Climate, Urbanization, and Fire Regime. Conservation Biology, 2014, 28, 1057-1067.	4.7	27
46	Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Climate Change, 2013, 3, 899-903.	18.8	96
47	Tracking shifting range margins using geographical centroids of metapopulations weighted by population density. Ecological Modelling, 2013, 269, 61-69.	2.5	15
48	Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 2013, 19, 3224-3237.	9.5	73
49	Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals. PLoS ONE, 2013, 8, e65427.	2.5	719
50	Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 2013, 36, 956-964.	4.5	111
51	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Clobal Change Biology, 2012, 18, 1357-1371.	9.5	182
52	Commentary: IUCN classifications under uncertainty. Environmental Modelling and Software, 2012, 38, 119-121.	4.5	2
53	Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective. Ecological Modelling, 2012, 224, 33-47.	2.5	31
54	Managing the longâ€ŧerm persistence of a rare cockatoo under climate change. Journal of Applied Ecology, 2012, 49, 785-794.	4.0	22

#	Article	IF	CITATIONS
55	Combining static and dynamic variables in species distribution models under climate change. Methods in Ecology and Evolution, 2012, 3, 349-357.	5.2	135
56	The SAFE index is not safe. Frontiers in Ecology and the Environment, 2011, 9, 485-486.	4.0	12
57	Costâ€effectiveness of strategies to establish a European bison metapopulation in the Carpathians. Journal of Applied Ecology, 2011, 48, 317-329.	4.0	38
58	The impact of seaâ€level rise on <scp>S</scp> nowy <scp>P</scp> lovers in <scp>F</scp> lorida: integrating geomorphological, habitat, and metapopulation models. Global Change Biology, 2011, 17, 3644-3654.	9.5	65
59	The thetaâ€logistic is unreliable for modelling most census data. Methods in Ecology and Evolution, 2010, 1, 253-262.	5.2	87
60	The Impact of Conservation on the Status of the World's Vertebrates. Science, 2010, 330, 1503-1509.	12.6	1,209
61	Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 2009, 5, 723-725.	2.3	124
62	Methods for Determining Viability of Wildlife Populations in Large Landscapes. , 2009, , 449-471.		7
63	Quantification of Extinction Risk: IUCN's System for Classifying Threatened Species. Conservation Biology, 2008, 22, 1424-1442.	4.7	1,048
64	Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 2008, 4, 560-563.	2.3	552
65	Toward monitoring global biodiversity. Conservation Letters, 2008, 1, 18-26.	5.7	144
66	Improvements to the Red List Index. PLoS ONE, 2007, 2, e140.	2.5	253
67	Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens. Forest Ecology and Management, 2006, 236, 113-126.	3.2	36
68	Biodiversity Indicators Based on Trends in Conservation Status: Strengths of the IUCN Red List Index. Conservation Biology, 2006, 20, 579-581.	4.7	56
69	Using Scalar Models for Precautionary Assessments of Threatened Species. Conservation Biology, 2006, 20, 1499-1506.	4.7	18
70	Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Change Biology, 2006, 12, 2037-2043.	9.5	161
71	VIABILITY OF BELL'S SAGE SPARROW (AMPHISPIZA BELLI SSP. BELLI): ALTERED FIRE REGIMES. , 2005, 15, 521-53	1	32
72	Risk Assessment of UK Skylark Populations Using Life-History and Individual-Based Landscape Models. Ecotoxicology, 2005, 14, 925-936.	2.4	62

#	Article	IF	CITATIONS
73	Population-level Assessment of Risks of Pesticides to Birds and Mammals in the UK. Ecotoxicology, 2005, 14, 863-876.	2.4	41
74	Case Study Part 1: How to Calculate Appropriate Deterministic Long-Term Toxicity to Exposure Ratios (TERs) for Birds and Mammals. Ecotoxicology, 2005, 14, 877-893.	2.4	20
75	Case Study Part 2: Probabilistic Modelling of Long-term Effects of Pesticides on Individual Breeding Success in Birds and Mammals. Ecotoxicology, 2005, 14, 895-923.	2.4	23
76	Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds. PLoS Biology, 2004, 2, e383.	5.6	364
77	Integrating Landscape and Metapopulation Modeling Approaches: Viability of the Sharp-Tailed Grouse in a Dynamic Landscape. Conservation Biology, 2004, 18, 526-537.	4.7	149
78	Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network. BioScience, 2004, 54, 1092.	4.9	516
79	Population-level mechanisms for reddened spectra in ecological time series. Journal of Animal Ecology, 2003, 72, 698-702.	2.8	29
80	A Multispecies Approach to Ecological Valuation and Conservation. Conservation Biology, 2003, 17, 196-206.	4.7	56
81	Treatments of Uncertainty and Variability in Ecological Risk Assessment of Single-Species Populations. Human and Ecological Risk Assessment (HERA), 2003, 9, 889-906.	3.4	55
82	Role of Ecological Modeling in Risk Assessment. Human and Ecological Risk Assessment (HERA), 2003, 9, 939-972.	3.4	79
83	Value of the IUCN Red List. Trends in Ecology and Evolution, 2003, 18, 214-215.	8.7	141
84	Realism and Relevance of Ecological Models Used in Chemical Risk Assessment. Human and Ecological Risk Assessment (HERA), 2003, 9, 907-938.	3.4	50
85	Metapopulation Dynamics of the California Least Tern. Journal of Wildlife Management, 2003, 67, 829.	1.8	17
86	Science and Management Investments Needed to Enhance the Use of Ecological Modeling in Decision Making. , 2003, , 249-262.		2
87	Estimating the variance of survival rates and fecundities. Animal Conservation, 2002, 5, 333-336.	2.9	44
88	Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water. Conservation Biology, 2002, 16, 262-263.	4.7	107
89	Use of Metapopulation Models in Conservation Planning. , 2002, , 405-427.		2
90	Sustainability indices for exploited populations. Trends in Ecology and Evolution, 2001, 16, 686-692.	8.7	130

#	Article	IF	CITATIONS
91	Linking population-level risk assessment with landscape and habitat models. Science of the Total Environment, 2001, 274, 283-291.	8.0	49
92	Applied Population Ecology: Principles and Computer Exercises Using RAMAS EcoLab. Journal of Wildlife Management, 2000, 64, 1093.	1.8	22
93	Making Consistent IUCN Classifications under Uncertainty. Conservation Biology, 2000, 14, 1001-1013.	4.7	236
94	Predictive accuracy of population viability analysis in conservation biology. Nature, 2000, 404, 385-387.	27.8	517
95	Conservation and Management for Multiple Species: Integrating Field Research and Modeling into Management Decisions. Environmental Management, 2000, 26, S75-S83.	2.7	24
96	Modelling the persistence of an apparently immortal Banksia species after fire and land clearing. Biological Conservation, 1999, 88, 249-259.	4.1	56
97	The treatment of uncertainty and the structure of the IUCN threatened species categories. Biological Conservation, 1999, 89, 245-249.	4.1	24
98	Assessing human impact despite uncertainty:viability of the northern spotted owl metapopulation in the northwestern USA. Biodiversity and Conservation, 1998, 7, 875-894.	2.6	76
99	A Habitat-Based Metapopulation Model of the California Gnatcatcher. Conservation Biology, 1997, 11, 422-434.	4.7	130
100	Optimizing Composite Sampling Protocols. Environmental Science & Technology, 1996, 30, 2899-2905.	10.0	11
101	Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia, 1996, 105, 475-483.	2.0	47
102	Predator Interference across Trophic Chains. Ecology, 1995, 76, 1310-1319.	3.2	22
103	PVA in Theory and Practice. Conservation Biology, 1995, 9, 704-708.	4.7	16
104	Ratio-Dependent Predation: An Abstraction That Works. Ecology, 1995, 76, 995-1004.	3.2	237
105	A review of the generic computer programs ALEX, RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations. Ecological Modelling, 1995, 82, 161-174.	2.5	130
106	Linking landscape data with population viability analysis: Management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1995, 73, 169-176.	4.1	18
107	Linking landscape data with population viability analysis: management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1995, 73, 169-176.	4.1	117
108	Risk assessment in conservation biology. Biological Conservation, 1994, 69, 229.	4.1	0

#	Article	IF	CITATIONS
109	Spotted Owl Metapopulation Dynamics in Southern California. Journal of Animal Ecology, 1994, 63, 775.	2.8	99
110	Consequences of Ratio-Dependent Predation for Steady-State Properties of Ecosystems. Ecology, 1992, 73, 1536-1543.	3.2	171
111	Fig. P-The Scientific Figure Processor. Version 4.1.Rolf J. Sebaldt. Quarterly Review of Biology, 1992, 67, 99-100.	0.1	Ο
112	Population Cycles of Mammals: Evidence for a Ratioâ€Dependent Predation Hypothesis. Ecological Monographs, 1992, 62, 119-142.	5.4	153
113	Population Viability Analysis and Risk Assessment. , 1992, , 148-157.		21
114	Community construction: speciation versus invasion. Trends in Ecology and Evolution, 1991, 6, 100-101.	8.7	6
115	A method for simulating demographic stochasticity. Ecological Modelling, 1991, 54, 133-136.	2.5	107
116	Variation in Plankton Densities Among Lakes: A Case for Ratio-Dependent Predation Models. American Naturalist, 1991, 138, 1287-1296.	2.1	250
117	Reconstructibility of Density Dependence and the Conservative Assessment of Extinction Risks. Conservation Biology, 1990, 4, 63-70.	4.7	143
118	Underestimation of mutual interference of predators. Oecologia, 1990, 83, 358-361.	2.0	155
119	Bald Ibis Geronticus eremita population in Turkey: An evaluation of the captive breeding project for reintroduction. Biological Conservation, 1990, 51, 225-237.	4.1	31
120	Niche Overlaps and the Evolution of Competitive Interactions. , 1989, , 32-42.		2
121	Evolution of community structure: Competition. Journal of Theoretical Biology, 1988, 133, 513-523.	1.7	27
122	The theory of population dynamics—II. Physiological delays. Bulletin of Mathematical Biology, 1988, 50, 503-515.	1.9	20
123	The use of extinction models for species conservation. Biological Conservation, 1988, 43, 9-25.	4.1	65
124	Multivariate Analysis of Ecological Communities. P. G. N. Digby , R. A. Kempton. Quarterly Review of Biology, 1988, 63, 240-241.	0.1	0