Vivek Maheshwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548785/publications.pdf

Version: 2024-02-01

25 592 12 22 papers citations h-index g-index

25 25 25 1021 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Nanoparticle Chain based Materials for Shielding and Flexible Devices. , 2022, , .		O
2	Organolead halide perovskites beyond solar cells: self-powered devices and the associated progress and challenges. Materials Advances, 2021, 2, 5274-5299.	5.4	25
3	Perovskites for tactile sensors. , 2021, , 141-158.		1
4	Nanoscale Architecture of Polymer–Organolead Halide Perovskite Films and the Effect of Polymer Chain Mobility on Device Performance. Journal of Physical Chemistry Letters, 2021, 12, 1481-1489.	4.6	20
5	Intrinsic-polarization origin of photoconductivity in MAPbI3 thin films. Applied Physics Letters, 2021, 118, .	3.3	4
6	Controlled Element Specific Nanoscale Domains by Selfâ€Assembly for High Performance Bifunctional Alkaline Water Splitting Catalyst. Advanced Functional Materials, 2021, 31, 2106149.	14.9	12
7	Soft Polymer–Organolead Halide Perovskite Films for Highly Stretchable and Durable Photodetectors with Pt–Au Nanochain-Based Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 58956-58965.	8.0	14
8	Porous perovskite films integrated with Au–Pt nanowire-based electrodes for highly flexible large-area photodetectors. Npj Flexible Electronics, 2020, 4, .	10.7	12
9	Wearable Devices Using Nanoparticle Chains as Universal Building Blocks with Simple Filtrationâ€Based Fabrication and Quantum Sensing. Advanced Materials Technologies, 2020, 5, 2000090.	5.8	8
10	Polymer-Controlled Growth and Wrapping of Perovskite Single Crystals Leading to Better Device Stability and Performance. ACS Applied Materials & Stability and Performance. ACS Applied Materials & Stability and Performance.	8.0	23
11	Formation of microns long thin wire networks with a controlled spatial distribution of elements. Catalysis Science and Technology, 2020, 10, 2020-2028.	4.1	4
12	Modulation of mechanical properties and stable light energy harvesting by poling in polymer integrated perovskite films: a wide range, linear and highly sensitive tactile sensor. Journal of Materials Chemistry A, 2019, 7, 14192-14198.	10.3	11
13	Pbl ₂ Initiated Cross-Linking and Integration of a Polymer Matrix with Perovskite Films: 1000 h Operational Devices under Ambient Humidity and Atmosphere and with Direct Solar Illumination. ACS Applied Energy Materials, 2019, 2, 2214-2222.	5.1	28
14	Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale, 2019, 11, 17841-17850.	5 . 6	77
15	Magnetic nano-nets for capture of microbes in solution based on physical contact. Journal of Colloid and Interface Science, 2019, 535, 33-40.	9.4	3
16	A Light Harvesting, Selfâ€Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI ₃ Perovskite. Advanced Materials, 2018, 30, 1705778.	21.0	51
17	Self-Powered Photodetector Based on Electric-Field-Induced Effects in MAPbl ₃ Perovskite with Improved Stability. ACS Applied Materials & Interfaces, 2018, 10, 21066-21072.	8.0	68
18	Bio-inspired interlocking random 3-D structures for tactile and thermal sensing. Scientific Reports, 2017, 7, 5834.	3.3	12

#	Article	IF	CITATION
19	Nanoparticle chains as electrochemical sensors and electrodes. Analytical and Bioanalytical Chemistry, 2016, 408, 2697-2705.	3.7	7
20	Electrochemical Synthesis on Nanoparticle Chains to Couple Semiconducting Rods: Coulomb Blockade Modulation Using Photoexcitation. Advanced Materials, 2014, 26, 6491-6496.	21.0	5
21	Electrochemical synthesis on single cells as templates. Chemical Communications, 2013, 49, 8641.	4.1	5
22	Graphene as Cellular Interface: Electromechanical Coupling with Cells. ACS Nano, 2011, 5, 6025-6031.	14.6	97
23	Graphene as membrane for encapsulation of yeast cells: protective and electrically conducting. Chemical Communications, 2011, 47, 11480.	4.1	69
24	Ion Mediated Monolayer Deposition of Gold Nanoparticles on Microorganisms: Discrimination by Age. Langmuir, 2010, 26, 371-377.	3.5	30
25	Carbon monoxide induced self-doping in methylammonium lead iodide films and associated long-term degradation effects. Journal of Materials Chemistry $C,0,$, .	5.5	6