Antoine Maruani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6548143/publications.pdf

Version: 2024-02-01

331670 552781 1,699 25 21 26 h-index citations g-index papers 30 30 30 2089 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aerobically-initiated C(sp ³)–H bond amination through the use of activated azodicarboxylates. Organic and Biomolecular Chemistry, 2020, 18, 6258-6264.	2.8	11
2	A Plug-and-Play Approach for the <i>De Novo</i> Generation of Dually Functionalized Bispecifics. Bioconjugate Chemistry, 2020, 31, 520-529.	3.6	31
3	Disulfide Modified IgG1: An Investigation of Biophysical Profile and Clinically Relevant Fc Interactions. Bioconjugate Chemistry, 2019, 30, 1048-1054.	3.6	28
4	Use of pyridazinediones as extracellular cleavable linkers through reversible cysteine conjugation. Chemical Communications, 2019, 55, 14829-14832.	4.1	9
5	Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Organic and Biomolecular Chemistry, 2018, 16, 1359-1366.	2.8	60
6	Synthesis of a novel HER2 targeted aza-BODIPY–antibody conjugate: synthesis, photophysical characterisation and <i>in vitro</i> evaluation. Organic and Biomolecular Chemistry, 2018, 16, 1144-1149.	2.8	17
7	Assembly of High-Potency Photosensitizer–Antibody Conjugates through Application of Dendron Multiplier Technology. Bioconjugate Chemistry, 2018, 29, 176-181.	3.6	27
8	Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discovery Today: Technologies, 2018, 30, 55-61.	4.0	29
9	Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering. Chemical Science, 2017, 8, 2056-2060.	7.4	52
10	Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chemical Science, 2017, 8, 63-77.	7.4	209
11	Pyridazinediones deliver potent, stable, targeted and efficacious antibody–drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC Advances, 2017, 7, 9073-9077.	3.6	62
12	Dual modification of biomolecules. Organic and Biomolecular Chemistry, 2016, 14, 6165-6178.	2.8	50
13	A facile, one-pot procedure for the conversion of aromatic aldehydes to esters, as well as thioesters and amides, via acyl hydrazide intermediates. RSC Advances, 2016, 6, 3372-3376.	3.6	19
14	The Use of 3,6-Pyridazinediones in Organic Synthesis and Chemical Biology. Journal of Chemical Research, 2016, 40, 1-9.	1.3	21
15	Recent advances in the construction of antibody–drug conjugates. Nature Chemistry, 2016, 8, 114-119.	13.6	289
16	Next-generation disulfide stapling: reduction and functional re-bridging all in one. Chemical Science, 2016, 7, 799-802.	7.4	72
17	A platform for efficient, thiol-stable conjugation to albumin's native single accessible cysteine. Organic and Biomolecular Chemistry, 2015, 13, 7946-7949.	2.8	47
18	A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nature Communications, 2015, 6, 6645.	12.8	203

#	Article	IF	CITATION
19	Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic. Chemical Communications, 2015, 51, 15304-15307.	4.1	50
20	A mild TCEP-based para-azidobenzyl cleavage strategy to transform reversible cysteine thiol labelling reagents into irreversible conjugates. Chemical Communications, 2015, 51, 5279-5282.	4.1	42
21	A rapid, site-selective and efficient route to the dual modification of DARPins. Chemical Communications, 2014, 50, 4898-4900.	4.1	16
22	Regioselective and Stoichiometrically Controlled Conjugation of Photodynamic Sensitizers to a HER2 Targeting Antibody Fragment. Bioconjugate Chemistry, 2014, 25, 611-617.	3.6	65
23	Next generation maleimides enable the controlled assembly of antibody–drug conjugates <i>via</i> native disulfide bond bridging. Organic and Biomolecular Chemistry, 2014, 12, 7261-7269.	2.8	135
24	Acid-cleavable thiomaleamic acid linker for homogeneous antibody–drug conjugation. Chemical Communications, 2013, 49, 8187.	4.1	67
25	A mild synthesis of N-functionalised bromomaleimides, thiomaleimides and bromopyridazinediones. Tetrahedron Letters, 2013, 54, 3493-3495.	1.4	46