Gavin C Conant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547941/publications.pdf

Version: 2024-02-01

136950 62596 7,608 84 32 80 h-index citations g-index papers 93 93 93 9441 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893
2	Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 2008, 9, 938-950.	16.3	1,042
3	The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8362-8366.	7.1	458
4	GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics, 2008, 24, 861-862.	4.1	308
5	Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology, 2014, 19, 91-98.	7.1	261
6	Asymmetric Sequence Divergence of Duplicate Genes. Genome Research, 2003, 13, 2052-2058.	5 . 5	222
7	Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8397-8402.	7.1	210
8	Increased glycolytic flux as an outcome of wholeâ€genome duplication in yeast. Molecular Systems Biology, 2007, 3, 129.	7.2	197
9	Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18644-18649.	7.1	196
10	Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytologist, 2012, 196, 596-605.	7.3	178
11	Convergent evolution of gene circuits. Nature Genetics, 2003, 34, 264-266.	21.4	177
12	Altered Patterns of Fractionation and Exon Deletions in <i>Brassica rapa</i> Support a Two-Step Model of Paleohexaploidy. Genetics, 2012, 190, 1563-1574.	2.9	163
13	Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 89-96.	2.6	139
14	Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint?. Journal of Molecular Evolution, 2004, 58, 203-211.	1.8	138
15	Two-Phase Resolution of Polyploidy in the <i>Arabidopsis</i> Metabolic Network Gives Rise to Relative and Absolute Dosage Constraints. Plant Cell, 2011, 23, 1719-1728.	6.6	137
16	Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication. PLoS Biology, 2006, 4, e109.	5.6	129
17	The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Research, 2015, 43, gkv973.	14.5	98
18	Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLoS Genetics, 2018, 14, e1007267.	3.5	78

#	Article	IF	Citations
19	Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nature Communications, 2019, 10, 2878.	12.8	78
20	GenomeHistory: a software tool and its application to fully sequenced genomes. Nucleic Acids Research, 2002, 30, 3378-3386.	14.5	69
21	Effects of Nucleotide Composition Bias on the Success of the Parsimony Criterion in Phylogenetic Inference. Molecular Biology and Evolution, 2001, 18, 1024-1033.	8.9	65
22	Solvent Exposure Imparts Similar Selective Pressures across a Range of Yeast Proteins. Molecular Biology and Evolution, 2009, 26, 1155-1161.	8.9	60
23	Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics, 2008, 9, 147.	2.8	59
24	Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Ruminant Research, 2017, 156, 12-19.	1.2	52
25	Probabilistic Cross-Species Inference of Orthologous Genomic Regions Created by Whole-Genome Duplication in Yeast. Genetics, 2008, 179, 1681-1692.	2.9	50
26	Nonrandom Survival of Gene Conversions among Yeast Ribosomal Proteins Duplicated through Genome Doubling. Genome Biology and Evolution, 2010, 2, 826-834.	2.5	44
27	Long identical multispecies elements in plant and animal genomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1183-91.	7.1	43
28	Integrating Networks, Phylogenomics, and Population Genomics for the Study of Polyploidy. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 253-278.	8.3	42
29	Comparative Genomics as a Time Machine: How Relative Gene Dosage and Metabolic Requirements Shaped the Time-dependent Resolution of Yeast Polyploidy. Molecular Biology and Evolution, 2014, 31, 3184-3193.	8.9	38
30	Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome, 2017, 5, 60.	11.1	38
31	Watching the grin fade: Tracing the effects of polyploidy on different evolutionary time scales. Seminars in Cell and Developmental Biology, 2013, 24, 320-331.	5.0	37
32	Diet Alters Both the Structure and Taxonomy of the Ovine Gut Microbial Ecosystem. DNA Research, 2014, 21, 115-125.	3.4	37
33	Modeling amino acid substitution patterns in orthologous and paralogous genes. Molecular Phylogenetics and Evolution, 2007, 42, 298-307.	2.7	36
34	Genomeâ€wide association for milk production and lactation curve parameters in Holstein dairy cows. Journal of Animal Breeding and Genetics, 2020, 137, 292-304.	2.0	36
35	Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes. BMC Evolutionary Biology, 2011, 11, 89.	3.2	34
36	Convergent Evolution and the Origin of Complex Phenotypes in the Age of Systems Biology. International Journal of Plant Sciences, 2016, 177, 305-318.	1.3	33

3

#	Article	IF	CITATIONS
37	Phylogeny and multiple independent wholeâ€genome duplication events in the Brassicales. American Journal of Botany, 2020, 107, 1148-1164.	1.7	32
38	Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes. Annual Review of Genetics, 2016, 50, 113-131.	7.6	29
39	Patterns of indirect protein interactions suggest a spatial organization to metabolism. Molecular BioSystems, 2011, 7, 3056.	2.9	27
40	Selection for Higher Gene Copy Number after Different Types of Plant Gene Duplications. Genome Biology and Evolution, 2011, 3, 1369-1380.	2.5	27
41	Genome-Guided Phylo-Transcriptomic Methods and the Nuclear Phylogenetic Tree of the Paniceae Grasses. Scientific Reports, 2017, 7, 13528.	3.3	27
42	The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS ONE, 2020, 15, e0231356.	2.5	27
43	Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in <i>Brassica rapa</i> New Phytologist, 2021, 230, 372-386.	7.3	26
44	Very Low Rate of Gene Conversion in the Yeast Genome. Molecular Biology and Evolution, 2012, 29, 3817-3826.	8.9	25
45	Copy Number Alterations among Mammalian Enzymes Cluster in the Metabolic Network. Molecular Biology and Evolution, 2011, 28, 1111-1121.	8.9	24
46	Secondary Structure Analyses of the Nuclear rRNA Internal Transcribed Spacers and Assessment of Its Phylogenetic Utility across the Brassicaceae (Mustards). PLoS ONE, 2014, 9, e101341.	2.5	24
47	Neutral evolution on mammalian protein surfaces. Trends in Genetics, 2009, 25, 377-381.	6.7	23
48	Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 869-876.	2.6	23
49	Tiny but mighty: The role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96, 752-770.	0.5	23
50	Patterns of Gene Conversion in Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular Complex. Genome Biology and Evolution, 2015, 7, 3249-3258.	2.5	22
51	Patterns of Population Variation in Two Paleopolyploid Eudicot Lineages Suggest That Dosage-Based Selection on Homeologs Is Long-Lived. Genome Biology and Evolution, 2018, 10, 999-1011.	2.5	21
52	The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Research, 2021, 31, 799-810.	5.5	21
53	Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell and Tissue Research, 2014, 356, 261-278.	2.9	20
54	Polyploidy and the Evolution of Complex Traits. International Journal of Evolutionary Biology, 2012, 2012, 1-12.	1.0	19

#	Article	IF	CITATIONS
55	Bovine Genome Database: new annotation tools for a new reference genome. Nucleic Acids Research, 2019, 48, D676-D681.	14.5	18
56	The rarity of gene shuffling in conserved genes. Genome Biology, 2005, 6, R50.	9.6	16
57	Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	16
58	Poor feed efficiency in sheep is associated with several structural abnormalities in the community metabolic network of their ruminal microbes1. Journal of Animal Science, 2018, 96, 2113-2124.	0.5	15
59	Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	15
60	Extreme Evolutionary Conservation of Functionally Important Regions in H1N1 Influenza Proteome. PLoS ONE, 2013, 8, e81027.	2.5	15
61	Parallel Genehunter: implementation of a linkage analysis package for distributed-memory architectures. Journal of Parallel and Distributed Computing, 2003, 63, 674-682.	4.1	14
62	Predicting residual feed intake status using rumen microbial profiles in ewe lambs1. Journal of Animal Science, 2019, 97, 2878-2888.	0.5	13
63	A Single, Shared Triploidy in Three Species of Parasitic Nematodes. G3: Genes, Genomes, Genetics, 2020, 10, 225-233.	1.8	13
64	Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biology and Evolution, 2020, 12, 35-47.	2.5	11
65	A Conserved Mammalian Protein Interaction Network. PLoS ONE, 2013, 8, e52581.	2.5	10
66	Gene Duplication and Phenotypic Changes in the Evolution of Mammalian Metabolic Networks. PLoS ONE, 2014, 9, e87115.	2.5	10
67	Functional characterization of SMN evolution in mouse models of SMA. Scientific Reports, 2019, 9, 9472.	3.3	8
68	Cloning and Characterization of the Peptidoglycan Recognition Protein Genes in the Mosquito, Armigeres subalbatus (Diptera: Culicidae). Journal of Medical Entomology, 2012, 49, 656-671.	1.8	7
69	Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system. Cell and Tissue Research, 2016, 363, 267-278.	2.9	6
70	A distributed CPU-GPU framework for pairwise alignments on large-scale sequence datasets. , 2013, , .		5
71	Parallel Gene Upstream Comparison via Multi-Level Hash Tables on GPU. , 2016, , .		5
72	A Second-Generation Genome Screen for Linkage to Type 1 Diabetes in a Bedouin Arab Family. Annals of the New York Academy of Sciences, 2004, 1037, 157-160.	3.8	4

#	Article	IF	CITATIONS
73	Transcriptional robustness and protein interactions are associated in yeast. BMC Systems Biology, 2011, 5, 62.	3.0	4
74	Yeast as a Window into Changes in Genome Complexity Due to Polyploidization., 2012,, 293-308.		4
75	The yeast protein interaction network has a capacity for selfâ€organization. FEBS Journal, 2014, 281, 3420-3432.	4.7	4
76	Distinct C ₄ subâ€types and C ₃ bundle sheath isolation in the Paniceae grasses. Plant Direct, 2021, 5, e373.	1.9	4
77	The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn. BMC Microbiology, 2010, 10, 196.	3.3	3
78	Large-Scale Pairwise Alignments on GPU Clusters: Exploring the Implementation Space. Journal of Signal Processing Systems, 2014, 77, 131-149.	2.1	3
79	A metagenomic analysis of the effect of antibiotic feed additives on the ovine rumen metabolism. Small Ruminant Research, 2021, 205, 106539.	1.2	3
80	A fast algorithm for determining the best combination of local alignments to a query sequence. BMC Bioinformatics, 2004, 5, 62.	2.6	2
81	POInT: A Tool for Modeling Ancient Polyploidies Using Multiple Polyploid Genomes. Methods in Molecular Biology, 2022, , 81-91.	0.9	1
82	Increased glycolytic flux as an outcome of wholeâ€genome duplication in yeast. Molecular Systems Biology, 2008, 4, .	7.2	0
83	Structure, Interaction, and Evolution: Reflections on the Natural History of Proteins., 2015, , 187-201.		0
84	Effects of evolutionary pressure on histone modifications., 2017,,.		0