Andrew G Norman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654754/publications.pdf

Version: 2024-02-01

189 papers

6,092 citations

94433 37 h-index 72 g-index

191 all docs

191 docs citations

191 times ranked

6576 citing authors

#	Article	IF	Citations
1	PbTe Colloidal Nanocrystals:Â Synthesis, Characterization, and Multiple Exciton Generation. Journal of the American Chemical Society, 2006, 128, 3241-3247.	13.7	660
2	Nanocrystalline TiO2Solar Cells Sensitized with InAs Quantum Dotsâ€. Journal of Physical Chemistry B, 2006, 110, 25451-25454.	2.6	443
3	40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Applied Physics Letters, 2008, 93, .	3.3	433
4	Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy, 2020, 5, 326-335.	39.5	408
5	An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry, 2018, 10, 532-539.	13.6	347
6	Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells. Physical Review B, 2008, 78, .	3.2	215
7	Combinatorial insights into doping control and transport properties of zinc tin nitride. Journal of Materials Chemistry C, 2015, 3, 11017-11028.	5.5	128
8	Transmission electron microscope and transmission electron diffraction observations of alloy clustering in liquidâ€phase epitaxial (001) GalnAsP layers. Journal of Applied Physics, 1985, 57, 4715-4720.	2.5	114
9	Mechanism for CuPt-type ordering in mixed III–V epitaxial layers. Journal of Crystal Growth, 1994, 140, 249-263.	1.5	107
10	Observation of $\{111\}$ ordering and $[110]$ modulation in molecular beam epitaxial GaAs1â^'ySbylayers: Possible relationship to surface reconstruction occurring during layer growth. Journal of Applied Physics, 1990, 67, 2310-2319.	2.5	96
11	BGalnAs alloys lattice matched to GaAs. Applied Physics Letters, 2000, 76, 1443-1445.	3.3	94
12	Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 623-628.	6.7	85
13	Effects of Disorder on Carrier Transport in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>nl:m²t8w><</td><td>mml:mn>2</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:m²t8w><	mml:mn>2
14	Structural studies of natural superlattices in group III-V alloy epitaxial layers. Semiconductor Science and Technology, 1993, 8, S9-S15.	2.0	63
15	Epitaxial growth of BGaAs and BGalnAs by MOCVD. Journal of Crystal Growth, 2001, 225, 372-376.	1.5	60
16	Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE., 2006,,.		60
17	Molecular beam epitaxial growth of InAsSb strained layer superlattices. Can nature do it better?. Applied Physics Letters, 1991, 59, 3324-3326.	3.3	59
18	Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials. Nano Energy, 2019, 55, 477-485.	16.0	56

#	Article	IF	Citations
19	Electronic structure of self-organized InAs/GaAs quantum dots bounded by{136}facets. Physical Review B, 2000, 61, 2784-2793.	3.2	53
20	Atomic ordering and phase separation in MBE GaAs1â^'xBix. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 03C121.	1.2	53
21	Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. Journal of Applied Physics, 2012, 111, .	2.5	53
22	Growth of antiphase-domain-free GaP on Si substrates by metalorganic chemical vapor deposition using an <i>in situ</i> AsH3 surface preparation. Applied Physics Letters, 2015, 107, .	3.3	51
23	Nanocomposite Counter Electrode Materials for Electrochromic Windows. Journal of the Electrochemical Society, 2010, 157, H328.	2.9	49
24	Solar energy conversion properties and defect physics of ZnSiP ₂ . Energy and Environmental Science, 2016, 9, 1031-1041.	30.8	49
25	Atomic ordering and domain structures in metal organic chemical vapor deposition grown InGaAs (001) layers. Journal of Applied Physics, 1994, 75, 7852-7865.	2.5	48
26	4-11 mu m infrared emission and 300 K light emitting diodes from arsenic-rich InAs1-xSbxstrained layer superlattices. Semiconductor Science and Technology, 1995, 10, 1177-1180.	2.0	48
27	Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications. Solid State Ionics, 2007, 178, 895-900.	2.7	48
28	Atomic ordering in molecular beam epitaxial InAsySb1â^'ynatural strained layer superlattices and homogeneous layers. Applied Physics Letters, 1994, 64, 3593-3595.	3.3	47
29	Atom Probe Analysis of Ill–V and Si-Based Semiconductor Photovoltaic Structures. Microscopy and Microanalysis, 2007, 13, 493-502.	0.4	47
30	High-efficiency inverted metamorphic 1.7/1.1 eV GalnAsP/GalnAs dual-junction solar cells. Applied Physics Letters, 2018, 112, .	3.3	47
31	Strain-dependent morphology of spontaneous lateral composition modulations in (AlAs)m(InAs)n short-period superlattices grown by molecular beam epitaxy. Applied Physics Letters, 1998, 73, 1844-1846.	3.3	45
32	Characterizing composition modulations in InAs/AlAs short-period superlattices. Physical Review B, 1999, 60, 13619-13635.	3.2	45
33	Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots. Applied Physics Letters, 2003, 82, 4552-4554.	3.3	45
34	In situ stress measurement for MOVPE growth of high efficiency lattice-mismatched solar cells. Journal of Crystal Growth, 2008, 310, 2339-2344.	1.5	43
35	Understanding the charge transport mechanisms through ultrathin SiO $\langle i \rangle \times \langle i \rangle$ layers in passivated contacts for high-efficiency silicon solar cells. Applied Physics Letters, 2019, 114, .	3.3	41
36	Selective and non-planar epitaxy of InP, GalnAs and GalnAsP using low pressure MOCVD. Journal of Crystal Growth, 1992, 124, 249-254.	1.5	40

#	Article	IF	CITATIONS
37	Use of a GaAsSb buffer layer for the formation of small, uniform, and dense InAs quantum dots. Applied Physics Letters, 2010, 96, .	3.3	40
38	Lattice-Mismatched 0.7-eV GalnAs Solar Cells Grown on GaAs Using GalnP Compositionally Graded Buffers. IEEE Journal of Photovoltaics, 2014, 4, 190-195.	2.5	39
39	Transmission electron microscopy and transmission electron diffraction structural studies of heteroepitaxial InAsySb1â^'ymolecularâ€beam epitaxial layers. Journal of Applied Physics, 1993, 73, 8227-8236.	2.5	38
40	Midinfrared picosecond spectroscopy studies of Auger recombination in InSb. Physical Review B, 1995, 52, 2516-2521.	3.2	38
41	Optical anisotropy and charge-transfer transition energies in BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> from 1.0 to	3.2	38
42	Efficient Photoinduced Charge Injection from Chemical Bath Deposited CdS into Mesoporous TiO ₂ Probed with Time-Resolved Microwave Conductivity. Journal of Physical Chemistry C, 2008, 112, 7742-7749.	3.1	35
43	Laterally modulated composition profiles in AlAs/InAs short-period superlattices. Journal of Applied Physics, 1998, 84, 6088-6094.	2.5	34
44	Ge-related faceting and segregation during the growth of metastable (GaAs)1â^x(Ge2)x alloy layers by metal–organic vapor-phase epitaxy. Applied Physics Letters, 1999, 74, 1382-1384.	3.3	34
45	Bimodal size distribution of self-assembledInxGa1â^'xAsquantum dots. Physical Review B, 2002, 66, .	3.2	34
46	Raman scattering in InAs1-xSbxalloys grown on GaAs by molecular beam epitaxy. Semiconductor Science and Technology, 1992, 7, 567-570.	2.0	32
47	Spectral optical properties of Cu_2ZnSnS_4 thin film between 073 and 65 eV. Optics Express, 2012, 20, A327.	3.4	32
48	Control of misfit dislocation glide plane distribution during strain relaxation of CuPt-ordered GalnAs and GalnP. Journal of Applied Physics, 2012, 112, 023520.	2.5	32
49	GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells. Solar Energy Materials and Solar Cells, 2013, 114, 165-171.	6.2	31
50	Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides. , 2014, , .		31
51	Nanoscale insight into the pâ€n junction of alkaliâ€ncorporated Cu(In,Ga)Se 2 solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 764-772.	8.1	31
52	The characterisation of Ga1â^'xInxAs,Al1â^'xInxAs and InP epitaxial layers prepared by metal organic chemical vapour deposition. Journal of Crystal Growth, 1984, 68, 319-325.	1.5	29
53	Initiation and evolution of phase separation in heteroepitaxial InAlAs films. Applied Physics Letters, 2002, 80, 3292-3294.	3.3	29
54	Temperature dependence of the band gap of GaAsSb epilayers. Journal of Applied Physics, 2002, 92, 6939-6941.	2.5	28

#	Article	lF	Citations
55	Enhanced Current Collection in 1.7 eV GalnAsP Solar Cells Grown on GaAs by Metalorganic Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2017, 7, 927-933.	2.5	26
56	Investigating PID shunting in polycrystalline silicon modules via multiscale, multitechnique characterization. Progress in Photovoltaics: Research and Applications, 2018, 26, 377-384.	8.1	26
57	Microscopic Observation of Solid Electrolyte Interphase Bilayer Inversion on Silicon Oxide. ACS Energy Letters, 2020, 5, 3657-3662.	17.4	26
58	Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer. Journal of Crystal Growth, 2015, 425, 268-273.	1.5	25
59	Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides. Energy Procedia, 2014, 55, 733-740.	1.8	24
60	Heteroepitaxial Integration of ZnGeN ₂ on GaN Buffers Using Molecular Beam Epitaxy. Crystal Growth and Design, 2020, 20, 1868-1875.	3.0	24
61	CuPt ordering in high bandgap GaxIn1â^'xP alloys on relaxed GaAsP step grades. Journal of Applied Physics, 2009, 106, .	2.5	22
62	Comparison of hydrazine, dimethylhydrazine, and t-butylamine nitrogen sources for MOVPE growth of GalnNAs for solar cells. Journal of Crystal Growth, 2000, 208, 11-17.	1.5	21
63	Observation of large optical anisotropy and valence band splitting in AllnAs self-assembled lateral quantum wells. Applied Physics Letters, 2002, 80, 243-245.	3.3	21
64	Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1120-1124.	1.2	21
65	Growth of lattice-matched GalnAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells. Journal of Crystal Growth, 2017, 458, 1-7.	1.5	21
66	Intrinsic Properties of Individual Inorganic Silicon–Electrolyte Interphase Constituents. ACS Applied Materials & Constituents. ACS Applied Mat	8.0	21
67	Lateral composition modulation in(InAs)n/(AlAs)mshort-period superlattices investigated by high-resolution x-ray scattering. Physical Review B, 2002, 66, .	3.2	20
68	Ordering-enhanced dislocation glide in III-V alloys. Journal of Applied Physics, 2013, 114, .	2.5	20
69	III-V/Si wafer bonding using transparent, conductive oxide interlayers. Applied Physics Letters, 2015, 106, .	3.3	20
70	Interband magneto-optics of InAs1-xSbx. Semiconductor Science and Technology, 1992, 7, 900-906.	2.0	19
71	0.7-eV GalnAs Junction for a GalnP/GaAs/GalnAs(1eV)/GalnAs(0.7eV) Four-Junction Solar Cell., 2006,,.		19
72	Development of ZnSiP\$_{mathbf 2}\$ for Si-Based Tandem Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 17-21.	2.5	19

#	Article	IF	CITATIONS
73	Evolution of solid electrolyte interphase and active material in the silicon wafer model system. Journal of Power Sources, 2021, 482, 228946.	7.8	19
74	Performance and reliability of \hat{l}^2 -Ga2O3 Schottky barrier diodes at high temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	19
75	Intragrain defects in polycrystalline silicon thin-film solar cells on glass by aluminum-induced crystallization and subsequent epitaxy. Thin Solid Films, 2008, 516, 6409-6412.	1.8	18
76	Growth of amorphous and epitaxial ZnSiP ₂ â \in "Si alloys on Si. Journal of Materials Chemistry C, 2018, 6, 2696-2703.	5. 5	18
77	Atomic Ordering and Alloy Clustering in MBE-Grown InAs _y Sb _{1-y} Epitaxial Layers. Materials Research Society Symposia Proceedings, 1989, 163, 907.	0.1	17
78	Growth and assessment of InGaAs/InGaAlAs/InP multiple quantum well lasers. Journal of Crystal Growth, 1991, 107, 784-789.	1.5	17
79	Improved quantum dot stacking for intermediate band solar cells using strain compensation. Nanotechnology, 2014, 25, 445402.	2.6	17
80	Atomic ordering-induced band gap reductions in GaAsSb epilayers grown by molecular beam epitaxy. Journal of Applied Physics, 2005, 97, 063701.	2.5	16
81	Synthesis and Characterization of (Sn,Zn)O Alloys. Chemistry of Materials, 2016, 28, 7765-7772.	6.7	16
82	Study of misfit dislocations by EBIC, CL and HRTEM in GaAs/InGaAs lattice-strained multi-quantum well p-i-n solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 42, 43-51.	3.5	15
83	Effect of surface steps on the microstructure of lateral composition modulation. Applied Physics Letters, 2000, 77, 669-671.	3.3	15
84	Spontaneous lateral phase separation of AlinP during thin film growth and its effect on luminescence. Journal of Applied Physics, 2015, 118 , .	2.5	15
85	Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. Nano Letters, 2021, 21, 9131-9137.	9.1	15
86	The shape of self-assembled InAs islands grown by molecular beam epitaxy. Journal of Electronic Materials, 1999, 28, 481-485.	2.2	14
87	Doping dependence and anisotropy of minority electron mobility in molecular beam epitaxy-grown p type GalnP. Applied Physics Letters, 2014, 105, .	3.3	13
88	Application of position sensitive atom probe to the study of the microchemistry and morphology of quantum well interfaces. Applied Physics Letters, 1989, 54, 1555-1557.	3.3	12
89	Inverted GaInP / (In)GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	12
90	Electrodeposited Biaxially Textured Buffer Layers for YBCO Superconductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 3451-3454.	1.7	12

#	Article	IF	CITATIONS
91	The Nature and Origin of Lateral Composition Modulations in Short-Period Strained-Layer Superlattices. Materials Research Society Symposia Proceedings, 1999, 583, 297.	0.1	11
92	Quadruple-period ordering along [110] in aGaAs0.87Sb0.13alloy. Physical Review B, 2001, 63, .	3.2	11
93	Transmission electron microscope study on electrodeposited Gd2O3 and Gd2Zr2O7 buffer layers for YBa2Cu3O7â^δsuperconductors. Physica C: Superconductivity and Its Applications, 2008, 468, 1092-1096.	1.2	11
94	Low temperature Si/SiO <inf>x</inf> /pc-Si passivated contacts to n-type Si solar cells. , 2014, , .		11
95	Implementation of tunneling pasivated contacts into industrially relevant n-Cz Si solar cells., 2015,,.		11
96	Studying Perovskite-based Solar Cells with Correlative In-Situ Microscopy. Microscopy and Microanalysis, 2015, 21, 969-970.	0.4	11
97	Optical and Structural Properties of High-Efficiency Epitaxial Cu(In,Ga)Se ₂ Grown on GaAs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3150-3160.	8.0	11
98	Sputtered p-Type Cu _{<i>x</i>} Zn _{1–<i>x</i>} S Back Contact to CdTe Solar Cells. ACS Applied Energy Materials, 2020, 3, 5427-5438.	5.1	11
99	Epitaxial Dirac Semimetal Vertical Heterostructures for Advanced Device Architectures. Advanced Functional Materials, 2022, 32, .	14.9	11
100	Observation of coupled LO phonon-intersubband plasmon modes in GaSb/InAs quantum wells by resonant Raman scattering. Semiconductor Science and Technology, 1993, 8, 2205-2209.	2.0	10
101	Optical properties of spontaneous lateral composition modulation in AlAs/InAs short-period superlattices. Applied Physics Letters, 2000, 77, 1765. Above-band-gap dielectric functions of 2nGeAsk mml:math	3.3	10
102	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow>2</mml:mrow></mml:msub></mml:mrow> : Ellipsometric measurements and quasiparticle self-consistent <td>3.2</td> <td>10</td>	3.2	10
103	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvarian Development of lattice-matched 1.7 eV GalnAsP solar cells grown on GaAs by MOVPE., 2016,,.</mml:mi </mml:mrow>		10
104	Surfaces and interfaces governing the OMVPE growth of APD-free GaP on AsH3-cleaned vicinal Si(100). Journal of Crystal Growth, 2016, 452, 235-239.	1.5	10
105	Reduced dislocation density in $GaxIn1\hat{a}^2xP$ compositionally graded buffer layers through engineered glide plane switch. Journal of Crystal Growth, 2017, 464, 20-27.	1.5	10
106	Improving Interface Stability of Si Anodes by Mg Coating in Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11534-11539.	5.1	10
107	High-Temperature Nucleation of GaP on V-Grooved Si. Crystal Growth and Design, 2020, 20, 6745-6751.	3.0	10
108	Mg $<$ sub $>$ x $<$ /sub $>$ Zn $<$ sub $>$ 1â $^{\circ}$ x $<$ /sub $>$ O contact to CuGa $<$ sub $>$ 3 $<$ /sub $>$ Se $<$ sub $>$ 5 $<$ /sub $>$ absorber for photovoltaic and photoelectrochemical devices. JPhys Energy, 2021, 3, 024001.	5. 3	10

#	Article	IF	CITATIONS
109	Multiscale Characterization of Photovoltaic Modulesâ€"Case Studies of Contact and Interconnect Degradation. IEEE Journal of Photovoltaics, 2022, 12, 62-72.	2.5	10
110	Resonance Raman scattering studies of composition-modulated GaP/InP short-period superlattices. Physical Review B, 1999, 60, 4883-4888.	3.2	9
111	Title is missing!. Journal of Materials Science: Materials in Electronics, 1999, 10, 191-197.	2.2	9
112	Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass. Progress in Photovoltaics: Research and Applications, 2015, 23, 909-917.	8.1	9
113	Magnetotransport measurements on InAs-GaSb quantum wells with the application of hydrostatic pressure. Journal of Physics and Chemistry of Solids, 1995, 56, 445-451.	4.0	8
114	Growth Model for Atomic Ordering: The Case for Quadruple-Period Ordering in GaAsSb Alloys. Physical Review Letters, 2003, 90, 026102.	7.8	8
115	Indium zinc oxide mediated wafer bonding for III–V/Si tandem solar cells. , 2015, , .		8
116	Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi ₂ Se ₃ Single Crystals. Chemistry of Materials, 2017, 29, 8472-8477.	6.7	8
117	Surfactant-induced chemical ordering of GaAsN:Bi. Applied Physics Letters, 2018, 113, .	3.3	8
118	Characterization and modeling of reverseâ€bias breakdown in Cu(In,Ga)Se ₂ photovoltaic devices. Progress in Photovoltaics: Research and Applications, 2019, 27, 812-823.	8.1	8
119	Direct manifestation of the Fermi pressure in a two-dimensional electron system. Physical Review B, 1996, 54, 7651-7653.	3.2	7
120	Intersubband Raman spectroscopy of two-dimensional electron gases in GaSb/InAs quantum wells. Semiconductor Science and Technology, 1996, 11, 1137-1145.	2.0	7
121	X-ray analysis of spontaneous lateral modulation in (InAs)n/(AlAs)m short-period superlattices. Applied Physics Letters, 2001, 78, 219-221.	3.3	7
122	InAlAs photovoltaic cell design for high device efficiency. Progress in Photovoltaics: Research and Applications, 2017, 25, 706-713.	8.1	7
123	Largeâ€Area Material and Junction Damage in c–Si Solar Cells by Potentialâ€Induced Degradation. Solar Rrl, 2019, 3, 1800303.	5.8	7
124	Formation of InAs/GaAs quantum dots by dewetting during cooling. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1489.	1.6	6
125	Selective area growth of GaAs on Si patterned using nanoimprint lithography. , 2016, , .		6
126	Enabling low-cost III-V/Si integration through nucleation of GaP on v-grooved Si substrates. , 2018, , .		6

#	Article	IF	CITATIONS
127	The control and evaluation of blue shift in GalnAs/GalnAsP multiple quantum well structures for integrated lasers and Stark-effect modulators. Semiconductor Science and Technology, 1993, 8, 1156-1165.	2.0	5
128	Interband and intersubband transitions in indium arsenide doping superlattices studied by absorption, nonlinear absorption and photoconductivity spectroscopies. Semiconductor Science and Technology, 1993, 8, S373-S379.	2.0	5
129	Two-dimensional array of self-assembled AllnAs quantum wires. Applied Physics Letters, 2002, 81, 529-531.	3.3	5
130	X-ray diffraction on laterally modulated (InAs)nâ^•(AlAs)m short-period superlattices. Journal of Applied Physics, 2004, 96, 4833-4838.	2.5	5
131	Coincident site lattice-matched InGaN on (111) spinel substrates. Applied Physics Letters, 2012, 100, 152106.	3.3	5
132	Single crystal growth and phase stability of photovoltaic grade ZnSiP2 by flux technique., 2015,,.		5
133	The evaluation and control of quantum wells and superlattices of Ill–V narrow gap semiconductors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 260-265.	3.5	4
134	Photoluminescence studies of lateral composition modulated short-period AlAs/InAs superlattices. Thin Solid Films, 1999, 357, 31-34.	1.8	4
135	Optical properties of self-assembled lateral superlattices in AllnAs epitaxial layers and AlAs/InAs short-period superlattices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 118-124.	3.5	4
136	Modulated Structures and Atomic Ordering in InPySb1-yLayers Grown by Organometallic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2008, 47, 2209-2212.	1.5	4
137	The influence of atomic ordering on strain relaxation during the growth of metamorphic solar cells. Journal of Physics: Conference Series, 2013, 471, 012006.	0.4	4
138	Defect characterization in compositionally graded InGaAs layers on GaAs(001) grown by MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1640-1643.	0.8	4
139	Carrier-Transport Study of Gallium Arsenide Hillock Defects. Microscopy and Microanalysis, 2019, 25, 1160-1166.	0.4	4
140	Application of templated vapor-liquid-solid growth to heteroepitaxy of InP on Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 013404.	2.1	4
141	New quantum dot nanomaterials to boost solar energy harvesting. SPIE Newsroom, 0, , .	0.1	4
142	High Mobility Cd ₃ As ₂ (112) on GaAs(001) Substrates Grown via Molecular Beam Epitaxy. ACS Applied Electronic Materials, 2022, 4, 729-734.	4.3	4
143	Transmission electron microscopy and scanning transmission electron microscope analysis of the effects of thermal processing on the structural integrity of GalnAs/GalnAsP multilayers. Journal of Applied Physics, 1993, 73, 4297-4304.	2.5	3
144	Quantum transport in strained layer superlattices. Surface Science, 1994, 305, 337-342.	1.9	3

#	Article	IF	Citations
145	Relationship between the lateral length and thickness of the platelets in naturally occurring strained layer superlattice structures. Journal of Applied Physics, 2000, 88, 5733-5736.	2.5	3
146	Growth of bulk and superlattice GaAsSb layers on InP. Journal of Materials Science Letters, 2001, 20, 363-366.	0.5	3
147	Optical anisotropy of InGaAsâ^•Ga(As,P) quantum dots grown on GaAs (311)B substrates. Applied Physics Letters, 2007, 91, 223109.	3.3	3
148	Oxidation and characterization of AlInP under light-soaked, damp heat conditions. , 2010, , .		3
149	Atomic scale characterization of compound semiconductors using atom probe tomography. , 2011, , .		3
150	Bulk defect generation during B-diffusion and oxidation of CZ wafers: Mechanism for degrading solar cell performance. , 2014, , .		3
151	Wafer-Bonded AlGaAs///Si Dual-Junction Solar Cells. , 2017, , .		3
152	Investigating PID Shunting in Polycrystalline Silicon Modules via Multi-Scale, Multi-Technique Characterization., 2017,,.		3
153	Photo- and electro-luminescence studies of uncooled arsenic-rich In(As,Sb) strained layer superlattice light-emitting diodes for the 4-12-νm band. , 1995, , .		2
154	Reciprocal-Space and Real-Space Analyses of Compositional Modulation in InAs/AlAs Short-Period Superlattices. Materials Research Society Symposia Proceedings, 1999, 583, 333.	0.1	2
155	Spontaneous lateral modulation in short-period superlattices investigated by grazing-incidence x-ray diffraction. Physical Review B, 2005, 72, .	3.2	2
156	Single-crystalline aluminum grown on MgAl2O4 spinel using molecular-beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 03C128.	1.2	2
157	Investigation of GaP/Si heteroepitaxy on MOCVD prepared Si(100) surfaces., 2015,,.		2
158	Amorphous sulfide heterostructure precursors prepared by radio frequency sputtering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 051201.	1.2	2
159	Growth of GaAs on single-crystal layered-2D Bi2Se3. Journal of Crystal Growth, 2020, 534, 125457.	1.5	2
160	Transmission Electron Microscopy and Transmission Electron Diffraction Studies of Atomic Ordering in Group III-V Compound Semiconductor Alloys. NATO ASI Series Series B: Physics, 1989, , 233-253.	0.2	2
161	The Nature and Origin of Atomic Ordering in Group III-V Antimonide Semiconductor Alloys. , 2002, , 45-97.		2
162	Modulated Contrast and Associated Diffracted Intensity of GaPySb1-y Layers Grown Using Organometallic Vapor Phase Epitaxy. Journal of the Korean Physical Society, 2008, 52, 471-475.	0.7	2

#	Article	IF	CITATIONS
163	Growth of bulk and superlattice GaAsSb layers on InP. Journal of Materials Science Letters, 2001, 20, 677-680.	0.5	1
164	GaSb/InGaAs quantum dot-well solar cells. , 2013, , .		1
165	Epitaxial growth of InGaAs on MgAl2O4 spinel for one-sun photovoltaics. Journal of Crystal Growth, 2013, 363, 40-43.	1.5	1
166	Analytical (S)TEM Studies of Defects Associated with PID in Stressed Si PV Modules., 2017,,.		1
167	Single crystalline substrates for III- ν growth via exfoliation of bulk single crystals. , 2017, , .		1
168	Insights into the Dynamic Interfacial and Bulk Composition of Copper-Modified, Hydrogen-Alloyed, Palladium Nanocubes under Electrocatalytic Conditions. Journal of Physical Chemistry C, 2021, 125, 15487-15495.	3.1	1
169	Nucleation of high-quality GaP on Si through v-groove Si substrates. , 2020, , .		1
170	Position-Sensitive Atom Probe and Stem Analysis of the Microchemistry of GalnAs/Inp Quantum Wells. Materials Research Society Symposia Proceedings, 1989, 148, 377.	0.1	0
171	Electronic structure and optical polarization anisotropy of self-organized InAs/GaAs quantum dots. , 1999, , .		0
172	Profiling Composition Variations in Composition-Modulated GaP/InP Short-Period Superlattices Using Resonance Raman Scattering. Materials Research Society Symposia Proceedings, 1999, 583, 361.	0.1	0
173	X-Ray Characterization of Nanostructured Semiconductor Short-Period Superlattices. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	0
174	Characterization of MOCVD lateral epitaxial overgrown III-V semiconductor layers on GaAs substrates. , 0, , .		0
175	Quadruple-period ordering in MBE GaAsSb alloys. Materials Research Society Symposia Proceedings, 2003, 794, 49.	0.1	0
176	Effects of Substrate Orientation on the Spontaneous Ordering of GaAsSb Epilayers Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2003, 794, 1.	0.1	0
177	Transient absorption for characterization of intermediate band solar cells. , 2010, , .		0
178	Effects of substrate orientation on aluminum grown on MgAl2O4 spinel using molecular beam epitaxy. Journal of Crystal Growth, 2011, 314, 298-301.	1.5	0
179	Transient Absorption for Characterization of Quantum Dot Intermediate Band Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1289, 402.	0.1	0
180	Electron microscopy study of individual grain boundaries in Cu <inf>2</inf> ZnSnSe <inf>4</inf> thin films. , 2013, , .		0

#	Article	IF	Citations
181	Minority carrier lifetimes in 1.0-eV p-ln $<$ inf $>$ 0.27 $<$ /inf $>$ 0.73 $<$ /inf $>$ As layers grown on GaAs substrates. , 2014, , .		O
182	Low-temperature surface preparation and epitaxial growth of ZnS and Cu2ZnSnS4 on ZnS(1 10) and GaP(1 00). Journal of Crystal Growth, 2017, 478, 89-95.	1.5	0
183	Cover Image, Volume 25, Issue 9. Progress in Photovoltaics: Research and Applications, 2017, 25, i.	8.1	O
184	ZnSiP2 Thin Film Growth for Si-Based Tandem Photovoltaics. , 2017, , .		0
185	Measurement of TiO2/p-Si Selective Contact Performance Using a Heterojunction Bipolar Transistor with a Selective Contact Emitter. , 2017, , .		O
186	Cover Image, Volume 26, Issue 6. Progress in Photovoltaics: Research and Applications, 2018, 26, i-i.	8.1	0
187	Surface conversion of single-crystal Bi2Se3 to β-ln2Se3. Journal of Crystal Growth, 2021, 573, 126306.	1.5	O
188	Structural and chemical studies of novel 1-eV band gap solar cell materials lattice-matched to GaAs. , 2018, , 229-232.		0
189	Templated Vapor-Liquid-Solid Epitaxy of III-V Semiconductors on Silicon. , 2020, , .		O