
David Macias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6547307/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ ΜΑCIAS

#	Article	IF	CITATIONS
1	Cellular senescence. , 2022, , 3-26.		0
2	Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension. European Respiratory Journal, 2021, 57, 1902061.	6.7	23
3	Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors. Intensive Care Medicine Experimental, 2021, 9, 28.	1.9	2
4	2-Hydroxyglutarate Metabolism Is Altered in an in vivo Model of LPS Induced Endotoxemia. Frontiers in Physiology, 2020, 11, 147.	2.8	9
5	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
6	Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell, 2019, 25, 407-418.e6.	11.1	202
7	The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metabolism, 2018, 27, 898-913.e7.	16.2	55
8	Glycolytic Response to Inflammation Over Time: Role of Myeloid HIF-1alpha. Frontiers in Physiology, 2018, 9, 1624.	2.8	11
9	The role of Olfr78 in the breathing circuit of mice. Nature, 2018, 561, E33-E40.	27.8	43
10	Aging of Bone Marrow Microenvironment Promotes Myeloid Bias of Hematopoietic Progenitors and Is a Target in Age-Related Myeloproliferative Neoplasms. Blood, 2018, 132, 3842-3842.	1.4	2
11	HIF-2Î \pm is essential for carotid body development and function. ELife, 2018, 7, .	6.0	38
12	An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 2017, 32, 669-683.e5.	16.8	352
13	Cardiovascular adaptation to hypoxia and the role of peripheral resistance. ELife, 2017, 6, .	6.0	28
14	A Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium. Neuron, 2016, 92, 1196-1203.	8.1	45
15	HIF2α–arginase axis is essential for the development of pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8801-8806.	7.1	140
16	Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. Journal of Physiology, 2016, 594, 7229-7248.	2.9	20
17	S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature, 2016, 540, 236-241.	27.8	306
18	Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Molecular Aspects of Medicine, 2016, 47-48, 90-108.	6.4	50

DAVID MACIAS

#	Article	IF	CITATIONS
19	Carotid body oxygen sensing and adaptation to hypoxia. Pflugers Archiv European Journal of Physiology, 2016, 468, 59-70.	2.8	24
20	Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells. Glia, 2014, 62, 623-638.	4.9	27
21	Deletion of the von Hippel–Lindau gene causes sympathoadrenal cell death and impairs chemoreceptorâ€mediated adaptation to hypoxia. EMBO Molecular Medicine, 2014, 6, 1577-1592.	6.9	49
22	Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics and Genomes, 2010, 6, 891-903.	1.6	24
23	A Lentiviral Vector That Activates Latent Human Immunodeficiency Virus-1 Proviruses by the Overexpression of Tat and That Kills the Infected Cells. Human Gene Therapy, 2009, 20, 1259-1268.	2.7	8
24	c-Jun kinase mediates expression of VEGF induced at transcriptional level by Rac1 and Cdc42Hs but not by RhoA. Journal of Cellular Biochemistry, 2006, 98, 650-660.	2.6	5